
COURSE MANUAL

Introduction to

Programming
CSC 103

University of Ibadan Distance Learning Centre

Open and Distance Learning Course Series Development

Copyright © 2016 by Distance Learning Centre, University of Ibadan, Ibadan.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-021-592-1

General Editor: Prof. Bayo Okunade

University of Ibadan Distance Learning Centre

University of Ibadan,

Nigeria

Telex: 31128NG

Tel: +234 (80775935727)

E-mail: ssu@dlc.ui.edu.ng

Website: www.dlc.ui.edu.ng

Vice-Chancellor’s Message

The Distance Learning Centre is building on a solid tradition of over two decades of service

in the provision of External Studies Programme and now Distance Learning Education in

Nigeria and beyond. The Distance Learning mode to which we are committed is providing

access to many deserving Nigerians in having access to higher education especially those who

by the nature of their engagement do not have the luxury of full time education. Recently, it is

contributing in no small measure to providing places for teeming Nigerian youths who for one

reason or the other could not get admission into the conventional universities.

These course materials have been written by writers specially trained in ODL course delivery.

The writers have made great efforts to provide up to date information, knowledge and skills in

the different disciplines and ensure that the materials are user-friendly.

In addition to provision of course materials in print and e-format, a lot of Information

Technology input has also gone into the deployment of course materials. Most of them can be

downloaded from the DLC website and are available in audio format which you can also

download into your mobile phones, IPod, MP3 among other devices to allow you listen to the

audio study sessions. Some of the study session materials have been scripted and are being

broadcast on the university’s Diamond Radio FM 101.1, while others have been delivered and

captured in audio-visual format in a classroom environment for use by our students. Detailed

information on availability and access is available on the website. We will continue in our

efforts to provide and review course materials for our courses.

However, for you to take advantage of these formats, you will need to improve on your I.T.

skills and develop requisite distance learning Culture. It is well known that, for efficient and

effective provision of Distance learning education, availability of appropriate and relevant

course materials is a sine qua non. So also, is the availability of multiple plat form for the

convenience of our students. It is in fulfilment of this, that series of course materials are being

written to enable our students study at their own pace and convenience.

It is our hope that you will put these course materials to the best use.

Prof. Abel Idowu Olayinka

Vice-Chancellor

Foreword

As part of its vision of providing education for “Liberty and Development” for Nigerians

and the International Community, the University of Ibadan, Distance Learning Centre has

recently embarked on a vigorous repositioning agenda which aimed at embracing a holistic

and all encompassing approach to the delivery of its Open Distance Learning (ODL)

programmes. Thus we are committed to global best practices in distance learning provision.

Apart from providing an efficient administrative and academic support for our students, we

are committed to providing educational resource materials for the use of our students. We are

convinced that, without an up-to-date, learner-friendly and distance learning compliant course

materials, there cannot be any basis to lay claim to being a provider of distance learning

education. Indeed, availability of appropriate course materials in multiple formats is the hub

of any distance learning provision worldwide.

In view of the above, we are vigorously pursuing as a matter of priority, the provision of

credible, learner-friendly and interactive course materials for all our courses. We

commissioned the authoring of, and review of course materials to teams of experts and their

outputs were subjected to rigorous peer review to ensure standard. The approach not only

emphasizes cognitive knowledge, but also skills and humane values which are at the core of

education, even in an ICT age.

The development of the materials which is on-going also had input from experienced editors

and illustrators who have ensured that they are accurate, current and learner-friendly. They are

specially written with distance learners in mind. This is very important because, distance

learning involves non-residential students who can often feel isolated from the community of

learners.

It is important to note that, for a distance learner to excel there is the need to source and read

relevant materials apart from this course material. Therefore, adequate supplementary reading

materials as well as other information sources are suggested in the course materials.

Apart from the responsibility for you to read this course material with others, you are also

advised to seek assistance from your course facilitators especially academic advisors during

your study even before the interactive session which is by design for revision. Your academic

advisors will assist you using convenient technology including Google Hang Out, You Tube,

Talk Fusion, etc. but you have to take advantage of these. It is also going to be of immense

advantage if you complete assignments as at when due so as to have necessary feedbacks as a

guide.

The implication of the above is that, a distance learner has a responsibility to develop

requisite distance learning culture which includes diligent and disciplined self-study, seeking

available administrative and academic support and acquisition of basic information

technology skills. This is why you are encouraged to develop your computer skills by availing

yourself the opportunity of training that the Centre’s provide and put these into use.

In conclusion, it is envisaged that the course materials would also be useful for the regular

students of tertiary institutions in Nigeria who are faced with a dearth of high quality

textbooks. We are therefore, delighted to present these titles to both our distance learning

students and the university’s regular students. We are confident that the materials will be an

invaluable resource to all.

We would like to thank all our authors, reviewers and production staff for the high quality of

work.

Best wishes.

Professor Bayo Okunade

Director

Course Development Team

Content Authoring Yetunde Folajimi

Content Editor

Production Editor

Learning Design/Assessment Authoring

Managing Editor

General Editor

Prof. Remi Raji-Oyelade

Ogundele Olumuyiwa Caleb

Folajimi Olambo Fakoya

Ogunmefun Oladele Abiodun

Prof. Bayo Okunade

Table of Contents

About this course manual 1

How this course manual is structured .. 1

Course Overview 3

Welcome to Introduction to Programming CIS104 ... 3
Course outcomes .. 3

Getting around this course manual 6

Margin icons ... 6

Study Session 1 7

Overview of Programming ... 7
Introduction .. 7
Terminology .. 7
1.1 Definition of Programming ... 7

1.1.1 Application Versus System Programming ... 8
1.2 The Computer Program .. 9

1.2.1 Writing a Computer Program ... 10
1.3 Characteristics of Computer Program ... 11

1.3.1 Portability ... 11
1.3.2 Readability.. 11
1.3.3 Efficiency ... 12
1.3.4 Structural .. 12
1.3.5 Flexibility .. 12
1.3.6 Generality .. 12
1.3.7 Documentation ... 12

1.4 The Computer Programmer... 14
1.4.1 The Work of a Computer Programmer .. 14

Study Session Summary ... 15
Assessment .. 15
Bibliography .. 16

Study Session 2 17

History of Programming Languages ... 17
Introduction ... 17
Terminology ... 17
2.1 The Evolution of Programming Languages ... 17

2.1.1 The First Computer Language .. 19
2.1.2 The Birth of Assembly Language .. 19
2.1.3 The First Modern Computer Languages .. 20
2.1.4 More Recent Modern Languages .. 21

2.2 Categorizing Computer Languages by Epochs ... 24
2.2.1 Summary of Important Programming Languages by Year 26

Study Session Summary ... 28
Assessment .. 28
Bibliography .. 28

Study Session 3 29

The Programming Process .. 29
Introduction ... 29
Terminology ... 29
3.1 Problem Definition and Analysis ... 30

3.1.1 Planning and Outlining the Solution ... 30
3.2 Coding the Program... 31
3.3 Compilation ... 32
3.4 Debugging .. 33

3.4.1 Syntax ... 33
3.4.2 Semantics .. 34
3.4.3 Programming Errors .. 35

3.5 Testing and Validation ... 37
3.5.1 Types of Programming Tests .. 38

3.6 Program Documentation ... 42
Study Session Summary ... 43
Assessment .. 43
Bibliography .. 44

Study Session 4 44

Types of Programming Languages .. 45
Introduction ... 45
4.1 Characteristics of Programming Languages ... 45
4.2 Comparing Low-level and High-level Programming Languages .. 46
4.3 Compiled code and interpreted code ... 47
4.4 Classification of Programming Languages .. 47

4.4.1 Modular Programming Languages ... 48
4.4.2 Structured Programming Language .. 48
4.4.3 Business Oriented Language .. 49
4.4.4 Object oriented programming (OOP) language .. 50
4.4.5 Visual Programming Languages .. 51

Study Session Summary ... 52
Assessment .. 52
Credits .. 52

Study Session 5 54

Algorithms and Problem-Solving ... 54
Introduction ... 54
Terminology .. Error! Bookmark not defined.
5.1 The Problem Solving Process .. 54
5.2 The Concept of Algorithm ... 55

5.2.1 Properties of Algorithm .. 56
5.2.2 Algorithmic Problem Solving ... 56

5.3 Pseudo-Codes ... 58
5.3.1 Rules for Writing Pseudocode ... 58
5.3.2 Advantages of Pseudocode .. 60

5.3.3 Disadvantages of Pseudocode .. 60
5.4 Flowchart ... 61

5.4.1 Advantages of Flowcharts .. 61
5.4.2 Disadvantages of Flowcharts .. 62
5.4.3 Flowchart Symbols ... 62
5.4.4 General Guidelines in Flowcharting .. 63

Study Session Summary ... 66
Assessment .. 66
Credits .. 66

Study Session 6 67

Basics of Computer Program ... 67
Introduction ... 67
Terminology ... 67
6.1 Programming Environment ... 67

6.1.1 Text Editor .. 68
6.1.2 Compiler .. 69
6.1.3 Interpreter .. 70

6.2 Basic Syntax of Programming ... 71
6.2.1 Program Entry Point .. 71
6.2.2 Functions ... 71
6.2.3 Comments ... 72
6.2.4 Whitespaces ... 72
6.2.5 Semicolons .. 74
6.2.6 Syntax Error ... 75
6.2.7Hello World Program in Java ... 76
6.2.8 Hello World Program in Python .. 76

6.3 Variables... 76
6.3.1 Creating Variables ... 77
6.3.2 Storing Values in Variables.. 78
6.3.3 Accessing Stored Values in Variables ... 79
6.3.4 Variables in Java ... 80
6.3.5 Variables in Python ... 80

6.4 Reserved Words .. 81
6.4.1 C Programming Reserved Keywords .. 82
6.4.2 Java Programming Reserved Keywords .. 82
6.4.3 Python Programming Reserved Keywords .. 83

6.5 Operators ... 84
6.5.1 Arithmetic Operators ... 84
6.5.2 Relational Operators .. 86
6.5.3 Logical Operators .. 88
6.5.4 Operators in Java ... 89
6.5.5 Operators in Python ... 90

6.6 Functions ... 91
6.6.1 Defining a Function ... 93
6.6.2 Calling a Function .. 93

Study Session Summary ... 94
Assessment .. 95
Credits .. 95

Study Session 7 96

Data Types ... 96
Introduction ... 96
Terminology ... 96
7.1 Understanding Data Types ... 96

7.1.1 C and Java Data Types .. 98
7.1.2 Python Data Types .. 98

7.2 Data Type and Numbers Manipulation ... 99
7.2.1 Math Operations on Numbers ... 100
7.2.2 Numbers in Java .. 102
7.2.3 Numbers in Python .. 103

7.3 Data Type and character manipulation ... 104
7.3.1 Escape Sequences ... 105
7.3.2 Characters in Java ... 107
7.3.3 Characters in Python ... 108

7.4 Data Types and String Manipulation... 109
7.4.1 Basic String Concepts .. 111
7.4.2 Strings in Java ... 112
7.4.3 Strings in Python... 112

Study Session Summary .. 113
Assessment ... 113
Credits ... 114

Study Session 8 114

Decision-Making and Loops .. 115
Introduction .. 115
Terminology .. 115
8.1 Conditional Statements ... 115

8.1.1 The if Statement .. 115
8.1.2 if...else statement .. 117
8.1.3 if...else if...else statement ... 118
8.1.4 The Switch Statement ... 119
8.1.5 Decisions in Java ... 121
8.1.6 Decisions in Python ... 122

8.2 Loops .. 122
8.2.1 The while Loop .. 124
8.2.2 The do...while Loop .. 126
8.2.3 The break statement ... 127
8.2.4 The continue statement ... 129
8.2.5 Loops in Java ... 130
8.2.6 Loops in Python ... 130

Study Session Summary .. 131
Assessment ... 132
Credit ... 132

Study Session 9 133

Arrays .. 133
Introduction .. 133
Terminology .. 133
9.1 Understanding Arrays ... 133

9.1.1 Creating Arrays.. 134
9.1.2 Initializing Arrays ... 135
9.1.3 Accessing Array Elements .. 135

9.2 Arrays in Java .. 137
9.3 Arrays (Lists) in Python ... 138

Study Session Summary .. 139
Assessment ... 139
Credit ... 139

Study Session 10 140

Computer Files .. 140
Introduction .. 140
Terminology .. 140
10.1 File Input/output .. 140
10.2 File Operation Modes .. 141

10.2.1 Opening Files ... 142
10.2.2 Closing a File .. 143
10.2.3 Writing a File ... 143
10.2.4 Reading a File .. 144

10.3 File I/O in Java .. 145
10.4 File I/O in Python ... 146

Study Session Summary .. 147
Assessment ... 147
Credit ... 147

Notes on Self Assessment Questions 148

About this course manual

1

About this course manual

Introduction to Programming CSC 1033 has been produced by University

of Ibadan Distance Learning Centre. All course manuals produced by

University of Ibadan Distance Learning Centreare structured in the same

way, as outlined below.

How this course manual is

structured

The course overview
The course overview gives you a general introduction to the course.

Information contained in the course overview will help you determine:

 If the course is suitable for you.

 What you will already need to know.

 What you can expect from the course.

 How much time you will need to invest to complete the course.

The overview also provides guidance on:

 Study skills.

 Where to get help.

 Course assignments and assessments.

 Margin icons.

We strongly recommend that you read the overview carefully before

starting your study.

The course content
The course is broken down into Study Sessions. Each Study Session

comprises:

 An introduction to the Study Session content.

 Study Session outcomes.

 Core content of the Study Session with a variety of learning activities.

 A Study Session summary.

 Assignments and/or assessments, as applicable.

 Bibliography

About this course manual

2

Your comments
After completing Introduction to Programming we would appreciate it if

you would take a few moments to give us your feedback on any aspect of

this course. Your feedback might include comments on:

 Course content and structure.

 Course reading materials and resources.

 Course assignments.

 Course assessments.

 Course duration.

 Course support (assigned tutors, technical help, etc.)

Your constructive feedback will help us to improve and enhance this

course.

Course Overview

3

Course Overview

Welcome to Introduction to

Programming CSC103

Welcome to the Introduction to programming course! This course

introduces the fundamental concepts, principles and techniques involved

in modern computer programming. In addition, the course offers an

introduction to the historical context of programming. A systematic

approach is used to teach students various methods of algorithm

development, program development, and program design in order to write

programs that solve well-specified problems. Emphasis is placed on the

mastery of basic programming skills, with a considerable attention to the

fundamental building blocks of computer programs, and the associated

concepts and principles. The course also provides the core knowledge to

begin programming in any language. What we are exploring here are the

core ideas and skills you will always need when programming on any

platform with any language. Now there are dozens of programming

languages you could choose from and we will see many of them in this

course, languages like JavaScript, C, Ruby and Python. We will see what

these different languages are good at and why you might pick one over

another, but I won't be trying to make you an expert on any one of them.

Instead in this course we will go through what's common across all of

these languages. We will work with things like loops, conditionals,

variables, and memory; see how to control the structure and the flow of a

program; and what you need to know about what that program is doing

under the hood.

Finally, the course compares how code is written in several different

languages, the libraries and frameworks that have grown around them,

and the reasons to choose each one. Topics include Algorithms and

problem-solving, Fundamental programming constructs: Fundamental

data structures: Primitive types; arrays; records; strings and string

processing, Software development methodology: Fundamental design

concepts and principles, data types, control structures, functions, arrays,

files, and the mechanics of running, testing, and debugging.

Course outcomes

Upon completion of Introduction to Programming CIS104, you will be

able to:

 Understand the historical and modern perspectives of computer

programming

 Develop comprehensive knowledge about the fundamental

principles, characteristics, concepts and constructs of modern

Course Overview

4

Outcomes computer programming.

 Develop competencies for the design, coding and debugging of

computer programs.

 Describe the fundamental programming constructs and articulate

how they are used to develop a program with a desired runtime

execution flow.

 Define the necessary program structure in terms of the basic

building blocks

 Articulate the advantages and limitations resulting from the use

of different language constructs that embody similar

programming concepts.

Getting around this course manual

6

Getting around this course manual

Margin icons

While working through this course manual you will notice the frequent

use of margin icons. These icons serve to “signpost” a particular piece of

text, a new task or change in activity; they have been included to help you

to find your way around this course manual.

A complete icon set is shown below. We suggest that you familiarize

yourself with the icons and their meaning before starting your study.

Activity Assessment Assignment Case study

Discussion Group Activity Help Outcomes

Note Reflection Reading Study skills

Summary Terminology Time Tip

Study Session 1 Overview of Programming

7

Study Session 1

Overview of Programming

Introduction
In this study session, you will be discussing programming. You will

begin by defining programming. You will also differentiate between

application and system programming. Thereafter, you will examine

computer programming and how to write a computer program. Lastly,

you will describe who a computer programmer is.

Learning Outcomes

Outcomes

When we have studied this session, we should be able to:

1.1 define programming

1.2 describe a computer program

1.3 highlight the characteristics of a computer program

1.4 identify a computer programmer.

Terminology

Algorithm A precise step by step plan for a computational procedure
that possibly begins with an input value and yields an
output value I a finite number of steps

Programmer One who writes computer programs, a software developer

Database A collection of organized information in a regular
structure, usually but not necessarily in a machine-
readable format

Debug To search for and eliminate malfunctioning elements or
errors in a computer program

Firmware Computer hardware with non-volatile embedded
computer applications

1.1 Definition of Programming
Programming is a creative process by which programmers to instruct a

computer on how to do a task. This is usually done by converting the

steps involved in solving a specific problem into a format that is

Study Session 1 Overview of Programming

8

understandable by the computer through the use of a programming

language, so that it can be executed by a computer. Although many

programming languages and many different types of computers exist, the

important first step is the need to have the solution in a format that is

acceptable and understandable by the computer. Without an algorithm

there can be no program. An algorithm is therefore, a process or set of

rules to be followed in calculations or other problem-solving operations,

especially by a computer.

 ITQ

Question

What is the first step and important step in programming?

Feedback

The important first step is the need to have the solution in a format that

is acceptable and understandable by the computer.

Armed with the understanding of the creative process of turning an

algorithm into a computer program and equipped with a specific language

of communication, it is possible for a programmer to instruct a computer

to do many interesting things, ranging from creating self-driving cars to

performing medical diagnosis and treatment. As an example, a system

has been running in the UK for several years that reads car number plates.

The car is seen by a camera and the image captured then instantly

processed so that the number plate details are extracted, run through a

national car registration database of number plates and any stolen vehicle

etc. alerts for that vehicle flagged up within few seconds.

The set of instructions normally used to perform these tasks is referred to

as a computer program, and is normally written in a specific computer

programming language. The essence of programming languages is to

allow a programmer to manipulate numbers and texts (called variables)

in different ways, share them over a network or store them on disks for

future retrieval. In order to be able to write computer programs, it has to

exist on an operating system such as Windows, Linux or Mac. While

most older generation programming languages are built for specific

operating system platforms, many modern programming languages such

as Java now allow writing programs for multi platform operating systems

 ITQ

Question

What makes program work?

Feedback

Algorithm

1.1.1 Application Versus System Programming

Computer programming often are grouped into two broad categories:

application programming and systems programming. Application

Study Session 1 Overview of Programming

9

programming involves writing programs to handle a specific job, such as

a program to track inventory within an organization. It also involves

revising existing packaged software or customize generic applications

which are frequently purchased from independent software vendors.

Systems programming, in contrast, has to do with writing programs to

maintain and control computer systems software, such as operating

systems and database management systems. These programs are able to

determine how the network, workstations, and CPU of the system handle

the various jobs they have been given and how they communicate with

peripheral equipment such as printers and disk drives.

 ITQ

Question

What are the two groups of computer programming?

Feedback

As described above, the two groups of computer programming could be

Application programming or Systems programming.

1.2 The Computer Program
A computer program is a set of instructions, consisting of sequence of

separate commands or instructions, one after the other. Each step tells the

computer to perform a specific action. The idea of programming is to

break the program apart into these individual steps that can be executed

one after the other.

In programming languages we write these instructions by writing what

are called statements. Statements in programming languages are kind of

like sentences in English. They use words, numbers, and punctuation to

express one thought, one individual piece. Most programming statements

are pretty short, just a few words. Now, exactly what words, numbers,

and punctuation you use depends on the programming language. Some

languages want each of your statements to end with a semicolon, like

ending a sentence in English with a period, and others don't. You just go

to the next line and start writing the next statement.

Every language has its own characteristics. Some languages are all

uppercase, some languages are all lowercase, some languages just don't

care. Now, understanding the rules of each language is understanding the

syntax of a programming language. So programming is the ability to take

this idea in your head, break it apart into its individual pieces, and know

how to write those pieces in the programming language you are using at

the time, writing your statements in the right order, using the right syntax.

But what language? Well, sometimes you get to pick a language and

sometimes it's kind of picked for you. This will be made clearer in this

courseware.

The computer is only capable of processing binary, i.e. a series of 0s and

1s. Therefore we require a programming language to be able to write

commands that the computer can execute, but in a legible manner, i.e.

Study Session 1 Overview of Programming

10

commands that are understood by humans. These programs are then

translated into machine code (in binary) by a compiler.

 ITQ

Question

Explain the term “statements” with respect to programming?

Feedback

Statements in programming languages have a similar role to what

sentences do in English language. Statements uses words, numbers, and

punctuation to express one thought, one individual piece in

programming. Your understanding of the how statement relate to

programming is key in grasping how a program functions.

1.2.1 Writing a Computer Program

The method of writing a program is closely linked to the programming

language chosen, there being many different types. Furthermore, the

compiler should match the chosen language: each programming language

has its own compiler (except interpreted languages). Generally speaking,

the program is a simple text file (written using a word processor or a text

editor), this is called the source file). The source file contains lines of

program called source code. Once the source file has been completed it

must be compiled. Compilation takes place in two stages:

1. The compiler transforms the source code into object code, and

saves it in an object file, i.e. it translates the source file into

machine code (some compilers also create a file in assembler), a

language similar to machine code as it possesses basic functions

but is legible by humans)

2. The compiler then makes a call to a link editor (or linker or

binder) which enables it to embed all additional elements

(functions or libraries)that are referenced in the program into the

final file but which are not stored in the source file.

3. Then an executable file is created which contains all items

required for the program to run on its own (in Microsoft

Windows or MS-DOS this file will have the extension .exe).

Study Session 1 Overview of Programming

11

 ITQ

Question

Using a flow chart, outline the basic steps in writing a computer program

Feedback

1.3 Characteristics of Computer Program
Every computer requires appropriate instruction set (programs) to

perform the required task. The quality of the processing depends upon the

given instructions. If the instructions are improper or incorrect, then it is

obvious that the result will be superfluous. Therefore, proper and correct

instructions should be provided to the computer so that it can provide the

desired output. Hence, a program should be developed in such a way that

it ensures proper functionality of the computer. In addition, a program

should be written in such a manner that it is easier to understand the

underlying logic. The characteristics of a good computer program are

listed by 79experts (http://www.79xperts.com/blog/good-computer-

program/) as follows:

1.3.1 Portability

Portability refers to the ability of an application to run on different

platforms (operating systems) with or without minimal changes. Due to

rapid development in the hardware and the software, nowadays platform

change is a common phenomenon. Hence, if a program is developed for a

particular platform, then the life span of the program is severely affected.

1.3.2 Readability

The program should be written in such a way that it makes other

programmers or users to follow the logic of the program without much

effort. If a program is written structurally, it helps the programmers to

understand their own program in a better way. Even if some

computational efficiency needs to be sacrificed for better readability, it is

Compiler 1

•Simple Text File (source file)

•Source Code

•Object Code

•Object file (machine code)

Link Editor
(linker/binder)

 Executable file

http://www.79xperts.com/blog/good-computer-program/
http://www.79xperts.com/blog/good-computer-program/

Study Session 1 Overview of Programming

12

advisable to use a more user-friendly approach, unless the processing of

an application is of utmost importance.

1.3.3 Efficiency

Every program requires certain processing time and memory to process

the instructions and data. As the processing power and memory are the

most precious resources of a computer, a program should be laid out in

such a manner that it utilizes the least amount of memory and processing

time. Programs written in a good programming language are efficiently

translated into machine code, are efficiently executed, and acquire as

little space in the memory as possible. That is a good programming

language is supported with a good language translator which gives due

consideration to space and time efficiency.

1.3.4 Structural

To develop a program, the task must be broken down into a number of

subtasks. These subtasks are developed independently, and each subtask

is able to perform the assigned job without the help of any other subtask.

If a program is developed structurally, it becomes more readable, and the

testing and documentation process also gets easier. A Structured program

implies that the language should have necessary features to allow its users

to write their programs based on the concepts of structured programming.

This property of a moreover, it forces a programmer to look at a problem

in a logical way, so that fewer errors are created while writing a program

for the problem.

1.3.5 Flexibility

A program should be flexible enough to handle most of the changes

without having to rewrite the entire program. Most of the programs are

developed for a certain period and they require modifications from time

to time. For example, in case of payroll management, as the time

progresses, some employees may leave the company while some others

may join. Hence, the payroll application should be flexible enough to

incorporate all the changes without having to reconstruct the entire

application.

1.3.6 Generality

Apart from flexibility, the program should also be general. Generality

means that if a program is developed for a particular task, then it should

also be used for all similar tasks of the same domain. For example, if a

program is developed for a particular organization, then it should suit all

the other similar organizations.

1.3.7 Documentation

Documentation is one of the most important components of an

application development. Even if a program is developed following the

best programming practices, it will be rendered useless if the end user is

not able to fully utilize the functionality of the application. A well-

Study Session 1 Overview of Programming

13

documented application is also useful for other programmers because

even in the absence of the author, they can understand it.

The followings are additional characteristics believed to be important for

making a programming language good are:

1. Simplicity: A good programming language must be simple and

easy to learn and use. It should provide a programmer with a

clear, simple and unified set of concepts, which can be easily

grasped. The overall simplicity of a programming language

strongly affects the readability of the programs written in that

language, and programs, which are easier to read and understand,

are also easier to maintain. It is also easy to develop and

implement a compiler or an interpreter for a programming

language, which is simple. However, the power needed for the

language should not be sacrificed for simplicity.

2. Naturalness: A good language should be natural for the

application area, for which it has been designed. That is, it should

provide appropriate operators, data structures, control structures,

and a natural syntax to facilitate the users to code their problem

easily and efficiently.

3. Abstraction: Abstraction means the ability to define and then use

complicated structures or operations in ways that allow many of

the details to be ignored. The degree of abstraction allowed by a

programming language directly affect its writability. Object

oriented language support high degree of abstraction. Hence,

writing programs in object oriented language is much easier.

Object oriented language also support reusability of program

segments due to this features.

4. Compactness: In a good programming language, programmers

should be able to express intended operations concisely. A

verbose language is generally not liked by programmers, because

they need to write too much.

5. Locality: A good programming language should be such that

while writing a programmer concentrate almost solely on the part

of the program around the statement currently being worked

with.

 ITQ

Question

What does the term ‘flexibility’ refer to?

Feedback

Flexibility refers to the ability of a program to handle most of the

changes without having to rewrite the entire program. This is necessary

as most programs are developed for a certain period and they require

modifications from time to time. Therefore, the payroll application

should be flexible enough to incorporate all the changes without having

to reconstruct the entire application.

Study Session 1 Overview of Programming

14

1.4 The Computer Programmer
A computer programmer, also known as developer, coder, or software

engineer is a person who writes computer software. The term computer

programmer can refer to a specialist in one area of computer

programming or to a generalist who writes code for many kinds of

software and can be used to refer to a software developer, Web

developer, mobile applications developer, embedded firmware developer,

software engineer, computer scientist, or software analyst. A

programmer's primary computer language is often prefixed to these titles,

and those who work in a Web environment often prefix their titles with

Web. As such, based on computer programming language expertise, we

can name a computer programmers as follows −

1. C Programmer

2. C++ Programmer

3. Java Programmer

4. Python Programmer

5. PHP Programmer

6. Perl Programmer

7. Ruby Programmer

 ITQ

Question

What other names can we call a computer programmer?

Feedback

A computer programmer can also be called a developer, coder, or

software engineer.

1.4.1 The Work of a Computer Programmer

The purpose of programming is to create a program that produces a

certain desired behaviour (customization). The process of writing source

code often requires expertise in many different subjects, including

knowledge of the application domain, specialized algorithms and formal

logic. A computer programmer figures out the process of designing,

writing, testing, debugging/troubleshooting and maintaining the source

code of computer programs. This source code is written in a

programming language so the computer can 'understand' it. The code may

be a modification of an existing source or something completely new.

The computer programmer also designs a graphical user interface (GUI)

so that non-technical users can use the software through easy, point-and-

click menu options. The GUI acts as a translator between the user and the

software code. Some, especially those working on large projects that

involve many programmers, use computer-assisted software engineering

(CASE) tools to automate much of the coding process. These tools enable

a programmer to concentrate on writing the unique parts of a program. A

programmer working on smaller projects will often use “programmer

Study Session 1 Overview of Programming

15

environments,” applications that increase productivity by combining

compiling, code walk-through, code generation, test data generation, and

debugging functions.

A programmer will also use libraries of basic code that can be modified

or customized for a specific application. This approach yields more

reliable and consistent programs and increases programmers' productivity

by eliminating some routine steps. The programmer will also be

responsible for maintaining the program’s health. As software design has

continued to advance, and some programming functions have become

automated, programmers have begun to assume some of the

responsibilities that were once performed only by software engineers. As

a result, some computer programmers now assist software engineers in

identifying user needs and designing certain parts of computer programs,

as well as other functions. (Adapted fromwww.sokanu.com)

 ITQ

Question

What is the sole purpose of a computer programmer?

Feedback

The purpose of programming is to create a program that produces a

certain desired behaviour (customization). The process of writing source

code often requires expertise in many different subjects, including

knowledge of the application domain, specialized algorithms and formal

logic.

Study Session Summary

Summary

In this study session, you explored programming. You began the session

by defining programming. You also distinguished between application

and system programming. You continued by examining the computer

program and how to write a computer program. Thereafter, you

highlighted the characteristics of a computer program. You ended the

session by describing who a programmer is and his functions.

Assessment

Assessment

SAQ 1.1 (tests Learning Outcome 1.1)

1. What is the essence of programming?

2. What is the essence of programming?

SAQ 1.2 (tests learning outcome 1.2)

What is a computer program?

SAQ 1.3 (tests learning outcome 1.3)

Study Session 1 Overview of Programming

16

What are the characteristics of a computer program?

SAQ 1.4 (tests learning outcome 1.4)

1. Who is a computer programmer?

2. List four (4) core functions of a computer programmer?

Bibliography

Reading

http://www.cs.bham.ac.uk/~rxb/java/intro/2programming.html)

http://interactivepython.org/runestone/static/pythonds/Introduction/Wha

tIsProgramming.html

http://www.79xperts.com/blog/good-computer-program/

https://en.wikipedia.org/wiki/Semantics_(computer_science)

https://en.wikipedia.org/wiki/Logic_errorhttps://en.wikipedia.org/wiki/L

ogic_error

https://en.wikipedia.org/wiki/Integration_testinghttps://en.wikipedia.org

/wiki/Integration_testing

https://en.wikipedia.org/wiki/unit_testinghttps://en.wikipedia.org/wiki/u

nit_testing

https://en.wikipedia.org/wiki/smoke_testing

Cem Kaner, James Bach, Bret Pettichord, Lessons learned in software

testing: a context-driven approach. Wiley, 2001

Study Session 2 History of Programming Languages

17

Study Session 2

History of Programming Languages

Introduction
In this study session, you will be tracing the history of programming

language. You will describe the different stages of programming

language. Under which you will look at the first computer language, the

birth of assembly language and the first modern language. Lastly, you

will highlight the different categories of computer languages by Epoch.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

2.1 trace the evolution of programming languages

2.2 categorize computer languages by epochs

Terminology

Formulaic Closely following a formula or predictable pattern

Compiler A computer program which transforms source code into
object code

2.1 The Evolution of Programming

Languages
Thousands of different programming languages have been created,

mainly in the computer field, and many more still are being created every

year. The history of programming languages dates back to the 19th

century, when Ada Lovelace (1815 – 1852) wrote a set of notes after

translating the memoir of Italian mathematician Luigi Menabrea (1809 –

1896) about the Analytical Engine shown below during a period of nine

months between 1842 and 1843. . The Analytical Engine was an

invention of English mathematician and computer pioneer Charles

Babbage (1791-1871). Ada Lovelace’s set of notes, has been recognized

by some historians as the world’s first computer program as it contained a

ground-breaking description of the possibilities of programming the

machine to go beyond number-crunching to “computing”. Ada Lovelace

was an English mathematician and writer, chiefly known for her work on

Charles Babbage’s Analytical Engine as mentioned above. Her notes on

Study Session 2 History of Programming Languages

18

the engine include what is recognized as the first algorithm intended to be

carried out by a machine. Because of this, she is often regarded as the

first computer programmer. She also pointed out what otherwise might

have been remembered as the first computer bug in Babbage’s equations,

which also makes her possibly the world’s first debugger. The computer

language Ada, created on behalf of the United States Department of

Defense, was named after Ada Lovelace.

Analytical Engine

Ada Lovace- The world’s first programmer

 ITQ

Question

Why was Ada Lovelace’s set of notes recognized as the world’s first

computer program?

Feedback

Some historians have recognized Ada Lovelace’s set of notes, as the

world’s first computer program because it contained a groundbreaking

description of the possibilities of programming the machine to go

beyond number crunching to “computing”.

Study Session 2 History of Programming Languages

19

2.1.1 The First Computer Language

47 years after Ada Lovelace had annotated as what is considered the first

computer program, Herman Hollerith (1860 – 1929) created what is

considered the first computer language when he realized he could encode

information on punch cards. Hollerith’s punch card system was used to

encode the 1890 census data on punch cards, saving millions of dollars

and many years of manual work.

 ITQ

Question

Who created the first computer language?

Feedback

Herman Hollerith

2.1.2 The Birth of Assembly Language

In 1926, Alonzo Church (1903 – 1995) was able to express the lambda

calculus (also written as λ-calculus) in a formulaic way. In the 1940s,

machine-specific assembly language was probably the first (vaguely)

human-readable programming language. An early high-level

programming language to be designed for a computer was Plankalkül,

developed for the German Z3 by Konrad Zuse between 1943 and 1945.

However, it was not implemented until 1998 and 2000. John Mauchly’s

Short Code, proposed in 1949, was one of the first high-level languages

ever developed for an electronic computer. Unlike machine code, Short

Code statements represented mathematical expressions in understandable

form. However, the program had to be translated into machine code every

time it ran, making the process slower than running the equivalent

machine code. The Manchester Mark 1 ran programs written in Autocode

from 1952.

At the University of Manchester, Alick Glennie developed Autocode in

the early 1950s. A programming language, it used as a compiler to

automatically convert the language into machine code. The first code and

compiler was developed in 1952 for the Mark 1 computer at the

University of Manchester and is considered to be the first compiled high-

level programming language. By the 1950s computer engineers realized

that assembly language was too complex and a fallible process to build

entire systems, and so the first modern programming language was born.

Study Session 2 History of Programming Languages

20

 ITQ

Question

Where was Autocode developed?

Feedback

Autocode was developed in the early 1950s at the University of

Manchester.

2.1.3 The First Modern Computer Languages

John Warner Backus (1924 – 2007), an American computer scientist,

assembled a team in 1954 to define and develop Fortran for the IBM 704

computer. In 1957, Backus and his team had created Fortran. Fortran was

the first high-level programming language to be put to broad use. Lisp

was invented by John McCarthy in 1958 while he was at the

Massachusetts Institute of Technology (MIT). The name LISP derives

from “List Processing”. Linked lists are one of Lisp’s major data

structures, and Lisp source code is itself made up of lists. COBOL was

later designed in 1959 by the Conference on Data Systems Languages

(CODASYL) and was partly based on previous programming language

design work by Grace Hopper, commonly referred to as “the (grand)

mother of COBOL” The name COBOL derives from “Common Business

Oriented Language”. Cobol is a compiled English-like computer

programming language designed for business use.

In 1970, Pascal was developed by Niklaus Wirth. He is a Swiss computer

scientist, best known for designing several programming languages,

including Pascal, and for pioneering several classic topics in software

engineering. The name Pascal is in honor of the French mathematician

and philosopher Blaise Pascal. Initially, Pascal was largely, but not

exclusively, intended to teach students structured programming. A

generation of students used Pascal as an introductory language in

undergraduate courses.

The language C was developed in 1972. The name was based on an

earlier language called B which is now almost extinct, the C was

originally developed by Dennis Ritchie between 1969 and 1973 at AT&T

Bell Labs, and used to re-implement the Unix operating system. It was

renamed from C with Classes to C++. New features were added including

virtual functions, function name and operator overloading, references,

constants, type-safe free-store memory allocation (new/delete), improved

type checking, and BCPL style single-line comments with two forward

slashes “//”, etc.

Study Session 2 History of Programming Languages

21

 ITQ

Question

Who was responsible for the development of FORTRAN?

Feedback

John Warner Backus, an American computer scientist.

2.1.4 More Recent Modern Languages

Many later languages have borrowed directly or indirectly from C,

including C++, D, Go, Rust, Java, JavaScript, Limbo, LPC, C#,

Objective-C, Perl, PHP, Python, Verilog (hardware description

language), and Unix’s C shell. C++ was created by Bjarne Stroustrup, a

Danish computer scientist. The motivation for creating a new language

originated from Stroustrup’s experience in programming for his Ph.D. In

1983 Objective-C was created in 1983, primarily by Brad Cox and Tom

Love in the early 1980s at their company Stepstone. Both had been

introduced to Smalltalk while at ITT Corporation’s Programming

Technology Center in 1981. The earliest work on Objective-C traces back

to around that time. Objective-C is a thin layer on top of C, and is a

“strict superset” of C, meaning that it is possible to compile any C

program with an Objective-C compiler, and to freely include C language

code within an Objective-C class.

Perl was originally developed in 1987 by Larry Wall, a computer

programmer and author, most widely known as the creator of the Perl

programming language. It was developed as a general-purpose Unix

scripting language to make report processing easier. Though Perl is not

officially an acronym, there are various backronyms in use, the most

well-known being “Practical Extraction and Reporting Language”. It was

named Perl because Pearl was already taken.

In 1991, Python was born. The name of the programming language was

chosen by the author while being in a slightly irreverent mood (and

because he was a big fan of Monty Python’s Flying Circus). Python is a

widely used general-purpose, high-level programming language. Its

design philosophy emphasizes code readability, and its syntax allows

programmers to express concepts in fewer lines of code than it would be

possible in languages such as C++ or Java.

Python was conceived in the late 1980s and its implementation was

started in December 1989 by Guido van Rossum at CWI in the

Netherlands as a successor to the ABC language capable of exception

handling and interfacing with the Amoeba operating system. Van

Rossum is Python’s principal author, and his continuing central role in

deciding the direction of Python is reflected in the title given to him by

the Python community, benevolent dictator for life (BDFL) 1993

witnessed the evolution of Ruby. The name “Ruby” originated during an

online chat session between Matsumoto and Keiju Ishitsuka. Initially two

names were proposed: “Coral” and “Ruby”. Matsumoto chose the latter

because it was the birthstone of one of his colleagues. Ruby is a dynamic,

reflective, object-oriented, general-purpose programming language.

Study Session 2 History of Programming Languages

22

According to its authors, Ruby was influenced by Perl, Smalltalk, Eiffel,

Ada, and Lisp. Ruby was designed and developed by Yukihiro “Matz”

Matsumoto in Japan. Matsumoto has said that Ruby is designed for

programmer productivity and fun, following the principles of good user

interface design.

1995 witnessed the evolution of three major modern languages; Java,

PHP and JAvascript. Java is a general-purpose computer programming

language that was named Java for the amount of coffee consumed while

developing the language. It is concurrent, class-based, object-oriented,

and specifically designed to have as few implementation dependencies as

possible. It is intended to let application developers “write once, run

anywhere” (WORA), meaning that compiled Java code can run on all

platforms that support Java without the need for recompilation. Java was

originally developed by James Gosling, a Canadian computer scientist at

Sun Microsystems and released in 1995 as a core component of Sun

Microsystems’ Java platform. The language derives much of its syntax

from C and C++.

The name PHP derived originally from Personal Home Page, now it

stands for Hypertext PreProcessor. PHP is a server-side scripting

language designed for web development but also used as a general-

purpose programming language. In 1994, Rasmus Lerdorf started the

development of PHP when he wrote a series of Common Gateway

Interface (CGI) binaries in C, which he used to maintain his personal

homepage. He extended them to add the ability to work with web forms

and to communicate with databases, and called this implementation

“Personal Home Page/Forms Interpreter” or PHP/FI.

Javascript It was developed under the name Mocha, and then the

language was officially called LiveScript when it first shipped in beta

releases of Netscape Navigator 2.0 in September 1995, but it was

renamed JavaScript when it was deployed in the Netscape browser

version 2.0B3. JavaScript is a high level, dynamic, untyped, and

interpreted programming language. It has been standardized in the

ECMAScript language specification. Alongside HTML and CSS, it is one

of the three essential technologies of World Wide Web content

production; the majority of websites employ it and it is supported by all

modern web browsers without plug-ins.

Despite some naming, syntactic, and standard library similarities,

JavaScript and Java are otherwise unrelated and have very different

semantics. The syntax of JavaScript is actually derived from C, while the

semantics and design are influenced by the Self and Scheme

programming languages. JavaScript was originally developed by Brendan

Eich, while he was working for Netscape Communications Corporation.

Indeed, while competing with Microsoft for user adoption of web

technologies and platforms, Netscape considered their client-server

offering a distributed OS with a portable version of Sun Microsystems’

Java providing an environment in which applets could be run.

In 2000, The name “C sharp” was inspired by musical notation where a

sharp indicates that the written note should be made a semitone higher in

pitch. C# is intended to be a simple, modern, general-purpose, object-

oriented programming language. Its development team is led by Anders

Study Session 2 History of Programming Languages

23

Hejlsberg. The most recent version is C# 6.0, which was released on July

20, 2015.

In January 1999, Anders Hejlsberg formed a team to build a new

language at the time called Cool, which stood for “C-like Object Oriented

Language”. Microsoft had considered keeping the name “Cool” as the

final name of the language, but chose not to do so for trademark reasons.

By the time the .NET project was publicly announced at the July 2000

Professional Developers Conference, the language had been renamed C#.

 ITQ

Question

Who created C++?

Feedback

Bjarne Stroustrup created C++.

Born in 2003, Scala is a programming language for general software

applications. The name Scala is a portmanteau of “scalable” and

“language”, signifying that it is designed to grow with the demands of its

users. Scala has full support for functional programming and a very

strong static type system. This allows programs written in Scala to be

very concise and thus smaller in size than other general-purpose

programming languages. The design of Scala started in 2001 at the École

Polytechnique Fédérale de Lausanne (EPFL) by Martin Odersky,

following on from work on Funnel, a programming language combining

ideas from functional programming and Petri nets. Odersky had

previously worked on Generic Java and javac, Sun’s Java compiler.

In 2009, the Go language was born. It is also commonly referred to as

golang, is a programming language developed at Google. Go is

recognizably in the tradition of C, but makes many changes to improve

conciseness, simplicity, and safety. Go was developed at Google in 2007

by Robert Griesemer, Rob Pike, and Ken Thompson. It is a statically

typed language with syntax loosely derived from that of C, adding

garbage collection, type safety, some dynamic-typing capabilities,

additional built-in types such as variable-length arrays & key-value maps,

and a large standard library. Swift was introduced at Apple’s 2014

Worldwide Developers Conference (WWDC), It underwent an upgrade to

version 1.2 during 2014, and a more major upgrade to Swift 2 at WWDC

2015. Swift is a multi-paradigm, compiled programming language

created by Apple Inc. for iOS, OS X, and watch OS development. Swift

is designed to work with Apple’s Cocoa and Cocoa Touch frameworks

and the large body of existing Objective-C code written for Apple

products. Swift is intended to be more resilient to erroneous code

(“safer”) than Objective-C, and more concise. Development on Swift

began in 2010 by Chris Lattner, with the eventual collaboration of many

other programmers at Apple. Swift took language ideas “from Objective-

C, Rust, Haskell, Ruby, Python, C#, CLU, and far too many others to

list”. On June 2, 2014, the Worldwide Developers Conference (WWDC)

application became the first publicly released app written in Swift.

Study Session 2 History of Programming Languages

24

 ITQ

Question

When was Python created?

Feedback

1991

2.2 Categorizing Computer Languages by

Epochs
Simon Raik-Allen divided the history of computer languages into three

primary epochs as follows:

1. The High-Level Dawning: In the 1940s computer programs were

cryptic and lengthy streams of low-level machine instructions.

That changed in 1955 and through the 60s with the advent of

Fortran, good for scientific calculations, and then Cobol for

commercial data processing. These languages gave early

programmers their first glimpse of the expressive power of

abstracting away underlying details and using higher-level

constructs to describe their needs.

2. The C Era: Around 1972 the C language was born and has

probably had more impact on programming and language design

than any other language to date. Many subsequent languages

derived their syntax (appearance) from C and there are also a

number of C dialects (such as C++ in 1980) which collectively

still dominate the list of most popular programming languages

today. With C one can create high-performing and low-memory-

using applications so it's often used for writing other languages,

operating systems, and small device controllers.

3. The Age of Java: In 1995 the Java language hit the scene, rapidly

rose to popularity and is widely considered the most popular

programming language in existence today. I put its success down

to three reasons. Firstly, it was based on the C/C++ syntax so it

was familiar looking. Secondly, it omitted a number of its

predecessor's more complex language features greatly

simplifying the language (although at the price of performance)

but thus opening it up to a wider audience of programmers. And

lastly due to the web. Netscape Navigator, the first web browser,

entered the market around the same time and allowed embedding

of Java programs into web pages to extend their functionality and

the two rode the tech boom together. A few years later Java made

its way into the enterprise market (some say basically replacing

COBOL) and the rest is history.

Study Session 2 History of Programming Languages

25

 ITQ

Question

Which primary epoch had more impact on programming and language

design than any other language?

Feedback

The C Era.

According to Raik-Allen, the historical perspective above is one way to

look at it, but there are a few others. Which he sliced across some other

dimensions:

1. The Web Dimension: For rapidly building web sites Perl (1987)

and PHP (1995) have been two popular choices for a number of

years. Among other things they make it easy to merge business

data and page layout for delivery to web browsers. There are also

many Web Application Frameworks, which are pre-built

components, which provide many of the features required to

build and manage web sites. Different versions of these have

been built in most of the popular programming languages.

2. The Corporate Dimension : The big technology companies have

each largely aligned themselves with different languages stacks.

Oracle and IBM are aligned with Java (Oracle actually owns

Java). Google are known for their use of Python (1997), a very

versatile, dynamic and extensible language, although in reality

they are also heavy users of C++ and Java. They have also

created their own language called Go (2009). Developers who

use Microsoft technology tend to use their systems, tools, and

languages exclusively, and for over a decade now Microsoft have

focused their efforts on their own language C# (pronounced 'see

sharp'). Although its namesake is C it began life (debatably)

closer to Java and was reportedly developed as a response to

Java's growing popularity in 2000. That said, C# has since

evolved rapidly into a rich and eloquent language and if there

was any similarity to Java, it's gone. C# has been enjoying solid

growth in popularity since day one. Another language worth

mentioning is BASIC. Originally from 1964 BASIC took off

when it found its way onto almost every Personal Computer from

the 70s and 80s and two variants are still extremely popular

today. Both are made by Microsoft.

 ITQ

Question

Which language is regarded as the most popular programming language

in existence today?

Feedback

The Java Language

3. The Mobile Dimension: This is the language of Apple's mobile

phones and tablets. Although officially published in 1986 it

Study Session 2 History of Programming Languages

26

remained almost dormant until the rise of the App Store in 2009.

Since then it has been one of the fastest growing languages each

year. On the other hand, Google's Android mobile platform uses

Java to write applications which is surely contributing to that

language's current popularity in a significant way.

 ITQ

Question

What programming language has Oracle and IBM aligned themselves?

Feedback

Oracle and IBM are aligned with Java (Oracle actually owns Java).

4. The New Age Dimension: There is of late an emerging backlash

to the highly verbose and structured C-derived languages. Many

developers are wanting to do more with less and hence we are

seeing a rise in a number of more succinct, streamlined, and

potentially more productive languages. Three worth mentioning

are Clojure (2007), Scala (2003), and Ruby (1993). Clojure is a

modern interpretation of an older language called LISP (from the

Fortran days). Scala was designed to be a 'better Java' and has

added many new features to the language over the last few years,

making it also more C#-like. Ruby is definitely the most popular

of the bunch and has been sitting just inside the top 10 for a few

years.

 ITQ

Question

What is Google known with and what other languages do they make use

of?

Feedback

Google is known for their use of Python (1997), a very versatile,

dynamic and extensible language.

They are also heavy users of C++ and Java.

2.2.1 Summary of Important Programming

Languages by Year

Below is a Summary of important programming languages by year:

1951 – Regional Assembly

Language 1970 – Pascal 1993 – Ruby

1952 – Autocode 1972 – C

1994 – CLOS (part of ANSI

Common Lisp)

1954 – IPL (forerunner to LISP) 1972 – Prolog 1995 – Ada 95

Study Session 2 History of Programming Languages

27

1955 – FLOW-MATIC (led to

COBOL) 1972 – Smalltalk

1995 – Delphi (Object

Pascal)

1957 – COMTRAN (precursor to

COBOL) 1973 – ML 1995 – Java

1957 – FORTRAN (First

compiler) 1975 – Scheme 1995 – JavaScript

1958 – ALGOL 58

1978 – SQL (a query language,

later extended) 1995 – PHP

1958 – LISP

1980 – C++ (as C with classes,

renamed in 1983) 1996 – WebDNA

1959 – COBOL 1983 – Ada 1997 – Rebol

1959 – FACT (forerunner to

COBOL) 1984 – Common Lisp 1999 – D

1959 – RPG 1984 – MATLAB 2000 – ActionScript

1962 – APL 1985 – Eiffel 2000 – C#

1962 – Simula 1986 – Erlang 2001 – Visual Basic .NET

1962 – SNOBOL 1986 – Objective-C 2003 – Groovy

1963 – CPL (forerunner to C) 1987 – Perl 2003 – Scala

1964 – BASIC 1988 – Mathematica 2005 – F#

1964 – PL/I 1988 – Tcl 2007 – Clojure

1966 – JOSS 1989 – FL (Backus) 2009 – Go

1967 – BCPL (forerunner to C) 1990 – Haskell 2011 – Dart

1968 – Logo 1991 – Python 2012 – Rust

1969 – B (forerunner to C) 1991 – Visual Basic 2014 – Swift

1970 – Forth 1993 – Lua

Study Session 2 History of Programming Languages

28

Study Session Summary

Summary

In this study session, you traced the history of programming languages.

You discussed the different developmental stages of program

development. You examined the first computer language, the birth of

assembly language and the first modern computer language. You also

highlighted the different categories of computer languages by Epoch.

Assessment

Assessment

SAQ 2.1 (tests Learning Outcome 2.1)

What are the key points in the evolution of programming languages?

SAQ 2.2 (tests Learning Outcome 2.2)

1. How do you categorize computer languages by epochs?

2. Give a summary of the important languages by year.

Bibliography

Reading

https://en.wikipedia.org/wiki/Programming_languagehttps://en.wikipedi

a.org/wiki/Programming_language

http://www.ricardodsanchez.com/2015/08/31/programming-a-short-

history-of-computer-languages/

Study Session 3 The Programming Process

29

Study Session 3

The Programming Process

Introduction
In this study session, you will examine the programming process. You

will begin by discussing problem definition and analysis. Thereafter, you

will point out planning and outlining the solution. In addition, you will

examine how to code the program, compilation and debugging. You will

conclude the session by exploring testing, validation, and program

documentation.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

3.1 explain problem definition and analysis

3.2 discuss the process of coding the program

3.3 define compilation

3.4 define debugging

3.5 explain testing and validation

3.6 describe programming documentation

Terminology

Flowchart A schematic representation of how the different stages in
a process are interconnected

Pseudo code A description of a computer programming algorithm that
uses the structural conventions of programming languages

Word Processor A software that provides word processing functions on a
computer, typically including typeface selection, line
justification and other formatting, pagination and
numerous other features

Syntax A set of rules that govern how words are combined to form
phrases and sentences

Error A failure to complete a task, usually involving a premature
termination

Study Session 3 The Programming Process

30

3.1 Problem Definition and Analysis
The first thing in the programming life cycle is to identify and analyze the

specific problem to be solved. If you have no problem, you cannot

concentrate your capability on programming work. If you have a

problem, you engage yourself in programming. The first thing is an

analytical brain that can help a programmer to quickly understand

problems and analyze problem for the next step.

Suppose that, as a programmer, you have been contacted because your

services are needed. You meet with users from the client organization to

analyze the problem, or you meet with a systems analyst who outlines the

project. Specifically, the task of defining the problem consists of

identifying what it is you know (input-given data), and what it is you

want to obtain (output-the result). Eventually, you produce a written

agreement that, among other things, specifies the kind of input,

processing, and output required. This is not a simple process.

 ITQ

Question

How do you identify a problem in programming?

Feedback

To identify a problem, there must be a need. The need from the end-

user/clients determines what the problem is and how to solve it

3.1.1 Planning and Outlining the Solution

If you have understood your problem, outline of solution is next

important steps. The problem is divided into several modules or tasks and

assigned to each programmer. The software industries are based on

efficient system analyst, and competent programmers. Two common

ways of planning the solution to a problem are to draw a flowchart and to

write pseudocode, or possibly both. Essentially, a flowchart is a pictorial

representation of a step-by-step solution to a problem. It consists of

arrows representing the direction the program takes and boxes and other

symbols representing actions. It is a map of what your program is going

to do and how it is going to do it. Pseudocode is an English-like

nonstandard language that lets you state your solution with more

precision than you can in plain English but with less precision than is

required when using a formal programming language. Pseudocode

permits you to focus on the program logic without having to be

concerned just yet about the precise syntax of a particular programming

language. However, pseudocode is not executable on the computer until it

is developed into an executable program.

Study Session 3 The Programming Process

31

 ITQ

Question

What is the uniqueness of the Pseudocode?

Feedback

Pseudocode allows you state your solution with precision and permits

you to focus on the program logic

3.2 Coding the Program
As the programmer, your next step is to code the program-that is, to

express your solution in a programming language. You will translate the

logic from the flowchart or pseudocode-or some other tool-to a

programming language. Coding is the act of translating the design into an

actual program, written in some form of programming language. This is

the step where you actually have to sit down at the computer and type!

Coding is a little bit like writing an essay. In most cases you write your

program using something a bit like a word processor. And, like essays,

there are certain things that you always need to include in your program

(a bit like titles, contents pages, introductions, references etc.). When

you've finished translating your design into a program (usually filling in

lots of details in the process) you need to submit it to the computer to see

what it makes of it.

As we have already noted, a programming language is a set of rules that

provides a way of instructing the computer what operations to perform.

There are many programming languages: BASIC, COBOL, Pascal,

FORTRAN, and C are some examples. Although programming

languages operate grammatically, somewhat like the English language,

they are much more precise. To get your program to work, you have to

follow exactly the rules-the syntax-of the language you are using. Of

course, using the language correctly is no guarantee that your program

will work, any more than speaking grammatically correct English means

you know what you are talking about. The point is that correct use of the

language is the required first step. Then your coded program must be

keyed, probably using a terminal or personal computer, in a form the

computer can understand. Programmers usually use a text editor, which

is somewhat like a word processing program, to create a file that contains

the program. However, as a beginner, you will probably want to write

your program code on paper first. Generally, programmers choose

general purpose programming languages. The specific type’s languages

are used for specific types of software. Before doing the coding, the

programmer has to choose a computer language based on the following

considerations:

1. The nature of the problem.

2. The programming language available on the computer.

3. The facilities and limitations of the computer installation.

Study Session 3 The Programming Process

32

 ITQ

Question

What is the idea behind coding a program?

Feedback

It allows you not just to state your solution in plain English but to

express your solution in a programming language.

3.3 Compilation
Every programming language has to take a set of programming

specifications and translate them, i.e. create a means to execute those

specifications, by using a compiler. Technically, the term, compiler

generally means a program that produces a separate executable from the

compiler (that may require a run time library or subsystem to operate), a

compiler that merely executes the original specifications is usually

referred to as an "interpreter", although because of differing methods of

analyzing what represents compilation and what represents interpretation,

there is some overlap between the two terms. Compilation turns the

program into the instructions made up of 0's and 1's that the computer can

actually follow. This is necessary because the chip that makes your

computer work only understands binary machine code - something that

most humans would have a great deal of trouble using since it looks

something like:

01010101 11111101 10111100 10000001 10010001

Early programmers actually used to write their programs in that sort of a

style - but luckily they soon learnt how to create programs that could take

something written in a more understandable language and translate it into

this gobbled gook. These programs are called compilers, and you can

think of them simply as translators that can read a programming

language, translate it and write out the corresponding machine code.

Compilers are notoriously pedantic though - if you don't write very

correct programs, they will complain. Think of them as the strictest sort

of English teacher, who picks you up on every single missing comma,

misplaced apostrophe and grammatical error. This is where debugging

makes it first appearance, since once the compiler has looked at your

program it is likely to come back to you with a list of mistakes, the next

thing is to correct these mistakes through a process known as debugging,,

otherwise the program will not execute.

Study Session 3 The Programming Process

33

 ITQ

Question

What can a compiler be compared with?

Feedback

I don’t know what you have compared a compilier with, but a compiler

can be compared with a translator. This is because they can read a

program language, translate it, and write out the corresponding machine

code.

3.4 Debugging
Debugging is the process of detecting, locating and fixing or bypassing

errors, typically known as bugs in the process of compiling a computer

program. When we compile program, we debug the program by looking

at the error messages that are displayed due to syntax error, and removing

the bug or error so that no erroneous messages are displayed. It is a

common daily life event in software industries. When a program is coded

carefully, bugs can still creep stealthily into the program. Some compilers

are equipped with debugger to remove programming errors. These

compilers diagnose errors and debug them carefully.

It should be noted that it is not actually necessary to write the entire

program before you start to compile and debug. In most cases it is better

to write a small section of the code first, get that to work, and then move

on to the next stage. This reduces the amount of code that needs to be

debugged each time and generally creates a good feeling of "getting

there" as each section is completed. Finally, the compiler presents you

with a program that the computer can run, hopefully, your solution!

To clearly understand the concept of debugging in computer programs, it

is important to first understand the concepts of Syntax, Semantics, and

program errors.

 ITQ

Question

How do you improve outcome and save time while programing?

Feedback

You could save time and improve the speed of programming by

debugging in bits. Do not wait until you finish writing your program

before you start debugging. That could be overwhelming! To avoid that,

once you have written up to a particular level, you should commence the

process of debugging.

3.4.1 Syntax

The syntax of a computer language is the set of rules that defines the

combinations of symbols that are considered to be a correctly structured

document or fragment in that language. Simply put, syntax is the basic

Study Session 3 The Programming Process

34

spelling and grammar of a particular programming language in order to

indicates the program’s validity. Generally, syntax differs from language

to language. A program follows valid syntax rules in order to be able to

function, otherwise the program cannot execute successfully.

 ITQ

Question

What is syntax?

Feedback

Syntax is the basic spelling and grammar of a particular programming

language in order to indicates the program’s validity.

3.4.2 Semantics

Semantics of a programming language refer to the rules that give

meaning to programs. We can say syntax has specific output oriented

meaning, which is called semantics. It's refers to the meaning of the

language elements in terms of what they formally mean as regards

computation (operational semantics). This means that it expresses what a

term of your language effectively does assuming an underlying kind of

model that depends on which semantic we are talking about.

Wikipedia describes 3 kinds of semantics as follows:

1. operational semantics express the meaning of the language by

specifying how an abstract virtual machine behaves whenever it

executes a term. (eg: +: pops two elements from the stack and

push the sum. This is NOT formal and it is NOT how you should

really consider it, it's just to give you an idea). This is the most

used one to describe semantics of "normal" programming

languages. For example for Java you could have, for every

possible term, a sequence of JVM instruction meant to be

executed to model that term. Probably when you asked for the

meaning of semantics this is the one you were looking for.

2. Denotational semantics is a different approach: you give for

every term of the language a meaning that is represented by a

mathematical function. So for previous example you would have

a function f associated with + that contains what is the semantic

(effective meaning) of the term

3. axiomatic semantics is a way to annotate the terms of your

language expressing how they alter the validity of some logical

formulas you want to verify over your program. You should

consider reading this just because the inference rules and axioms

used are similar in how you develop this kind of semantics but

it's explained in a practical way

From this description above, you understand that a semantic is something

well defined inside a context, and you need a specified context otherwise

you couldn't give you language a formal definition of what its terms do..

Study Session 3 The Programming Process

35

Example 3.1

The semantics of the following equation tells that sum of x and y is

assigned to variable sum:

Sum = x + y

Example 3.2

Consider another equation below:

p =q*r+1/2*s*r*r

It is a syntax which has two set of variables. In right set has ‘q’, ‘r’ and

‘s’ variables and left set has only one variable ‘p’. The semantics tells

that right side has operators +, / and * working over variables. In first

step, variables are multiplied (one set ‘q’ and ‘r’ and other set s, r and r),

then 1 is divided by2*s*r*r and added to q * r, and sum is assigned to p.

Syntax is the rule used by programming grammar. So programming

statement may be correct on the basis of syntax, but it may be

semantically wrong.

 ITQ

Question

What is the most important rule in programming with respect to

Semantics?

Feedback

Syntax is the rule used by programming grammar. So

programming statement may be correct because of syntax, but it

may be semantically wrong. Therefore, it is essential that you

understand the rules of semantics, how it applies to programming,

and syntax.

3.4.3 Programming Errors

There are three types of errors in a program:

1. Syntax Error

2. Run time Error or Execution Error, and

3. Logical Errors

Syntax errors are the result of avoiding rules of program coding. These

errors occur due to lack of concentration on language syntax. Some

QBASIC experts learn C or C+ +, avoid semicolon at the end of

statements or use crater (^) sign for exponential. These types of syntax

errors occurred due to transference of skill of one language into others

and syntax errors are occurred.

The followings are some General causes of Syntax errors:

1. Missing parenthesis or extra parenthesis causes syntax errors.

2. In some language (Pascal, C, C++, C#, JAVA), statements’

terminators are used. Missing terminators or extra terminators

cause syntax errors.

Study Session 3 The Programming Process

36

3. Misspelled keywords.

4. Extra blanks or missing blanks also cause syntax errors.

5. All type of operators is very sensitive to produce syntax errors,

when not used properly.

6. The use of colon (:) instead of semi-colon (;) causes syntax

errors.

The syntax errors are displayed at the time of program compilation

because compilers and interpreters are equipped with error-diagnostic

features. These errors are easily debugged from programs and some

compilers check erroneous input and recover errors also. The 50 to 75%

overall programming times are to be spent on debugging. 8023588240

8167518347 7034993743

Run-time Errors are the errors appeared at the time of program execution

Compilers do not detect these types of errors because these types of

errors are not caused by syntax errors. Rather, they are noticed at the

time of execution.

A logic error is a bug in a program that causes it to operate incorrectly

and the compiler or interpreter is unable to detect these type of errors. A

logic error produces an incorrect or unintended or undesired output or

other behaviour, although it may not immediately be recognised as such.

As an example, telling a computer to repeat an operation but not telling it

how to stop repeating may result in a situation where the program runs in

an endless cycle. Logic errors occur in both compiled and interpreted

languages. The only clue to the existence of logic errors is the production

of wrong solutions. One of the ways to find these type of errors is to

output the program's variables to a file or on the screen in order to define

the error's location in code. Although this will not work in all cases, for

example when calling the wrong subroutine, it is the easiest way to find

the problem if the program uses the incorrect results of a bad

mathematical calculation.

Example 3.3

This example function in C to calculate the average of two numbers

contains a logic error. It is missing brackets in the calculation, so it

compiles and runs but does not give the right answer due to operator

precedence (division is evaluated before addition).

int average(int a, int b)

{

 return a + b / 2; /* should be (a + b) / 2 */

}

Example 3.4

The following statements are intended to be used to find the roots of a

quadratic equation. They are syntactically acceptable and would not

cause any error message but produce wrong outputs.

X1 = -b+sqrt(b^2-4*a*c/2*a);

X2 = -b-sqrt(b^2-4*a*c)/2*a;

Study Session 3 The Programming Process

37

 ITQ

Question

Describe briefly the types of error in a program?

Feedback

The errors in a program are described as follows:

 Syntax errors, which occur because rules guiding program

coding have not been followed.

 Run-time Errors often appear at the time of program execution

Compilers do not detect these types of errors because these types

of errors are not caused by syntax errors.

 A logic error is a bug in a program that causes it to operate

incorrectly and the compiler or interpreter is unable to detect

these type of errors.

3.5 Testing and Validation
It is important to test your program to check that it does what you want it

to do. This step is necessary because though the compiler has checked

that your program is correctly written, it can't check whether what you've

written actually solves your original problem. This is because it is quite

possible to write a sentence in any language that is perfectly formed with

regards to the language that it's written in (syntactically correct) but at the

same time be utter nonsense (semantically incorrect). For example, 'Fish

trousers go sideways.' is a great sentence - it's got a capital letter and a

full stop - but it doesn't mean a lot. Similarly, 'Put the ice cube tray in the

oven.' has verbs and nouns and so on - but it's pretty useless if you

wanted to make ice cubes. So your program needs to be tested, and this is

often initially done informally (or perhaps, haphazardly) by running it

and playing with it for a bit to see if it seems to be working correctly.

After this has been done, it should also be checked more thoroughly by

subjecting it to carefully worked out set of tests that put it through its

paces, and check that it meets the requirements and specification. Where

mistakes are identified, there is need to figure out where in the code the

mistake is. Once identified, the problem should be fixed by changing the

code and recompiling. Care should be taken at this point that this fix

doesn't break something else, so careful retesting is important. This

process is also known as debugging.

Once all the testing and debugging has been completed, you should be

pretty certain that your program works according to your requirements

and your specification and so you should finally have a solution to your

problem! Software testing involves the execution of a software

component or system component to evaluate one or more properties of

interest. In general, these properties indicate the extent to which the

component or system under test:

1. meets the requirements that guided its design and development,

2. responds correctly to all kinds of inputs,

3. performs its functions within an acceptable time,

Study Session 3 The Programming Process

38

4. is sufficiently usable,

5. can be installed and run in its intended environments, and

6. achieves the general result its stakeholders desire.

 ITQ

Question

Mention two properties needed before a software can be tested.

Feedback

1. The software must meet the requirements that guided its design

and development, and

2. The software should respond correctly to all kinds of inputs.

3.5.1 Types of Programming Tests

Many methods exist which are used for program testing:

1. Unit Testing: Unit testing is a software testing method by which

individual units of source code, sets of one or more computer

program modules together with associated control data, usage

procedures, and operating procedures, are tested to determine

whether they are fit for use. Intuitively, one can view a unit as the

smallest testable part of an application. The goal of unit testing is

to isolate each part of the program and show that the individual

parts are correct. A unit test provides a strict, written contract that

the piece of code must satisfy.

2. Integration testing: The purpose of integration testing is to verify

functional, performance, and reliability requirements placed on

major design items. In integration testing, software modules are

combined and tested as a group. It occurs after unit testing and

before validation testing. Integration testing takes as its input

modules that have been unit tested, groups them in larger

aggregates, applies tests defined in an integration test plan to

those aggregates, and delivers as its output the integrated system

ready for system testing.

3. Regression Testing: Regression testing is a type of software

testing that verifies that software previously developed and tested

still performs correctly after it was changed or interfaced with

other software. Changes may include software enhancements,

patches, configuration changes, etc. During regression testing,

new software bugs or regressions may be uncovered. Sometimes

a Software Change Impact Analysis is performed to determine

what areas could be affected by the proposed changes. These

areas may include functional and non-functional areas of the

system. The purpose of regression testing is to ensure that

changes such as those mentioned above have not introduced new

faults. One of the main reasons for regression testing is to

determine whether a change in one part of the software affects

other parts of the software.

4. Smoke Testing: smoke testing (also confidence testing, sanity

testing) is preliminary testing to reveal simple failures severe

Study Session 3 The Programming Process

39

enough to (for example) reject a prospective software release or

determine whether it is reasonable to proceed with further testing.

Smoke testing consists of minimal attempts to operate the

software, designed to determine whether there are any basic

problems that will prevent it from working at all. Such tests can

be used as build verification test. A smoke tester will select and

run a subset of test cases that cover the most important

functionality of a component or system, to ascertain if crucial

functions of the software work correctly. When used to determine

if a computer program should be subjected to further, more fine-

grained testing, a smoke test may be called an intake test. For

example, a smoke test may address basic questions like "Does the

program run?", "Does it open a window?", or "Does clicking the

main button do anything?" The process of smoke testing aims to

determine whether the application is so badly broken as to make

further immediate testing unnecessary. As the book Lessons

Learned in Software Testing puts it, "smoke tests broadly cover

product features in a limited time ... if key features don't work or

if key bugs haven't yet been fixed, your team won't waste further

time installing or testing".

5. Recovery Testing: recovery testing is the activity of testing how

well an application is able to recover from crashes, hardware

failures and other similar problems. Recovery testing is the

forced failure of the software in a variety of ways to verify that

recovery is properly performed. Recovery testing should not be

confused with reliability testing, which tries to discover the

specific point at which failure occurs. Recovery testing is

basically done in order to check how fast and better the

application can recover against any type of crash or hardware

failure etc. Type or extent of recovery is specified in the

requirement specifications. It is basically testing how well a

system recovers from crashes, hardware failures, or other

catastrophic problems: Examples of recovery testing:

i. While an application is running, suddenly restart the

computer, and afterwards check the validness of the

application's data integrity.

ii. While an application is receiving data from a network,

unplug the connecting cable. After some time, plug the

cable back in and analyze the application's ability to

continue receiving data from the point at which the

network connection disappeared.

iii. Restart the system while a browser has a definite number

of sessions. Afterwards, check that the browser is able to

recover all of them.

6. Security Testing: Security testing is a process intended to reveal

flaws in the security mechanisms of an information system that

protect data and maintain functionality as intended. Due to the

logical limitations of security testing, passing security testing is

not an indication that no flaws exist or that the system adequately

satisfies the security requirements.

7. Stress testing: Stress testing, in general, should put computer

hardware under exaggerated levels of stress in order to ensure

Study Session 3 The Programming Process

40

stability when used in a normal environment. These can include

extremes of workload, type of task, memory use, thermal load

(heat), clock speed, or voltages. Memory and CPU are two

components that are commonly stress tested in this way. There is

considerable overlap between stress testing software and

benchmarking software, since both seek to assess and measure

maximum performance. Of the two, stress testing software aims

to test stability by trying to force a system to fail; benchmarking

aims to measure and assess the maximum performance possible

at a given task or function.

8. Installation testing: An installation test assures that the system is

installed correctly and working at actual customer's hardware.

9. Compatibility testing: This ensures that a software is compatible

with other application software, operating systems (or operating

system versions, old or new), or target environments that differ

greatly from the original (such as a terminal or GUI application

intended to be run on the desktop now being required to become

a web application, which must render in a web browser).

10. Regression testing: Regression testing focuses on finding defects

after a major code change has occurred. Specifically, it seeks to

uncover software regressions, as degraded or lost features,

including old bugs that have come back.

11. Acceptance testing: Acceptance testing can be divided into 2

categories; Smoke testing and acceptance testing. A smoke test is

used as an acceptance test prior to introducing a new build to the

main testing process, i.e., before integration or regression.

Acceptance testing performed by the customer, often in their lab

environment on their own hardware, is known as user acceptance

testing (UAT).

 ITQ

Question

What is the central theme of program testing?

Feedback

Program testing is an important tool used by either program developers

or end users to check whether a program would function properly amidst

several constraints that should make the program not function properly.

The weak and faulty areas are identified, corrected, and improved for an

enjoyable experience by the end users.

12. Alpha testing: Alpha testing is simulated or actual operational

testing by potential users/customers or an independent test team

at the developer's' site.

13. Beta testing: Beta testing comes after alpha testing and can be

considered a form of external user acceptance testing. Versions

of the software, known as beta versions, are released to a limited

audience outside of the programming team known as beta testers.

The software is released to groups of people so that further

testing can ensure the product has few faults or bugs.

Study Session 3 The Programming Process

41

14. Functional vs non-functional testing: Functional testing refers to

activities that verify a specific action or function of the code.

These are usually found in the code requirements documentation,

although some development methodologies work from user cases

or user stories. Non-functional testing refers to aspects of the

software that may not be related to a specific function or user

action, such as scalability or other performance, behavior under

certain constraints, or security. Testing will determine the

breaking point, the point at which extremes of scalability or

performance leads to unstable execution.

15. Continuous testing: Continuous testing is the process of

executing automated tests as part of the software delivery

pipeline to obtain immediate feedback on the business risks

associated with a software release candidate

16. Destructive testing: Destructive testing attempts to cause the

software or a sub-system to fail. It verifies that the software

functions properly even when it receives invalid or unexpected

inputs, thereby establishing the robustness of input validation and

error-management routines.

17. Software performance testing: Performance testing is generally

executed to determine how a system or sub-system performs in

terms of responsiveness and stability under a particular workload.

It can also serve to investigate, measure, validate or verify other

quality attributes of the system, such as scalability, reliability and

resource usage.

18. Usability testing: Usability testing is to check if the user interface

is easy to use and understand. It is concerned mainly with the use

of the application.

19. Security testing: Security testing is essential for software that

processes confidential data to prevent system intrusion by

hackers.

20. Development testing: Development Testing involves

synchronized application of a broad spectrum of defect

prevention and detection strategies in order to reduce software

development risks, time, and costs.

21. A/B testing: A/B testing is basically a comparison of two outputs,

generally when only one variable has changed: run a test, change

one thing, run the test again, compare the results. This is more

useful with more small-scale situations, but very useful in fine-

tuning any program.

22. Concurrent testing: In concurrent testing, the focus is on the

performance while continuously running with normal input and

under normal operational conditions, as opposed to stress testing,

or fuzz testing.

23. Conformance testing: In software testing, conformance testing

verifies that a product performs according to its specified

standards. Compilers, for instance, are extensively tested to

determine whether they meet the recognized standard for that

language.

Study Session 3 The Programming Process

42

 ITQ

Question

What is Regression testing?

Feedback

Regression testing is a type of software testing that verifies that software

previously developed and tested still performs correctly after it was

changed or interfaced with other software. Changes may include

software enhancements, patches, configuration changes, etc. During

regression testing, new software bugs or regressions may be uncovered.

Sometimes a Software Change Impact Analysis is performed to

determine what areas could be affected by the proposed changes.

3.6 Program Documentation
Program documentation is a written text or illustration that accompanies

computer software. It either explains how it operates or how to use it, and

may mean different things to people in different roles. Documenting is an

ongoing, necessary process, although, as many programmers are, you

may be eager to pursue more exciting computer-centered activities.

Documentation is a written detailed description of the programming cycle

and specific facts about the program. Typical program documentation

materials include the origin and nature of the problem, a brief narrative

description of the program, logic tools such as flowcharts and

pseudocode, data-record descriptions, program listings, and testing

results. Comments in the program itself are also considered an essential

part of documentation. Many programmers document as they code. In a

broader sense, program documentation can be part of the documentation

for an entire system.

Types of documentation include:

1. Requirements documentation - Statements that identify attributes,

capabilities, characteristics, or qualities of a system. This is the

foundation for what will be or has been implemented.

2. Architecture/Design documentation - Overview of software.

Includes relations to an environment and construction principles

to be used in design of software components.

3. Technical documentation - Documentation of code, algorithms,

interfaces, and APIs.

4. End user documentation - Manuals for the end-user, system

administrators and support staff.

5. Marketing documentation - How to market the product and

analysis of the market demand.

The wise programmer continues to document the program throughout its

design, development, and testing. Documentation is needed to

supplement human memory and to help organize program planning. Also,

documentation is critical to communicate with others who have an

interest in the program, especially other programmers who may be part of

a programming team. And, since turnover is high in the computer

Study Session 3 The Programming Process

43

industry, written documentation is needed so that those who come after

you can make any necessary modifications in the program or track down

any errors that you missed.

 ITQ

Question

What is program documentation?

Feedback

Program documentation is a written text or illustration that accompanies

computer software.

 ITQ

Question

What is the smart thing to do while undergoing the process of program

documentation?

Feedback

The wise programmer continues to document the program throughout its

design, development, and testing. This is necessary, as documentation is

needed to supplement human memory and to help organize program

planning.

Study Session Summary

Summary

In this study session, you discussed programming process. You started

by discussing how to define and analyze a problem. You also discussed

how to code a program. You furthered the discussion by examining how

to compile and debug a problem. You concluded the session by

discussing how to test and validate a programming problem.

Assessment

Assessment

SAQ 3.1 (tests learning outcome 3.1)

1. What does Problem definition and Analysis entails?

2. How would you plan and outline solutions to the problems you

have identified?

SAQ 3.2 (tests learning outcome 3.2)

What are the processes of coding a program?

SAQ 3.3 (tests learning outcome 3.3)

What is compilation?

Study Session 3 The Programming Process

44

SAQ 3.4 (tests learning outcome 3.4)

What is Debugging?

SAQ 3.5 (tests learning outcome 3.5)

What is the aim of testing?

SAQ 3.6 (tests learning outcome 3.6)

1. What do you understand by the term program documentation?

2. Mention the types of documentation that you know

Bibliography

Reading

https://en.wikipedia.org/wiki/Software_documentation

https://en.wikipedia.org/wiki/Software_documentation

Study Session 4 Types of Programming Languages

45

Study Session 4

Types of Programming Languages

Introduction
In this study session, you will be highlighting the different types of

programming languages. You will discuss the different characteristics of

programming language. You will also compare low-level and high-level

programming language. In addition, you will examine the compiled code

interpreted codes. You will conclude the session by describing the

different classifications of programming language.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

4.1 highlight the characteristics of programming languages

4.2 compare low-level and high-level programming languages

4.3 describe the compiled code and interpreted code

4.4 identify the classifications of programming languages

4.1 Characteristics of Programming

Languages
You can think of programming languages just like spoken languages, as

they both share many of the same characteristics, such as:

1. Functionality across languages: Programming languages can all

create the same functionality similar to how spoken languages

can all express the same objects, phrases, and emotions.

2. Syntax and structure: Commands in programming languages can

overlap just like words in spoken languages overlap. To output

text to screen in Python or Ruby you use the print command, just

like imprimer and imprimir are the verbs for “print” in French

and Spanish.

3. Natural lifespan: Programming languages are born when a

programmer thinks of a new or easier way to express a

computational concept. If other programmers agree, they adopt

the language for their own programs and the programming

language spreads. However, just like Latin or Aramaic, if the

programming language is not adopted by other programmers or a

better language comes along, then the programming language

slowly dies from lack of use.

Study Session 4 Types of Programming Languages

46

Despite these similarities, programming languages also differ

from spoken languages in a few key ways:

1. One creator: Unlike spoken languages, programming languages

can be created by one person in a short period of time, sometimes

in just a few days. Popular languages with a single creator

include JavaScript (Brendan Eich), Python (Guido van Rossum),

and Ruby (Yukihiro Matsumoto).

2. Written in English: Unlike spoken languages (except, of course,

English), almost all programming languages are written in

English. Whether they’re programming in HTML, JavaScript,

Python, or Ruby, Brazilian, French, or Chinese programmers all

use the same English keywords and syntax in their code. Some

non-English programming languages exist, such as languages in

Hindi or Arabic, but none of these languages are widespread or

mainstream.

 ITQ

Question

List two characteristics of programming language

Feedback

Syntax and structure; Natural lifespan

4.2 Comparing Low-level and High-level

Programming Languages
One way to classify programming languages is either as low-level

languages or high-level languages. Low-level languages interact directly

with the computer processor or CPU, are capable of performing very

basic commands, and are generally hard to read. Machine code, one

example of a low-level language, uses code that consists of just two

numbers — 0 and 1. The figure below shows an example of machine

code. Assembly language, another low-level language, uses keywords to

perform basic commands like read data, move data, and store data.

Study Session 4 Types of Programming Languages

47

By contrast, high-level languages use natural language so it is easier for

people to read and write. Once code is written in a high-level language,

like C++, Python, or Ruby, an interpreter or compiler translates this high-

level language into low-level code a computer can understand.

4.3 Compiled code and interpreted code
High-level programming languages must be converted to low-level

programming languages using an interpreter or compiler, depending on

the language. Interpreted languages are considered more portable than

compiled languages, while compiled languages execute faster than

interpreted languages. However, the speed advantage compiled languages

have is starting to fade in importance as improving processor speeds

make performance differences between interpreted and compiled

languages negligible. High-level programming languages like JavaScript,

Python, and Ruby are interpreted. For these languages the interpreter

executes the program directly, translating each statement one line at a

time into machine code. High-level programming languages like C++,

COBOL, and Visual Basic are compiled. For these languages, after the

code is written a compiler translates all the code into machine code, and

an executable file is created. This executable file is then distributed via

the Internet, CD-ROMs, or other media and run. Software you install on

your computer, like Microsoft Windows or Mac OS X, are coded using

compiled languages, usually C or C++.

 ITQ

Question

What is the peculiarity of program languages?

Feedback

Some program languages (JavaScript, Python) are interpreted while

others (C++, COBOL) are compiled.

4.4 Classification of Programming

Languages
Designing, developing and using a programming language is always

dynamic in nature and no particular programming languages have ever

been under constant attraction to the programmers/users. Depending on

the size of the program and its complexity, users prefer to choose their

programming languages. It is well known that more than 2000

programming languages have been designed, developed and used till date

for various purposes. But each language has drawn the attention of

specific group of users and has been used for solving problems in

scientific, business and engineering fields. In general, high level

programming languages fall into any of the categories explained in the

following subsections:

Study Session 4 Types of Programming Languages

48

4.4.1 Modular Programming Languages

Modular programming languages have been very influential in

introducing certain fundamental concepts in contemporary programming

languages. It is the first programming language that introduced

subprogram concepts and variable declaration, etc. In real life situations,

problems in scientific, engineering and business areas are usually large

and complex. To solve the entire problem in one shot may not be a

feasible option. Modular programming methodology advocates the

breakdown structure approach of a large project into several smaller and

manageable modules. Then each small module is programmed

comfortably and then put together in order to generate program and hence

the answer to the entire problem. Modular programming has several

unique advantages as given below: It is easier to understand∙ It is easier

to code∙ It is easier to document∙ It is easier to modify∙ In order to

implement each module in a programming language, subprograms are

used. In programming, a subprogram is a series of instructions that

performs a particular task. An example for the modular programming

language is ALGOL. ALGOL stands for ALGorithmic Oriented

Language. ALGOL had its unique name and place among programmers

in late 1960s. A notable feature of ALGOL was that it laid the foundation

for many advanced programming languages of today and some of its

salient features were embedded into new languages like Pascal and C.

 ITQ

Question

What are the unique advantages of methodology programming

language?

Feedback

It is easier to understand, easier to code, document, and modify.

4.4.2 Structured Programming Language

Since the early 1970s a new methodology has become very common in

programming environments. This new methodology advocates GOTO

programming. The very purpose is to eliminate the use of GOTO

statements in programs. Proponents of this methodology believe that the

GOTO statements make the program complex and difficult to debug or

modify. In structured programming, four structures are normally used for

performing any tasks. These include the following:

1. Sequence

2. Selection

3. Iteration

4. CASE structure∙

Sequence means going from step1 step2 and so on. There is no looping or

branching involved. Selection is used whenever choices are to be

executed between two options. Iteration indicates a loop for performing a

specific task. The CASE structure is used when there are more than two

options from which one has to be selected based on the value of an

Study Session 4 Types of Programming Languages

49

expression. An example of the structured programming language is

Pascal. The following are the salient features of Pascal that identifies it as

a structured language. These features allow a programmer to write Pascal

programs in a top-down modular design:

1. It is a block structured language in which blocks of statements

can be used as a unit by∙ control structures.

2. It relies on a very heavy use of subroutines which it calls as

procedures and functions.∙

3. It also supports both local variables known and valid only within

a procedure and global∙ variables known and valid throughout a

program.

 ITQ

Question

How is ‘sequence’ different from ‘selection’?

Feedback

Sequence means going from step one to step two and so on. It does not

involve looping or branching, while Selection is used whenever choices

are to be executed between two options.

4.4.3 Business Oriented Language

An example for the business oriented language is COBOL. COBOL

stands for COmmon Business Oriented Language. Advantages of

COBOL can be listed in the following points:

1. COBOL programs can be easily understood even by non-

programmers due to its self∙ documenting nature and verbose of

the grammar.

2. It is an ideal language for processing voluminous data files.

Therefore it is an excellent∙ language for commercial data

processing.

3. Editing facility is very powerful and hence even the manipulation

of non-numeric data is∙ very easy.

4. COBOL is a universally standardized language.

5. It is best suited for time sharing computer systems. It is easy to

debug and maintain programs in COBOL.

6. It is one of the most structured languages.

7. COBOL provides scope for effective documentation.

8. Functional/logic programming language

One of the well known and commercially available logic programming

languages is PROLOG which stands for PROgramming in LOGic. Its

unique property is its level of abstraction. Other main feature of

PROLOG include:

1. It is exclusively meant for Artificial Intelligence (AI) and

knowledge representation∙ techniques.

2. It supports rule based expert systems and knowledge bases (data

bases with inferential∙ components).

Study Session 4 Types of Programming Languages

50

3. It provides a foundation for understanding the semantics of other

kinds of rules and is∙ itself a good language for writing rule

processors with various search strategies.

4. It is well suited for symbolic manipulation and information

representation tasks.∙

5. Construction and extraction of data structures are the principal

mechanism used in the∙ computation processes of PROLOG.

6. Another example for the functional and logic programming

language used in AI applications is the LISP. LISP stands for

LISt Processing. LISP takes functions as arguments or return

functions as results. It provides for defining functions that are

based directly on the lambda-calculus. LISP is characterized by

the following ideas:

i. Computing with symbolic expressions rather than with

numbers.∙

ii. Representing symbolic expressions and other information

by list structure in the memory∙ of a computer.

iii. The use of lambda expression for naming functions.∙

iv. Representation of LISP programs as LISP data that can be

manipulated by other∙ programs.

v. Conditional expression interpretation of Boolean

connection and others.

 ITQ

Question

Mention one example of Logic Programming Language?

Feedback

A known and commercially available logic programming language is

PROLOG, which stands for PROgramming in LOGic. Its unique

property is its level of abstraction.

4.4.4 Object oriented programming (OOP)

language

The aim of using an object oriented programming language is to handle

complex software design projects in a very easy, simple and efficient

manner. Redesigning and maintaining the source code costs much more

than reusability of the source code. The turn over time and software cost

are drastically brought down due to the use of OOP language. Some of

the famous objects oriented programming languages are: Object Pascal,

C++, Smalltalk, Simula, Eiffel, Java, Ada. A major advantage of C++ is

its ability to support object oriented programming, while retaining the

high level of compactness and speed offered by the C programming

language.

Study Session 4 Types of Programming Languages

51

 ITQ

Question

What is the aim of using Object-Oriented Programming Language?

Feedback

The aim of using an object oriented programming language is to handle

complex software design projects in a very easy, simple and efficient

manner.

4.4.5 Visual Programming Languages

Visual programming is one of the key points for developing any software

product with multimedia and graphical user interface. Visual effects are

one of the most salient features and characteristics of the modern

software especially on microcomputer systems. Icons, graphics, animated

pictures and texts form the foundation for designing a visual system.

Modern computer is not just an electronic information processing

machine but it is a powerful tool for information gathering, collection,

storing and retrieving the items in any form such as text, picture, audio

and video. Visual programming systems are computer systems which

support both visual programming and visualization. Visual programming

means the use of visual expressions (such as icons, drawings or gestures)

in the process of programming and visualization and hence the use of

visual representation (such as graphics, images or animation sequences)

to illustrate programs, data, the structure of a complex system or the

dynamic behaviour of a complex system. In visual programming

languages, objects have logical meaning but not visual image. Objects are

then assigned a visual representation so that it can be visualized. Some

examples of visual programming languages are Visual Basic, Visual

C++, Visual Foxpro, Visual J++/Java. Their application domains include

the following:

1. Image processing and image communication

2. Computer vision

3. Robotics

4. Image data base management

5. Office automation

6. Computer graphics

7. Database interface

8. Form management

9. Computer aided design

 ITQ

Question

Mention examples of visual programming languages and their

application domains?

Feedback

Examples of visual programming languages include Visual Basic, Visual

Study Session 4 Types of Programming Languages

52

C++, Visual Foxpro, Visual J++/Java. Their application domains could

be image processing and communication, robotics, database interface

just to mention a few.

Study Session Summary

Summary

In this study session, you describe the different types of programming

language. You compared the low-level and high-level programming

language. You also described the compiled and interpreted code. You

brought the session to an end by highlighting the different classifications

of programming language.

Assessment

Assessment

SAQ 4.1 (tests Learning Outcome 4.1)

What are the characteristics of programming languages?

SAQ 4.2 (tests learning outcome 4.2)

How will you compare low-level and high level programming

languages?

SAQ 4.3 (tests learning outcome 4.3)

Identify the classifications of programming languages?

Study Session 4 Types of Programming Languages

53

Credits

Reading

This lesson has been adapted from:

http://www.uew.edu.gh/sites/default/files/teaching%20materials/A_BRI

EF_HISTORY_OF_PROGRAMMING_LANGUAGES_Sem2_2012.pd

fhttp://www.uew.edu.gh/sites/default/files/teaching

materials/A_BRIEF_HISTORY_OF_PROGRAMMING_LANGUAGE

S_Sem2_2012.pdf

http://www.uew.edu.gh/sites/default/files/teaching

materials/A_BRIEF_HISTORY_OF_PROGRAMMING_LANGUAGE

S_Sem2_2012.pdf

http://www.dummies.com/how-to/content/the-types-of-programming-

languages.htmlhttp://www.dummies.com/how-to/content/the-types-of-

programming-languages.html

http://www.uew.edu.gh/sites/default/files/teaching%20materials/A_BRI

EF_HISTORY_OF_PROGRAMMING_LANGUAGES_Sem2_2012.pd

fhttp://www.uew.edu.gh/sites/default/files/teaching

materials/A_BRIEF_HISTORY_OF_PROGRAMMING_LANGUAGE

S_Sem2_2012.pdf

http://www.dummies.com/how-to/content/the-types-of-programming-

languages.html

http://www.dummies.com/how-to/content/the-types-of-programming-languages.html
http://www.dummies.com/how-to/content/the-types-of-programming-languages.html

Study Session 5 Algorithms and Problem-Solving

54

Study Session 5

Algorithms and Problem-Solving

Introduction
In this study session, you will examine algorithms and problem solving.

You will explain algorithm and highlight its properties. Thereafter, you

will describe the pseudo-codes. In doing this, you will discuss the rules

for writing pseudocodes, its advantages and disadvantages. You will

conclude the session by describing what a flow chart is.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

5.1 explain the problem solving process

5.2 describe algorithm

5.3 discuss pseudo-codes

5.4 illustrate flowchart

5.1 The Problem Solving Process
The problems in the preceding section offer a glimpse into the craft of

problem solving. The Hungarian mathematician George Pólya (1887-

1985) conceptualized the process and captured it in the famous book

“How To Solve It” by enumerating four phases a problem solver has to

go through. The four phases are outlined below.

1. Phase 1: Understanding the problem.

i. What is the unknown? What are the data?

ii. What is the condition? Is it possible to satisfy the

condition? Is the condition sufficient to determine the

unknown? Or is it insufficient? Or redundant? Or

contradictory?

iii. Draw a figure. Introduce suitable notation.

iv. Separate the various parts of the condition. Can you write

them down?

2. Phase 2: Devising a plan.

i. Have you seen it before? Or have you seen the same

problem in slightly different form?

ii. Do you know a related problem?

iii. Look at the unknown! Try to think of a familiar problem

having the same or similar unknown.

iv. Split the problem into smaller, simpler sub-problems.

Study Session 5 Algorithms and Problem-Solving

55

v. If you cannot solve the proposed problem try to solve

first some related problem. Or solve a more general

problem. Or a special case of the problem. Or solve a

part of the problem.

3. Phase 3: Carrying out the plan.

i. Carrying out your plan of the solution, check each step.

ii. Can you see clearly that the step is correct?

iii. Can you prove that it is correct?

4. Phase 4: Looking back.

i. Can you check the result?

ii. Can you derive the result differently?

iii. Can you use the result, or the method, for some other

problem?

 ITQ

Question

How many phases are involved in the problem-solving process?

Feedback

Four (4)

5.2 The Concept of Algorithm
The term ‘algorithm’ was derived from the name of Mohammed al-

Khowarizmi, a Persian mathematician in the ninth century. An algorithm

is a well-defined computational procedure consisting of a set of

instructions, that takes some value or set of values, as input, and produces

some value or set of values, as output. In other word, an algorithm is a

procedure that accepts data, manipulate them following the prescribed

steps, so as to eventually fill the required unknown with the desired

value(s).

Tersely put, an algorithm, a jargon of computer specialists, is simply a

procedure. People of different professions have their own form of

procedure in their line of work, and they call it different names. A cook,

for instance, follows a procedure commonly known as a recipe that

converts the ingredients (input) into some culinary dish (output), after a

certain number of steps. An algorithm is a form that embeds the complete

logic of the solution. From programming point of view, an algorithm is a

step-by-step procedure to resolve any problem. An algorithm is an

effective method expressed as a finite set of well-defined instructions.

Study Session 5 Algorithms and Problem-Solving

56

 ITQ

Question

How can do programmers view Algorithms?

Feedback

Programmers often see algorithm as a systematic procedure to resolve

any problem. They also agree that it is an effective method expressed as

a finite set of well-defined instructions.

5.2.1 Properties of Algorithm

Donald Ervin Knuth provided a list of five properties for algorithm. They

are:

1. Finiteness: An algorithm must always terminate after a finite

number of steps. It means after every step one reach closer to

solution of the problem and after a finite number of steps

algorithm reaches to an end point.

2. Definiteness: Each step of an algorithm must be precisely

defined. It is done by well thought actions to be performed at

each step of the algorithm. In addition, the actions are defined

unambiguously for each activity in the algorithm.

3. Input: Any operation you perform need some beginning

value/quantities associated with different activities in the

operation. So, the value/quantities are given to the algorithm

before it begins.

4. Output: One always expects output/result (expected

value/quantities) in terms of output from an algorithm. The result

may be obtained at different stages of the algorithm. If some

result is from the intermediate stage of the operation then it is

known as intermediate result and result obtained at the end of

algorithm is known as end result. The output is expected to have

value/quantities that always have a specified relation to the inputs

5. Effectiveness: Algorithms are to be developed/written using basic

operations. Actually, operations should be basic, so that they can

in principle, be done exactly, and in a finite amount of time by a

person by using paper and pencil only.

 ITQ

Question

List the essential properties of Algorithms?

Feedback

Finiteness, definiteness, input, output, and effectiveness.

Study Session 5 Algorithms and Problem-Solving

57

5.2.2 Algorithmic Problem Solving

Webopedia defines an algorithm as “A formula or set of steps for solving

a particular problem. To be an algorithm, a set of rules must be

unambiguous and have a clear stopping point”. There may be more than

one way to solve a problem, so there may be more than one algorithm for

a problem. Now, if we take definition of algorithm as: “A sequence of

activities to be processed for getting desired output from a given input.”

Then we can say that:

1. Getting specified output is essential after algorithm is executed.

2. One will get output only if algorithm stops after finite time.

3. Activities in an algorithm to be clearly defined in other words for

it to be unambiguous. Before writing an algorithm for a problem,

one should find out what is/are the inputs to the algorithm and

what is/are expected output after running the algorithm.

Algorithmic problem solving actually comes in two phases: derivation of

an algorithm that solves the problem, and conversion of the algorithm

into code. The latter, usually known as coding, is comparatively easier,

since the logic is already present – it is just a matter of ensuring that the

syntax rules of the programming language are adhered to. The first phase

is what stumbles most people, for two main reasons. Firstly, it challenges

the mental faculties to search for the right solution, and secondly, it

requires the ability to articulate the solution concisely into systematic

instructions, a skill that is acquired only through lots of practice. A

computer programmer lists down all the steps required to resolve a

problem before writing the actual code.

Example 5.1

The following is a simple example of an algorithm to find out the largest

number from a given list of numbers:

1. Get a list of numbers L1, L2, L3....LN

2. Assume L1 is the largest, Largest = L1

3. Take next number Li from the list and do the following

4. If Largest is less than Li

5. Largest = Li

6. If Li is last number from the list then

7. Print value stored in Largest and come out

8. Else repeat same process starting from step 3

The above algorithm has been written in a crude way to help beginners

understand the concept. You will come across more standardized ways of

writing computer algorithms as you move on to advanced levels of

computer programming.

Example 5.2:

The following algorithm finds the volume of a cube where the input to

the algorithm is length, width and height, and expected output is volume

of the cube.

Step 1: input the length, width and height of the circe

Step 2: Volume ← length*width*height

Study Session 5 Algorithms and Problem-Solving

58

Step 3: Print Volume

 ITQ

Question

What is the most important rule for a computer programmer?

Feedback

A computer programmer lists down all the steps required to resolve a

problem before writing the actual code.

5.3 Pseudo-Codes
Pseudocode is an informal high-level description of the operating

principle of a computer program or other algorithm. It uses the structural

conventions of a normal programming language, but is intended for

human reading rather than machine reading. Pseudocode typically omits

details that are essential for machine understanding of the algorithm, such

as variable declarations, system-specific code and some subroutines. The

programming language is augmented with natural language description

details, where convenient, or with compact mathematical notation. The

purpose of using pseudocode is that it is easier for people to understand

than conventional programming language code, and that it is an efficient

and environment-independent description of the key principles of an

algorithm. It is commonly used in textbooks and scientific publications

that are documenting various algorithms, and also in planning of

computer program development, for sketching out the structure of the

program before the actual coding takes place.

No standard for pseudocode syntax exists, as a program in pseudocode is

not an executable program. Pseudocode resembles, but should not be

confused with skeleton programs which can be compiled without errors.

Flowcharts, drakon-charts and Unified Modeling Language (UML) charts

can be thought of as a graphical alternative to pseudocode, but are more

spacious on paper.

 ITQ

Question

What augments Pseudo-Code?

Feedback

The programming language (Pseudo-Code) is augmented with natural

language description details, where convenient, or with compact

mathematical notation.

Study Session 5 Algorithms and Problem-Solving

59

5.3.1 Rules for Writing Pseudocode

1. Write only one statement per line: As illustrated in example 5.3,

each statement in pseudocode should express just one action for

the computer.

Example 5.3:

The gross pay of a worker is calculated in the pseudocode below

where name, hours worked and pay rate are the input and name,

hours worked and gross pay are the output.

READ name, hoursWorked, payRate

gross = hoursWorked * payRate

WRITE name, hoursWorked, gross

2. Capitalize the keywords. In example 5.3, note that the words:

READ and WRITE are keywords. These are just a few of the

keywords to use, others can be:

IF, ELSE, ENDIF, WHILE, ENDWHILE

3. Indent to show hierarchy: The indentation pattern in each of the 3

major design structures; sequence, selection and iteration is

commonly used to show hierarchy. In sequence pattern,

statements that are “stacked” in sequence all start in the same

column. In selection pattern, statements that fall inside the

selection structure, but not the keywords that form the selection

are indented. Lastly, in the looping pattern, statements that fall

inside the loop, but not the keywords that form the loop are

indented. This is illustrated in example 5.4

Example 5.4

The pseudocode below illustrates indentation using example 5.3

above where, employees whose grossPay is less than 100 do not

have any deduction.

READ name, grossPay, taxes

IF taxes > 0

net = grossPay – taxes

ELSE

net = grossPay

ENDIF

WRITE name, net

4. End multiline structures: As shown in example 5.4 above, the

ENDIF (or END whatever) always is in line with the IF (or

whatever starts the structure).

5. Keep stats language independent: Resist the urge to write in

whatever language you are most comfortable with. In the long

run, you will save time! There may be special features available

in the language you plan to eventually write the program in; if

Study Session 5 Algorithms and Problem-Solving

60

you are SURE it will be written in that language, then you can

use the features. If not, then avoid using the special features.

 ITQ

Question

Highlight the rules for writing Pseudo-codes?

Feedback

1. Write only one statement per line

2. Capitalize the keywords

3. Indent to show hierarchy

4. End multiline structures

5. Keep stats language independent

5.3.2 Advantages of Pseudocode

1. It can be easily in any word processor.

2. It can be easily modified as compared to flowchart.

3. It's implementation is very useful in structured design elements.

It implements structured concepts well

4. It can be written easily.

5. It can be read and understood easily

6. Converting a pseudocode to programming language is very easy

as compared with converting a flowchart to programming

language.

5.3.3 Disadvantages of Pseudocode

1. It is not visual.

2. We do not get a picture of the design.

3. There is no standardized style or format, so one pseudocode may

be different from another.

4. For a beginner, it is more difficult to follow the logic or write

pseudocode as compared to flowchart.

Example 5.5

The pseudocode below prints “failed” or “passed” depending on

whether or not the student’s grade is less than 60.

1. If student's grade is greater than or equal to 60

Print "passed"

Else

Print "failed"

Example 5.6

The pseudocode below finds the class average by using the

grades of all students in the class as input:

Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten

Input the next grade

Add the grade into the total

Set the class average to the total divided by ten

Study Session 5 Algorithms and Problem-Solving

61

Print the class average.

 ITQ

Question

What are the disadvantages of using Pseudo-Codes?

Feedback

1. Pseudo-Code is not visual.

2. Pseudo-Code does not reveal a picture of the design.

5.4 Flowchart
Algorithms are nothing but sequence of steps for solving problems. So a

flow chart can be used for representing an algorithm. A flowchart is a

graphical representation of an algorithm, which will describe the

operations (and in what sequence) are required to solve a given problem.

These flowcharts play a vital role in the programming of a problem and

are quite helpful in understanding the logic of complicated and lengthy

problems. You can see a flow chart as a blueprint of a design you have

made for solving a problem. For example suppose you are going for a

picnic with your friends then you plan for the activities you will do there.

If you have a plan of activities then you know clearly when you will do

what activity. Similarly when you have a problem to solve using

computer or in other word you need to write a computer program for a

problem then it will be good to draw a flowchart prior to writing a

computer program. Once the flowchart is drawn, it becomes easy to write

the program in any high level language. Often we see how flowcharts are

helpful in explaining the program to others. Hence, it is correct to say that

a flowchart is a must for the better documentation of a complex program.

 ITQ

Question

Explain the importance of flow charts in the documentation of a

program?

Feedback

A flowchart, once prepared, makes it easy to write programs in any high

level language. This important feature of flow charts makes it an

indispensable tool and helps in explaining the program to others.

5.4.1 Advantages of Flowcharts

The pictorial representation of a solution/system is having many

advantages. These advantages are as follows:

1. Communication: A Flowchart can be used as a better

way of communication of the logic of a system and steps

involve in the solution, to all concerned particularly to

the client of system.

2. Effective analysis: A flowchart of a problem can be used

for effective analysis of the problem.

Study Session 5 Algorithms and Problem-Solving

62

3. Documentation of Program/System: Program flowcharts

are a vital part of a good program documentation.

Program document is used for various purposes like

knowing the components in the program, complexity of

the program etc.

4. Efficient Program Maintenance: Once a program is

developed and becomes operational it needs time to time

maintenance. With help of flowchart maintenance

become easier.

5. Coding of the Program: Any design of solution of a

problem is finally converted into computer program.

Writing code referring the flowchart of the solution

become easy.

5.4.2 Disadvantages of Flowcharts

1. Complex logic: Sometimes, the program logic is quite

complicated. In that case, flowchart becomes complex

and clumsy. This will become a pain for the user,

resulting in a waste of time and money trying to correct

the problem

2. Alterations and Modifications: If alterations are required

the flowchart may require re-drawing completely. This

will usually waste valuable time.

3. Reproduction: As the flowchart symbols cannot be typed,

reproduction of flowchart becomes a problem.

 ITQ

Question

What are the advantages of Flow Charts?

Feedback

Documentation of program/system; and effective analysis.

5.4.3 Flowchart Symbols

Flowcharts are usually drawn using some standard symbols:,

Study Session 5 Algorithms and Problem-Solving

63

5.4.4 General Guidelines in Flowcharting

1. In drawing a proper flowchart, all necessary

requirements should be listed out in logical order.

2. The flowchart should be clear, neat and easy to follow.

There should not be any room for ambiguity in

understanding the flowchart.

3. The usual direction of the flow of a procedure or system

is from left to right or top to bottom.

4. Only one flow line should come out from a process

symbol

 or

5. Only one flow line should enter a decision symbol, but

two or three flow lines, one for each possible answer,

should leave the decision symbol.

Study Session 5 Algorithms and Problem-Solving

64

6. Only one flow line is used in conjunction with terminal

symbol.

7. All boxes of the flowchart are connected with Arrows.

(Not lines). If the flowchart becomes complex, it is better

to use connector symbols to reduce the number of flow

lines. Avoid the intersection of flow lines if you want to

make it more effective and better way of communication.

8. Ensure that the flowchart has a logical start and finish.

9. It is useful to test the validity of the flowchart by passing

through it with a simple test data.

Example 5.7

The following flowchart finds the area of a circle of radius r.

Example 5.8

The flowchart below finds the greater of two numbers

Study Session 5 Algorithms and Problem-Solving

65

Example 5.9

Write an algorithm and draw the flowchart for finding the average of two

numbers

Algorithm:

Input: two numbers n1 and n2

Output: the average of n1 and n2

Steps:

1. input n1

2. input n2

3. sum = n1 + n2

4. average = sum /2

5. output average

 ITQ

Question

Mention two (2) guidelines in flowcharting

Feedback

 The flowchart should be clear, neat and easy to follow. There

should not be any room for ambiguity in understanding the

flowchart, and

 The usual direction of the flow of a procedure or system is from

left to right or top to bottom.

Study Session 5 Algorithms and Problem-Solving

66

Study Session Summary

Summary

In this study session, you examined algorithm and problem solving. You

started by defining algorithm and highlighted its different properties.

You also discussed the pseudocode. Under this, you looked at rules for

writing pseudocodes, its advantages and disadvantages. You concluded

the session by describing what a flow chart is, its advantages and

disadvantages.

Assessment

Assessment

SAQ 5.1 (tests Learning Outcome 5.1)

Describe the problem solving process?

SAQ 5.2 (tests learning outcome 5.2)

Explain the concept of Algorithm?

SAQ 5.3 (tests learning outcome 5.3)

Describe Pseudo-codes?

SAQ 5.4 (test learning outcome 5.4)

What is a Flowchart?

Credits

Reading

This lesson has been adapted from:

http://www.comp.nus.edu.sg/~cs1101x/4_misc/jumpstart/chap2.pdf

http://faradars.org/wp-content/uploads/2015/07/Algorithm-and-Flow-

Chart.pdf

http://www.tutorialspoint.com/computer_programming/computer_progr

amming_overview.htm

http://www.comp.nus.edu.sg/~cs1101x/4_misc/jumpstart/chap3.pdfhttp:

//faradars.org/wp-content/uploads/2015/07/Algorithm-and-Flow-

Chart.pdf

http://faculty.ccri.edu/mkelly/COMI1150/PseudocodeBasics.pdfhttp://fa

culty.ccri.edu/mkelly/COMI1150/PseudocodeBasics.pdf

http://www.comp.nus.edu.sg/~cs1101x/4_misc/jumpstart/chap2.pdf

http://www.comp.nus.edu.sg/~cs1101x/4_misc/jumpstart/chap2.pdf

Study Session 6 Basics of Computer Program

67

Study Session 6

Basics of Computer Program

Introduction
In this study session, you will be examining the basics of computer

programming. You will begin by exploring the programming

environment. Under which you will examine text editor, compiler and

interpreter. Thereafter, you will discuss the basic syntax of programming.

You will also explain variable. In doing so, you will describe how to

create, store and access variables. Moving on, you will examine reserve

words. In addition, you will describe operator. This will lead you to

focusing on arithmetic, relational, logical operations, and functions.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

6.1 describe a programming environment

6.2 explain basic syntax of programming

6.3 define variables

6.4 discuss reserved words

6.5 define operators

6.6 explain functions

Terminology

Interpreter A program that executes another program written in a
programming language other than machine code.

Editors A program for creating and making changes to files,
especially text files

6.1 Programming Environment
Though Environment Setup is not an element of any Programming

Language, it is the first step to take before setting on to write a program.

When we say Environment Setup, it simply implies a base on top of

which we can do our programming. Thus, we need to have the required

software setup, i.e., installation on our PC which will be used to write

Study Session 6 Basics of Computer Program

68

computer programs, compile, and execute them. For example, if you need

to browse Internet, then you need the following setup on your machine −

1. A working Internet connection to connect to the Internet

2. A Web browser such as Internet Explorer, Chrome, Safari, etc.

Similarly, you will need the following setup to start with programming

using any programming language.

1. A text editor to create computer programs.

2. A compiler to compile the programs into binary format.

3. An interpreter to execute the programs directly.

In case you do not have sufficient exposure to computers, you will not be

able to set up either of this software. Therefore, we suggest you take the

help from any technical person around you to set up the programming

environment on your machine from where you can start. However, for

you, it is important to understand what these items are.

 ITQ

Question

What is the first step to take before writing a program?

Feedback

Environment Set-up

6.1.1 Text Editor

A text editor is a software that is used to write computer programs.

Common example is Notepad, which can be used to type programs. You

can launch it by following these steps −

Start Icon → All Programs → Accessories → Notepad → Mouse Click

on Notepad

It will launch Notepad with the following window −

Study Session 6 Basics of Computer Program

69

You can use this software to type your computer program and save it in a

file at any location. You can download and install other good editors like

Notepad++, which is freely available. If you are a Mac user, then you will

have TextEdit or you can install some other commercial editor like

BBEdit to start with.

6.1.2 Compiler

You write your computer program using your favorite programming

language and save it in a text file called the program file. Now let us try

to get a little more detail on how the computer understands a program

written by you using a programming language. Actually, the computer

cannot understand your program directly given in the text format, so we

need to convert this program in a binary format, which can be understood

by the computer. The conversion from text program to binary file is done

by another software called Compiler and this process of conversion from

text formatted program to binary format file is called program

compilation. Finally, you can execute binary file to perform the

programmed task.

The following flow diagram gives an illustration of the compilation

process −

So, if you are going to write your program in any such language, which

needs compilation like C, C++, Java and Pascal, etc., then you will need

to install their compilers before you start programming.

Study Session 6 Basics of Computer Program

70

 ITQ

Question

What does Program Compilation entail?

Feedback

Ordinarily, the computer cannot understand your program directly given

in the text format, so there is a need to convert the program in a binary

format, which the computer understands. This conversion from text

program to binary file is done using a software called Compiler and this

process of conversion from text formatted program to binary format file

is called program compilation.

6.1.3 Interpreter

We just discussed about compilers and the compilation process.

Compilers are required in case you are going to write your program in a

programming language that needs to be compiled into binary format

before its execution. There are other programming languages such as

Python, PHP, and Perl, which do not need any compilation into binary

format, rather an interpreter can be used to read such programs line by

line and execute them directly without any further conversion.

So, if you are going to write your programs in PHP, Python, Perl, Ruby,

etc., then you will need to install their interpreters before you start

programming.

Study Session 6 Basics of Computer Program

71

 ITQ

Question

Mention two programming languages that does not require compilation

into a binary format.

Feedback

Python and PHP? Yes, you are correct.

6.2 Basic Syntax of Programming
Let’s start with a little coding, which will really make you a computer

programmer. We are going to write a single-line computer program to

write Hello, World! on your screen. Let’s see how it can be written using

different programming languages.

#include <stdio.h>

main() {

 /* printf() function to write Hello, World! */

 printf("Hello, World!");

}

This little Hello World program will help us understand various basic

concepts related to C Programming.

6.2.1 Program Entry Point

For now, just forget about the #include <stdio.h> statement, but keep a

note that you have to put this statement at the top of a C program.

Every C program starts with main(), which is called the main function,

and then it is followed by a left curly brace. The rest of the program

instruction is written in between and finally a right curly brace ends the

program.

The coding part inside these two curly braces is called the program body.

The left curly brace can be in the same line as main(){ or in the next line

like it has been mentioned in the above program.

 ITQ

Question

What follows the main function { main() }?

Feedback

A left curly brace

6.2.2 Functions

Functions are small units of programs and they are used to carry out a

specific task. For example, the above program makes use of two

Study Session 6 Basics of Computer Program

72

functions: main()and printf(). Here, the function main() provides the entry

point for the program execution and the other function printf() is being

used to print an information on the computer screen You can write your

own functions which we will see in a separate chapter, but C

programming itself provides various built-in functions like main(),

printf(), etc., which we can use in our programs based on our

requirement. Some of the programming languages use the word sub-

routine instead of function, but their functionality is more or less the

same.

 ITQ

Question

What do we utilize functions?

Feedback

Functions are used to carry out a specific task.

6.2.3 Comments

A C program can have statements enclosed inside /*.....*/. Such

statements are called comments and these comments are used to make the

programs user friendly and easy to understand. The good thing about

comments is that they are completely ignored by compilers and

interpreters. So you can use whatever language you want to write your

comments.

 ITQ

Question

How do we utilize comments?

Feedback

Comments is used to make the program more user friendly, and easy to

understand.

6.2.4 Whitespaces

When we write a program using any programming language, we use

various printable characters to prepare programming statements. These

printable characters are a, b, c,......z, A, B, C,.....Z, 1, 2, 3,...... 0, !, @, #,

$, %, ^, &, *, (,), -, _, +, =, \, |, {, }, [,], :, ;, <, >, ?, /, \, ~. `. ", '. Hope

I'm not missing any printable characters from your keyboard.

Apart from these characters, there are some characters which we use very

frequently but they are invisible in your program and these characters are

spaces, tabs (\t), new lines(\n). These characters are called whitespaces.

These three important whitespace characters are common in all the

programming languages and they remain invisible in your text document

–

Study Session 6 Basics of Computer Program

73

Whitespace Explanation Representation

New Line To create a new line \n

Tab To create a tab. \t

Space To create a space. empty space

A line containing only whitespace, possibly with a comment, is known as

a blank line, and a C compiler totally ignores it. Whitespace is the term

used in C to describe blanks, tabs, newline characters, and comments. So

you can write printf("Hello, World!"); as shown below. Here all the

created spaces around "Hello, World!" are useless and the compiler will

ignore them at the time of compilation.

#include <stdio.h>

main() {

 /* printf() function to write Hello, World! */

 printf("Hello, World!");

}

If we make all these whitespace characters visible, then the above

program will look like this and you will not be able to compile it −

#include <stdio.h>\n

\n

main()\n

{

\n

\t/* printf() function to write Hello, World! */

\n

\tprintf(\t"Hello, World!"\t);\n

\n

}\n

Study Session 6 Basics of Computer Program

74

 ITQ

Question

What do we refer to as “Whitespaces”?

Feedback

These often refer to characters, which we use very frequently but are not

visible in your program. These characters could be spaces, tabs (\t), new

lines(\n).

6.2.5 Semicolons

Every individual statement in a C Program must be ended with a

semicolon (;), for example, if you want to write "Hello, World!" twice,

then it will be written as follows −

#include <stdio.h>

main() {

 /* printf() function to write Hello, World! */

 printf("Hello, World!\n");

 printf("Hello, World!");

}

This program will produce the following result −

Hello, World!

Hello, World!

Here, we are using a new line character \n in the first printf() function to

create a new line. Let us see what happens if we do not use this new line

character −

#include <stdio.h>

main() {

 /* printf() function to write Hello, World! */

 printf("Hello, World!");

 printf("Hello, World!");

}

This program will produce the following result −

Hello, World! Hello, World!

We will learn identifiers and keywords in next few chapters.

Program Explanation

Let us understand how the above C program works. First of all, the above

program is converted into a binary format using C compiler. So let’s put

this code in test.c file and compile it as follows −

$gcc test.c -o demo

Study Session 6 Basics of Computer Program

75

If there is any grammatical error (Syntax errors in computer

terminologies), then we fix it before converting it into binary format. If

everything goes fine, then it produces a binary file called demo. Finally,

we execute the produced binary demo as follows −

$./demo

which produces the following result −

Hello, World!

Here, when we execute the binary a.out file, the computer enters inside

the program starting from main() and encounters a printf() statement.

Keep a note that the line inside /*....*/ is a comment and it is filtered at

the time of compilation. So printf() function instructs the computer to

print the given line at the computer screen. Finally, it encounters a right

curly brace which indicates the end of main() function and exits the

program.

6.2.6 Syntax Error

If you do not follow the rules defined by the programing language, then

at the time of compilation, you will get syntax errors and the program

will not be compiled. From syntax point of view, even a single dot or

comma or a single semicolon matters and you should take care of such

small syntax as well. In the following example, we have skipped a

semicolon, let's try to compile the program −

#include <stdio.h>

main() {

 printf("Hello, World!")

}

This program will produce the following result −

main.c: In function 'main':

main.c:7:1: error: expected ';' before '}' token

 }

 ^

So the bottom-line is that if you are not following proper syntax defined

by the programming language in your program, then you will get syntax

errors. Before attempting another compilation, you will need to fix them

and then proceed.

 ITQ

Question

How does Syntax Error occur?

Feedback

Syntax Error often occur when the rules defined by the programing

Study Session 6 Basics of Computer Program

76

language are not followed to letter. The result is that at the time of

compilation, you will get syntax errors and the program would not be

compiled leading to a failed execution

6.2.7Hello World Program in Java

Following is the equivalent program written in Java. This program will

also produce the same result Hello, World!.

public class HelloWorld {

 public static void main(String []args) {

 /* println() function to write Hello, World! */

 System.out.println("Hello, World!");

 }

}

6.2.8 Hello World Program in Python

Following is the equivalent program written in Python. This program will

also produce the same result Hello, World!.

print function to write Hello, World! */

print "Hello, World!"

Note that for C and Java examples, first we are compiling the programs

and then executing the produced binaries, but in Python program, we are

directly executing it. As we explained in the previous chapter, Python is

an interpreted language and it does not need an intermediate step called

compilation. Python does not require a semicolon (;) to terminate a

statement, rather a new line always means termination of the statement.

 ITQ

Question

Mention one important point to note when using a Python program

Feedback

Python program uses an interpreted language; therefore, it does not

require the compilation process/stage unlike the C and Java programs

that need the intermediate stage of compiling before execution.

6.3 Variables
Variables are the names you give to computer memory locations which

are used to store values in a computer program. For example, assume you

want to store two values 10 and 20 in your program and at a later stage,

you want to use these two values. Let us see how you will do it. Here are

the following three simple steps:

1. Create variables with appropriate names.

2. Store your values in those two variables.

3. Retrieve and use the stored values from the variables.

Study Session 6 Basics of Computer Program

77

6.3.1 Creating Variables

Creating variables is also called declaring variables in C programming.

Different programming languages have different ways of creating

variables inside a program. For example, C programming has the

following simple way of creating variables −

#include <stdio.h>

main() {

 int a;

 int b;

}

The above program creates two variables to reserve two memory

locations with names a and b. We created these variables using int

keyword to specify variable data type which means we want to store

integer values in these two variables. Similarly, you can create variables

to store long, float, char or any other data type. For example −

/* variable to store long value */

long a;

/* variable to store float value */

float b;

You can create variables of similar type by putting them in a single line

but separated by comma as follows −

#include <stdio.h>

main() {

 int a, b;

}

Listed below are the key points about variables that you need to keep in

mind:

1. A variable name can hold a single type of value. For example, if

variable a has been defined int type, then it can store only integer.

2. C programming language requires a variable creation, i.e.,

declaration before its usage in your program. You cannot use a

variable name in your program without creating it, though

programming language like Python allows you to use a variable

name without creating it.

3. You can use a variable name only once inside your program. For

example, if a variable a has been defined to store an integer

value, then you cannot define a again to store any other type of

value.

4. There are programming languages like Python, PHP, Perl, etc.,

which do not want you to specify data type at the time of creating

variables. So you can store integer, float, or long without

specifying their data type.

Study Session 6 Basics of Computer Program

78

5. You can give any name to a variable like age, sex, salary,

year1990or anything else you like to give, but most of the

programming languages allow to use only limited characters in

their variables names. For now, we will suggest to use only a....z,

A....Z, 0....9 in your variable names and start their names using

alphabets only instead of digits.

6. Almost none of the programming languages allow to start their

variable names with a digit, so 1990year will not be a valid

variable name whereas year1990 or ye1990ar are valid variable

names.

Every programming language provides more rules related to variables

and you will learn them when you will go in further detail of that

programming language.

 ITQ

Question

In C programming language, what other term can used to replace

‘Creating variables’?

Feedback

Creating variables is also called declaring variables in C programming.

6.3.2 Storing Values in Variables

You have seen how we created variables in the previous section. Now,

let's store some values in those variables −

#include <stdio.h>

main() {

 int a;

 int b;

 a = 10;

 b = 20;

}

The above program has two additional statements where we are storing

10 in variable a and 20 is being stored in variable b. Almost all the

programming languages have similar way of storing values in variable

where we keep variable name in the left hand side of an equal sign = and

whatever value we want to store in the variable, we keep that value in the

right hand side.

Now, we have completed two steps, first we created two variables and

then we stored required values in those variables. Now variable a has

value 10 and variable b has value 20. In other words we can say, when

above program is executed, the memory location named a will hold 10

and memory location b will hold 20.

Study Session 6 Basics of Computer Program

79

6.3.3 Accessing Stored Values in Variables

If we do not use the stored values in the variables, then there is no point

in creating variables and storing values in them. We know that the above

program has two variables a and b and they store the values 10 and 20,

respectively. So let's try to print the values stored in these two variables.

Following is a C program, which prints the values stored in its variables −

#include <stdio.h>

main() {

 int a;

 int b;

 a = 10;

 b = 20;

 printf("Value of a = %d\n", a);

 printf("Value of b = %d\n", b);

}

When the above program is executed, it produces the following result −

Value of a = 10

Value of b = 20

You must have seen printf() function in the previous chapter where we

had used it to print "Hello, World!". This time, we are using it to print the

values of variables. We are making use of %d, which will be replaced

with the values of the given variable in printf() statements. We can print

both the values using a single printf() statement as follows −

#include <stdio.h>

main() {

 int a;

 int b;

 a = 10;

 b = 20;

 printf("Value of a = %d and value of b = %d\n", a, b);

}

When the above program is executed, it produces the following result −

Value of a = 10 and value of b = 20

If you want to use float variable in C programming, then you will have to

use%f instead of %d, and if you want to print a character value, then you

will have to use %c. Similarly, different data types can be printed using

different % and characters.

Study Session 6 Basics of Computer Program

80

 ITQ

Question

What is necessary after creating variable?

Feedback

It is important to store variables after creating them else, the purpose of

creation would be defeated.

6.3.4 Variables in Java

Following is the equivalent program written in Java programming

language. This program will create two variables a and b and very similar

to C programming, it will assign 10 and 20 in these variables and finally

print the values of the two variables in two ways −

public class DemoJava {

 public static void main(String []args) {

 int a;

 int b;

 a = 10;

 b = 20;

 System.out.println("Value of a = " + a);

 System.out.println("Value of b = " + b);

 System.out.println("Value of a = " + a + " and value of b = " + b);

 }

}

6.3.5 Variables in Python

Following is the equivalent program written in Python. This program will

create two variables a and b and at the same time, assign 10 and 20 in

those variables.

Python does not want you to specify the data type at the time of variable

creation and there is no need to create variables in advance.

a = 10

b = 20

print "Value of a = ", a

print "Value of b = ", b

print "Value of a = ", a, " and value of b = ", b

You can use the following syntax in C and Java programming to declare

variables and assign values at the same time −

#include <stdio.h>

main() {

Study Session 6 Basics of Computer Program

81

 int a = 10;

 int b = 20;

 printf("Value of a = %d and value of b = %d\n", a, b);

}

6.4 Reserved Words
Reserved word (also known as a keyword) is a word in programming that

cannot be used as an identifier, such as the name of a variable, function,

or label – it is "reserved from use". Different programming languages

provide different set of reserved keywords, but there is one important &

common rule in all the programming languages that we cannot use a

reserved keyword to name our variables, which means we cannot name

our variable like int or float rather these keywords can only be used to

specify a variable data type.

For example, if you will try to use any reserved keyword for the purpose

of variable name, then you will get a syntax error.

#include <stdio.h>

main() {

 int float;

 float = 10;

 printf("Value of float = %d\n", float);

}

When you compile the above program, it produces the following error −

main.c: In function 'main':

main.c:5:8: error: two or more data types in declaration specifiers

 int float;

......

Let's now give a proper name to our integer variable, then the above

program should compile and execute successfully −

#include <stdio.h>

main() {

 int count;

 count = 10;

 printf("Value of count = %d\n", count);

}

The following sections give the list of reserved words in C, Java and

Python programming languages. We know you cannot memorize all these

keywords, but we have listed them down for your reference purpose and

to explain the concept of reserved keywords. So just be careful while

Study Session 6 Basics of Computer Program

82

giving a name to your variable, you should not use any reserved keyword

for that programming language.

 ITQ

Question

What is the common rule in all programming languages?

Feedback

The important and common rule in all the programming languages is

that a reserved keyword cannot be used to name variables.

6.4.1 C Programming Reserved Keywords

Here is a table having almost all the keywords supported by C

Programming language:

Auto Else long switch

Break Enum register typedef

Case Extern return union

Char Float short unsigne

d

Const For signed void

continue Goto sizeof volatile

Default If static while

Do Int struct _Packed

Double

6.4.2 Java Programming Reserved Keywords

Here is a table having almost all the keywords supported by Java

Programming language −

Abstract Assert boolean break

Study Session 6 Basics of Computer Program

83

Byte Case catch char

Class Const continue default

Do Double else enum

Extends Final finally float

For Goto if implements

Import Instanceof int interface

Long Native new package

Private Protected public return

Short Static strictfp super

Switch Synchronized this throw

Throws Transient try void

Volatile While

6.4.3 Python Programming Reserved Keywords

Here is a table having almost all the keywords supported by Python

Programming language −

And Exec not

Assert Finally or

Break For pass

Class From print

Study Session 6 Basics of Computer Program

84

Continue Global raise

Def If return

Del Import try

Elif In while

Else Is with

Except Lambda yield

6.5 Operators
An operator in a programming language is a symbol that tells the

compiler or interpreter to perform specific mathematical, relational or

logical operation and produce final result. This lesson will explain the

concept of operators and it will take you through the important arithmetic

and relational operators available in C, Java, and Python.

6.5.1 Arithmetic Operators

Computer programs are widely used for mathematical calculations. We

can write a computer program which can do simple calculation like

adding two numbers (2 + 3) and we can also write a program, which can

solve a complex equation like P(x) = x4 + 7x3 - 5x + 9. Even if you have

been a poor student, you must be aware that in first expression 2 and 3

are operands and + is an operator. Similar concepts exist in Computer

Programming.

Take a look at the following two examples −

2 + 3

P(x) = x4 + 7x3 - 5x + 9.

These two statements are called arithmetic expressions in a programming

language and plus, minus used in these expressions are called arithmetic

operators and the values used in these expressions like 2, 3 and x, etc., are

called operands. In their simplest form, such expressions produce

numerical results. Similarly, a programming language provides various

arithmetic operators. The following table lists down a few of the

important arithmetic operators available in C programming language.

Assume variable A holds 10 and variable B holds 20, then –

Study Session 6 Basics of Computer Program

85

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% This gives remainder of an integer division B % A will give 0

Following is a simple example of C Programming to understand the

above mathematical operators −

#include <stdio.h>

main() {

 int a, b, c;

 a = 10;

 b = 20;

 c = a + b;

 printf("Value of c = %d\n", c);

 c = a - b;

 printf("Value of c = %d\n", c);

 c = a * b;

 printf("Value of c = %d\n", c);

 c = b / a;

 printf("Value of c = %d\n", c);

 c = b % a;

 printf("Value of c = %d\n", c);

}

When the above program is executed, it produces the following result −

Value of c = 30

Value of c = -10

Value of c = 200

Value of c = 2

Study Session 6 Basics of Computer Program

86

Value of c = 0

6.5.2 Relational Operators

Consider a situation where we create two variables and assign them some

values as follows −

A = 20

B = 10

Here, it is obvious that variable A is greater than B in values. So, we need

the help of some symbols to write such expressions which are called

relational expressions. If we use C programming language, then it will be

written as follows −

(A > B)

Here, we used a symbol > and it is called a relational operator and in their

simplest form, they produce Boolean results which means the result will

be either true or false. Similarly, a programming language provides

various relational operators. The following table lists down a few of the

important relational operators available in C programming language.

Assume variable Aholds 10 and variable B holds 20, then −

Operator Description Example

== Checks if the values of two operands are

equal or not, if yes then condition

becomes true.

(A == B) is

not true.

!= Checks if the values of two operands are

equal or not, if values are not equal then

condition becomes true.

(A != B) is

true.

> Checks if the value of left operand is

greater than the value of right operand, if

yes then condition becomes true.

(A > B) is

not true.

< Checks if the value of left operand is less

than the value of right operand, if yes

then condition becomes true.

(A < B) is

true.

>= Checks if the value of left operand is

greater than or equal to the value of right

operand, if yes then condition becomes

true.

(A >= B) is

not true.

Study Session 6 Basics of Computer Program

87

<= Checks if the value of left operand is less

than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B) is

true.

Here, we will show you one example of C Programming which makes

use of if conditional statement. Though this statement will be discussed

later in a separate chapter, but in short, we use if statement to check a

condition and if the condition is true, then the body of if statement is

executed, otherwise the body of if statement is skipped.

#include <stdio.h>

main() {

 int a, b;

 a = 10;

 b = 20;

 /* Here we check whether a is equal to 10 or not */

 if(a == 10) {

 /* if a is equal to 10 then this body will be executed */

 printf("a is equal to 10\n");

 }

 /* Here we check whether b is equal to 10 or not */

 if(b == 10) {

 /* if b is equal to 10 then this body will be executed */

 printf("b is equal to 10\n");

 }

 /* Here we check if a is less b than or not */

 if(a < b) {

 /* if a is less than b then this body will be executed */

 printf("a is less than b\n");

 }

 /* Here we check whether a and b are not equal */

 if(a != b) {

 /* if a is not equal to b then this body will be executed */

 printf("a is not equal to b\n");

 }

}

When the above program is executed, it produces the following result −

Study Session 6 Basics of Computer Program

88

a is equal to 10

a is less than b

a is not equal to b

 ITQ

Question

What does a programming language provide?

Feedback

A programming language provides various relational operators.

6.5.3 Logical Operators

Logical operators are very important in any programming language and

they help us take decisions based on certain conditions. Suppose we want

to combine the result of two conditions, then logical AND and OR logical

operators help us in producing the final result.

The following table shows all the logical operators supported by the C

language. Assume variable A holds 1 and variable B holds 0, then −

Operator Description Example

&& Called Logical AND operator. If both the

operands are non-zero, then condition

becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the

two operands is non-zero, then condition

becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its operand. If a

condition is true then Logical NOT

operator will make false.

!(A && B) is true.

Try the following example to understand all the logical operators

available in C programming language −

#include <stdio.h>

main() {

 int a = 1;

 int b = 0;

 if (a && b) {

Study Session 6 Basics of Computer Program

89

 printf("This will never print because condition is false\n");

 }

 if (a || b) {

 printf("This will be printed print because condition is true\n");

 }

 if (!(a && b)) {

 printf("This will be printed print because condition is true\n");

 }

}

When you compile and execute the above program, it produces the

following result −

This will be printed print because condition is true

This will be printed print because condition is true

 ITQ

Question

How do logical operators help programmers?

Feedback

Logical Operators serves as a reliable guide when taking decisions based

on certain conditions.

6.5.4 Operators in Java

Following is the equivalent program written in Java. C programming and

Java provide almost identical set of operators and conditional statements.

This program will create two variables a and b, very similar to C

programming, then we assign 10 and 20 in these variables and finally, we

will use different arithmetic and relational operators −

You can try to execute the following program to see the output, which

must be identical to the result generated by the above example.

public class DemoJava {

 public static void main(String []args) {

 int a, b, c;

 a = 10;

 b = 20;

 c = a + b;

 System.out.println("Value of c = " + c);

 c = a - b;

 System.out.println("Value of c = " + c);

Study Session 6 Basics of Computer Program

90

 c = a * b;

 System.out.println("Value of c = " + c);

 c = b / a;

 System.out.println("Value of c = " + c);

 c = b % a;

 System.out.println("Value of c = " + c);

 if(a == 10) {

 System.out.println("a is equal to 10");

 }

 }

}

 ITQ

Question

What does Java provide?

Feedback

Java provide almost identical set of operators and conditional statements.

6.5.5 Operators in Python

Following is the equivalent program written in Python. This program will

create two variables a and b and at the same time, assign 10 and 20 in

those variables. Fortunately, C programming and Python programming

languages provide almost identical set of operators. This program will

create two variables a and b, very similar to C programming, then we

assign 10 and 20 in these variables and finally, we will use different

arithmetic and relational operators.

You can try to execute the following program to see the output, which

must be identical to the result generated by the above example.

a = 10

b = 20

c = a + b

print "Value of c = ", c

c = a - b

print "Value of c = ", c

c = a * b

print "Value of c = ", c

c = a / b

print "Value of c = ", c

Study Session 6 Basics of Computer Program

91

c = a % b

print "Value of c = ", c

if(a == 10):

 print "a is equal to 10"

6.6 Functions
A function is a block of organized, reusable code that is used to perform a

single, related action. Functions provide better modularity for your

application and a high degree of code reusing. You have already seen

various functions like printf() and main(). These are called built-in

functions provided by the language itself, but we can write our own

functions as well and this tutorial will teach you how to write and use

those functions in C programming language.

Good thing about functions is that they are famous with several names.

Different programming languages name them differently, for example,

functions, methods, sub-routines, procedures, etc. If you come across any

such terminology, then just imagine about the same concept, which we

are going to discuss in this tutorial.

Let us start with a program where we will define two arrays of numbers

and then from each array, we will find the biggest number. Given below

are the steps to find out the maximum number from a given set of

numbers −

1) Get a list of numbers L1, L2, L3....LN

2) Assume L1 is the largest, Set max = L1

3) Take next number Li from the list and do the following

4) If max is less than Li

5) Set max = Li

6) If Li is last number from the list then

7) Print value stored in max and come out

8) Else prepeat same process starting from step 3

Let us translate the above program in C programming language −

#include <stdio.h>

main() {

 int set1[5] = {10, 20, 30, 40, 50};

 int set2[5] = {101, 201, 301, 401, 501};

 int i, max;

 /* Process first set of numbers available in set1[] */

 max = set1[0];

 i = 1;

 while(i < 5) {

 if(max < set1[i]) {

 max = set1[i];

Study Session 6 Basics of Computer Program

92

 }

 i = i + 1;

 }

 printf("Max in first set = %d\n", max);

 /* Now process second set of numbers available in set2[] */

 max = set2[0];

 i = 1;

 while(i < 5) {

 if(max < set2[i]) {

 max = set2[i];

 }

 i = i + 1;

 }

 printf("Max in second set = %d\n", max);

}

When the above code is compiled and executed, it produces the following

result −

Max in first set = 50 Max in second set = 501

If you are clear about the above example, then it will become easy to

understand why we need a function. In the above example, there are only

two sets of numbers, set1 and set2, but consider a situation where we

have 10 or more similar sets of numbers to find out the maximum

numbers from each set. In such a situation, we will have to repeat,

processing 10 or more times and ultimately, the program will become too

large with repeated code. To handle such situation, we write our functions

where we try to keep the source code which will be used again and again

in our programming.

Now, let's see how to define a function in C programming language and

then in the subsequent sections, we will explain how to use them.

 ITQ

Question

Define Functions?

Feedback

Functions are small units of programs that are used to carry out a

specific task. Kindly note that C programming provides various built-in

functions like main(), printf(), etc., which are used in programs based on

the requirement.

Study Session 6 Basics of Computer Program

93

6.6.1 Defining a Function

The general form of a function definition in C programming language is

as follows −

return_type function_name(parameter list) { body of the function

return [expression]; }

A function definition in C programming consists of a function header and

afunction body. Here are all the parts of a function:

1. Return Type − A function may return a value. The return_type is

the data type of the value the function returns. Some functions

perform the desired operations without returning a value. In this

case, the return_type is the keyword void.

2. Function Name − This is the actual name of the function. The

function name and the parameter list together constitute the

function signature.

3. Parameter List − A parameter is like a placeholder. When a

function is invoked, you pass a value as a parameter. This value

is referred to as the actual parameter or argument. The parameter

list refers to the type, order, and number of the parameters of a

function. Parameters are optional; that is, a function may contain

no parameters.

4. Function Body − The function body contains a collection of

statements that defines what the function does.

 ITQ

Question

List two parts of a function

Feedback

The two parts of a function are Return Type, and Function Name.

6.6.2 Calling a Function

While creating a C function, you give a definition of what the function

has to do. To use a function, you will have to call that function to perform

a defined task.

Now, let us write the above example with the help of a function −

#include <stdio.h>

int getMax(int set[]) {

 int i, max;

 max = set[0];

 i = 1;

 while(i < 5) {

 if(max < set[i]) {

 max = set[i];

Study Session 6 Basics of Computer Program

94

 }

 i = i + 1;

 }

 return max;

}

main() {

 int set1[5] = {10, 20, 30, 40, 50};

 int set2[5] = {101, 201, 301, 401, 501};

 int max;

 /* Process first set of numbers available in set1[] */

 max = getMax(set1);

 printf("Max in first set = %d\n", max);

 /* Now process second set of numbers available in set2[] */

 max = getMax(set2);

 printf("Max in second set = %d\n", max);

}

When the above code is compiled and executed, it produces the following

result −

Max in first set = 50 Max in second set = 501

 ITQ

Question

What must you bear in mind while creating a C function?

Feedback

You must always remember that while creating a C function, you should

give a definition of what the function has to do.

Study Session Summary

Summary

In this Study Session, you discussed the basics of computer

programming. You started by describing the programming environment.

You also highlighted the basic syntax of programming. You examined

variables and reserved words. You concluded the session by discuss

operators and functions.

Study Session 6 Basics of Computer Program

95

Assessment

Assessment

SAQ 6.1 (tests Learning Outcome 6.1)

Identify a program environment?

SAQ 6.2 (tests learning outcome 6.2)

Explain the basic syntax of programming?

SAQ 6.3 (tests learning outcome 6.3)

Explain Reserved Words?

SAQ 6.4 (tests learning outcome 6.4)

Define Operators?

SAQ 6.5 (tests learning outcome 6.5)

Define Functions?

SAQ 6.6 (tests learning outcome 6.6)

Mention the parts of a function?

Credits

Reading

This lesson has been adapted from:

Program Structure- http://ccm.net/contents/317-program-structure

https://en.wikipedia.org/wiki/Statement_(computer_science)

http://www.webopedia.com/TERM/S/statement.htmlhttp://www.webope

dia.com/TERM/S/statement.html

https://en.wikipedia.org/wiki/Control_flowhttps://en.wikipedia.org/wiki/

Control_flow

Introduction to Problem Solving and Control Statements in Visual Basic

2010 By Paul Deitel and Harvey Deitel Apr 27, 2011

http://www.teach-

ict.com/gcse_computing/ocr/216_programming/control_flow/miniweb/p

g7.htm

http://www.tutorialspoint.com/computer_programming/

Study Session 7 Data Types

96

Study Session 7

Data Types

Introduction
In this study session, you will discuss the different data types. You will

describe the C and java data types and python data types. You will then

proceed to explaining data types and numbers manipulations. Under

which you will examine math operations on numbers, numbers in java

and numbers in python. Subsequently, you will discuss data types and

character manipulation. You will end the session by describing data types

and string manipulations.

Learning Outcomes

Outcomes

When we have studied this session, we should be able to:

7.1 identify data types

7.2 describe data types and numbers manipulation

7.3 examine data types and character manipulation

7.4 explain data types and string manipulation

Terminology

Data A representation of facts or ideas in a formalized manner
capable of being communicated or manipulated by some
processes

7.1 Understanding Data Types
Consider an easy example of adding two whole numbers 10 & 20, which

can be done simply as follows:

10 + 20

Let's take another problem where we want to add two decimal numbers

10.50 & 20.50, which will be written as follows −

10.50 + 20.50

The two examples are straightforward. Now let's take another example

where we want to record student information in a notebook. Here we

would like to record the following information −

Name:

Study Session 7 Data Types

97

Class:

Section:

Age:

Sex:

Now, let's put one student record as per the given requirement −

Name: Zara Ali

Class: 6th

Section: J

Age: 13

Sex: F

The first example dealt with whole numbers, the second example added

two decimal numbers, whereas the third example is dealing with a mix of

different data. Let's put it as follows:

1. Student name "Zara Ali" is a sequence of characters which is also

called a string.

2. Student class "6th" has been represented by a mix of whole

number and a string of two characters. Such a mix is called

alphanumeric.

3. Student section has been represented by a single character which

is 'J'.

4. Student age has been represented by a whole number which is 13.

5. Student sex has been represented by a single character which is

'F'.

This way, we realized that in our day-to-day life, we deal with different

types of data such as strings, characters, whole numbers (integers), and

decimal numbers (floating point numbers). Similarly, when we write a

computer program to process different types of data, we need to specify

its type clearly; otherwise the computer does not understand how

different operations can be performed on that given data. Different

programming languages use different keywords to specify different data

types. For example, C and Java programming languages use int to specify

integer data, whereas char specifies a character data type.

Subsequent sections will show you how to use different data types in

different situations. For now, let's check the important data types

available in C, Java, and Python and the keywords we will use to specify

those data types.

 ITQ

Question

What must we specify when writing a computer program?

Feedback

Whenever you are to write a computer program to process different

types of data, you need to specify its type clearly; otherwise the

computer does not understand how different operations should be

Study Session 7 Data Types

98

performed on that given data.

7.1.1 C and Java Data Types

C and Java support almost the same set of data types, though Java

supports additional data types. For now, we are taking a few common

data types supported by both the programming languages –

Type Keyword Value range which can be represented by this

data type

Character Char -128 to 127 or 0 to 255

Number int -32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

Small

Number

short -32,768 to 32,767

Long

Number

long -2,147,483,648 to 2,147,483,647

Decimal

Number

float 1.2E-38 to 3.4E+38 till 6 decimal places

These data types are called primitive data types and you can use these

data types to build more complex data types, which are called user-

defined data type, for example a string will be a sequence of characters.

 ITQ

Question

What are called primitive data types?

Feedback

The following are referred to as primitive data types: Character,

Number, Small Number, Long Number, and Decimal Number.

7.1.2 Python Data Types

Python has five standard data types but this programming language does

not make use of any keyword to specify a particular data type, rather

Python is intelligent enough to understand a given data type

automatically.

1. Numbers

2. String

3. List

Study Session 7 Data Types

99

4. Tuple

5. Dictionary

Here, Number specifies all types of numbers including decimal numbers

and string represents a sequence of characters with a length of 1 or more

characters. For now, let's proceed with these two data types and skip List,

Tuple, and Dictionary, which are advanced data types in Python.

7.2 Data Type and Numbers Manipulation
Every programming language provides support for manipulating different

types of numbers such as simple whole integers and floating-point

numbers. C, Java, and Python categorize these numbers in several

categories based on their nature.

Let us go back and check the data types chapter, where we listed down

the core data types related to numbers −

Type Keyword Value range which can be represented by this

data type

Number int -32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

Small

Number

short -32,768 to 32,767

Long

Number

long -2,147,483,648 to 2,147,483,647

Decimal

Number

float 1.2E-38 to 3.4E+38 till 6 decimal places

These data types are called primitive data types and you can use these

data types to build more data types, which are called user-defined data

types.

We have seen various mathematical and logical operations on numbers

during a discussion on operators. So we know how to add numbers,

subtract numbers, divide numbers, etc.

Study Session 7 Data Types

 10
0

 ITQ

Question

What must every programming language provide?

Feedback

Every programming language should provide support for manipulating

different types of numbers such as simple whole integers, and floating

point numbers.

7.2.1 Math Operations on Numbers

The following table lists down various useful built-in mathematical

functions available in C programming language which can be used for

various important mathematical calculations. For example, if you want to

calculate the square root of a number, for example, 2304, then you have a

built-in function available to calculate the square root.

S.N. Function & Purpose

1 double cos(double);

This function takes an angle (as a double) and returns the cosine.

2 double sin(double);

This function takes an angle (as a double) and returns the sine.

3 double tan(double);

This function takes an angle (as a double) and returns the tangent.

4 double log(double);

This function takes a number and returns the natural log of that

number.

5 double pow(double, double);

The first is a number you wish to raise and the second is the power

you wish to raise it to.

6 double hypot(double, double);

If you pass this function the length of two sides of a right triangle,

it will return the length of the hypotenuse.

Study Session 7 Data Types

 101

7 double sqrt(double);

You pass this function a number and it returns its square root.

8 int abs(int);

This function returns the absolute value of an integer that is passed

to it.

9 double fabs(double);

This function returns the absolute value of any decimal number

passed to it.

10 double floor(double);

Finds the integer which is less than or equal to the argument

passed to it.

Following is a simple example to show a few mathematical operations.

To utilize these functions, you need to include the math header file

<math.h> in your program in the same way you included stdio.h −

#include <stdio.h>

#include <math.h>

main() {

 short s;

 int i;

 long l;

 float f;

 double d;

 s = 10;

 i = 1000;

 l = 1000000;

 f = 230.47;

 d = 2.374;

 printf("sin(s): %f\n", sin(s));

 printf("abs(i): %f\n", abs(i));

 printf("floor(f): %f\n", floor(f));

 printf("sqrt(f): %f\n", sqrt(f));

 printf("pow(d, 2): %f\n", pow(d, 2));

}

Study Session 7 Data Types

 10
2

When the above program is executed, it produces the following result −

sin(s): -0.544021

abs(i): -0.544021

floor(f): 230.000000

sqrt(f): 15.181238

pow(d, 2): 5.635876

Besides the above usage, you will use numbers in loop counting, flag

representation, true or false values in C programming.

7.2.2 Numbers in Java

Following is the equivalent program written in Java. Java provides almost

all the numeric data types available in C programming.

You can try to execute the following program to see the output, which is

identical to the result generated by the above C example.

public class DemoJava {

 public static void main(String []args) {

 short s;

 int i;

 long l;

 float f;

 double d;

 s = 10;

 i = 1000;

 l = 1000000L;

 f = 230.47f;

 d = 30949.374;

 System.out.format("s: %d\n", s);

 System.out.format("i: %d\n", i);

 System.out.format("l: %d\n", l);

 System.out.format("f: %f\n", f);

 System.out.format("d: %f\n", d);

 }

}

When the above program is executed, it produces the following result −

s: 10

i: 1000

l: 1000000

Study Session 7 Data Types

 103

f: 230.470001

d: 30949.374000

Java also provides a full range of built-in functions for mathematical

calculation and you can use them in the same way as you did in C

programming.

 ITQ

Question

What additional feature does Java provide?

Feedback

Java also provides a full range of built-in functions for mathematical

calculation.

7.2.3 Numbers in Python

Python is a little different from C and Java; it categorizes numbers in

int,long, float and complex. Here are some examples of numbers in

Python:

Int Long Float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

Following is the equivalent program written in Python −

s = 10

i = 1000

l = 1000000

f = 230.47

Study Session 7 Data Types

 10
4

d = 30949.374

print "s: ", s

print "i: ", i

print "l: ", l

print "f: ", f

print "d: ", d

When the above program is executed, it produces the following result −

s: 10

i: 1000

l: 1000000

f: 230.47

d: 30949.374

Python also provides a full range of built-in functions for mathematical

calculations and you can use them in the same way you have used them

in C programming.

7.3 Data Type and character manipulation
If it was easy to work with numbers in computer programming, it would

be even easier to work with characters. Characters are simple alphabets

like a, b, c, d...., A, B, C, D,....., but with an exception. In computer

programming, any single digit number like 0, 1, 2,....and special

characters like $, %, +, -.... etc., are also treated as characters and to

assign them in a character type variable, you simply need to put them

inside single quotes. For example, the following statement defines a

character type variable ch and we assign a value 'a' to it −

char ch = 'a';

Here, ch is a variable of character type which can hold a character of the

implementation's character set and 'a' is called a character literal or a

character constant. Not only a, b, c,.... but when any number like 1, 2, 3....

or any special character like !, @, #, #, $,.... is kept inside single quotes,

then they will be treated as a character literal and can be assigned to a

variable of character type, so the following is a valid statement −

char ch = '1';

A character data type consumes 8 bits of memory which means you can

store anything in a character whose ASCII value lies in between -127 to

127, so it can hold any of the 256 different values. A character data type

can store any of the characters available on your keyboard including

special characters like !, @, #, #, $, %, ^, &, *, (,), _, +, {, }, etc.

Note that you can keep only a single alphabet or a single digit number

inside single quotes and more than one alphabets or digits are not allowed

inside single quotes. So the following statements are invalid in C

programming −

Study Session 7 Data Types

 10
5

char ch1 = 'ab';

char ch2 = '10';

Given below is a simple example, which shows how to define, assign,

and print characters in C Programming language −

#include <stdio.h>

main() {

 char ch1;

 char ch2;

 char ch3;

 char ch4;

 ch1 = 'a';

 ch2 = '1';

 ch3 = '$';

 ch4 = '+';

 printf("ch1: %c\n", ch1);

 printf("ch2: %c\n", ch2);

 printf("ch3: %c\n", ch3);

 printf("ch4: %c\n", ch4);

}

Here, we used %c to print a character data type. When the above program

is executed, it produces the following result −

ch1: a

ch2: 1

ch3: $

ch4: +

 ITQ

Question

How many bits of memory does a character Data type consumes?

Feedback

A character data type consumes 8 bits of memory, which means you can

store anything in a character whose ASCII value lies in between -127 to

127, so it can hold any of the 256 different values.

7.3.1 Escape Sequences

Many programming languages support a concept called Escape Sequence.

When a character is preceded by a backslash (\), it is called an escape

sequence and it has a special meaning to the compiler. For example, \n in

Study Session 7 Data Types

 10
6

the following statement is a valid character and it is called a new line

character −

char ch = '\n';

Here, character n has been preceded by a backslash (\), it has special

meaning which is a new line but keep in mind that backslash (\) has

special meaning with a few characters only. The following statement will

not convey any meaning in C programming and it will be assumed as an

invalid statement −

char ch = '\1';

The following table lists the escape sequences available in C

programming language –

Escape Sequence Description

\t Inserts a tab in the text at this point.

\b Inserts a backspace in the text at this point.

\n Inserts a newline in the text at this point.

\r Inserts a carriage return in the text at this point.

\f Inserts a form feed in the text at this point.

\' Inserts a single quote character in the text at this

point.

\" Inserts a double quote character in the text at this

point.

\\ Inserts a backslash character in the text at this point.

The following example shows how the compiler interprets an escape

sequence in a print statement −

#include <stdio.h>

main() {

 char ch1;

 char ch2;

 char ch3;

Study Session 7 Data Types

 107

 char ch4;

 ch1 = '\t';

 ch2 = '\n';

 printf("Test for tabspace %c and a newline %c will start here", ch1,

ch2);

}

When the above program is executed, it produces the following result −

Test for tabspace and a newline

 will start here

 ITQ

Question

What concept does many programming support?

Feedback

Many programming languages support a concept called Escape

Sequence

7.3.2 Characters in Java

Following is the equivalent program written in Java. Java handles

character data types much in the same way as we have seen in C

programming. However, Java provides additional support for character

manipulation.

You can try to execute the following program to see the output, which

must be identical to the result generated by the above C example.

public class DemoJava {

 public static void main(String []args) {

 char ch1;

 char ch2;

 char ch3;

 char ch4;

 ch1 = 'a';

 ch2 = '1';

 ch3 = '$';

 ch4 = '+';

 System.out.format("ch1: %c\n", ch1);

 System.out.format("ch2: %c\n", ch2);

 System.out.format("ch3: %c\n", ch3);

 System.out.format("ch4: %c\n", ch4);

Study Session 7 Data Types

 10
8

 }

}

When the above program is executed, it produces the following result −

ch1: a

ch2: 1

ch3: $

ch4: +

Java also supports escape sequence in the same way you have used them

in C programming.

 ITQ

Question

How does Java handle character data types?

Feedback

Java handles character data types much in the same way as we have seen

in C programming. However, Java provides additional support for

character manipulation.

7.3.3 Characters in Python

Python does not support any character data type but all the characters are

treated as string, which is a sequence of characters. We will study strings

in a separate chapter. You do not need to have any special arrangement

while using a single character in Python.

Following is the equivalent program written in Python −

ch1 = 'a';

ch2 = '1';

ch3 = '$';

ch4 = '+';

print "ch1: ", ch1

print "ch2: ", ch2

print "ch3: ", ch3

print "ch4: ", ch4

When the above program is executed, it produces the following result −

ch1: a

ch2: 1

ch3: $

ch4: +

Python supports escape sequences in the same way as you have used

them in C programming.

Study Session 7 Data Types

 10
9

 ITQ

Question

How does Python handle character data types?

Feedback

Python does not support any character data type but all the characters are

treated as string, which is a sequence of characters.

7.4 Data Types and String Manipulation
During our discussion about characters, we learnt that character data type

deals with a single character and you can assign any character from your

keyboard to a character type variable.

Now, let's move a little bit ahead and consider a situation where we need

to store more than one character in a variable. We have seen that C

programming does not allow to store more than one character in a

character type variable. So the following statements are invalid in C

programming and produce syntax errors −

char ch1 = 'ab';

char ch2 = '10';

We have also seen how to use the concept of arrays to store more than

one value of similar data type in a variable. Here is the syntax to store

and print five numbers in an array of int type −

#include <stdio.h>

main() {

 int number[5] = {10, 20, 30, 40, 50};

 int i = 0;

 while(i < 5) {

 printf("number[%d] = %d\n", i, number[i]);

 i = i + 1;

 }

}

When the above code is compiled and executed, it produces the following

result −

number[0] = 10

number[1] = 20

number[2] = 30

number[3] = 40

number[4] = 50

Study Session 7 Data Types

 110

Now, let's define an array of five characters in the same way as we did for

numbers and try to print them −

#include <stdio.h>

main() {

 char ch[5] = {'H', 'e', 'l', 'l', 'o'};

 int i = 0;

 while(i < 5) {

 printf("ch[%d] = %c\n", i, ch[i]);

 i = i + 1;

 }

}

Here, we used %c to print character value. When the above code is

compiled and executed, it produces the following result −

ch[0] = H

ch[1] = e

ch[2] = l

ch[3] = l

ch[4] = o

If you are done with the above example, then I think you understood how

strings work in C programming, because strings in C are represented as

arrays of characters. C programming simplified the assignment and

printing of strings. Let's check the same example once again with a

simplified syntax −

#include <stdio.h>

main() {

 char ch[5] = "Hello";

 int i = 0

 /* Print as a complete string */

 printf("String = %s\n", ch);

 /* Print character by character */

 while(i < 5) {

 printf("ch[%d] = %c\n", i, ch[i]);

 i = i + 1;

 }

}

Here, we used %s to print the full string value using array name ch,

which is actually the beginning of the memory address holding ch

variable as shown below −

Study Session 7 Data Types

 111

Although it's not visible from the above examples, a C program internally

assigns null character '\0' as the last character of every string. It indicates

the end of the string and it means if you want to store a 5 character string

in an array, then you must define an array size of 6 as a good practice,

though C does not complain about it.

If the above code is compiled and executed, it produces the following

result −

String = Hello

ch[0] = H

ch[1] = e

ch[2] = l

ch[3] = l

ch[4] = o

 ITQ

Question

What must you remember with reference to data types and strings

manipulation?

Feedback

You need to remember that character data type deals with a single

character and you can assign any character from your keyboard to a

character type variable.

7.4.1 Basic String Concepts

Based on the above discussion, we can conclude the following important

points about strings in C programming language:

1. Strings in C are represented as arrays of characters.

2. We can constitute a string in C programming by assigning

character by character into an array of characters.

3. We can constitute a string in C programming by assigning a

complete string enclosed in double quote.

4. We can print a string character by character using an array

subscript or a complete string by using an array name without

subscript.

5. The last character of every string is a null character, i.e., ‘\0’.

Study Session 7 Data Types

 112

6. Most of the programming languages provide built-in functions to

manipulate strings, i.e., you can concatenate strings, you can

search from a string, you can extract sub-strings from a string,

etc. For more, you can check our detailed tutorial on C

programming or any other programming language.

7.4.2 Strings in Java

Though, you can use character arrays to store strings, but Java is an

advanced programming language and its designers tried to provide

additional functionality. Java provides strings as a built-in data type like

any other data type. It means you can define strings directly instead of

defining them as array of characters.

Following is the equivalent program written in Java. Java makes use of

the new operator to create string variables as shown in the following

program.

You can try to execute the following program to see the output −

public class DemoJava {

 public static void main(String []args) {

 String str = new String("Hello");

 System.out.println("String = " + str);

 }

}

When the above program is executed, it produces the following result −

String = Hello

7.4.3 Strings in Python

Creating strings in Python is as simple as assigning a string into a Python

variable using single or double quotes.

Given below is a simple program that creates two strings and prints them

using print() function −

var1 = 'Hello World!'

var2 = "Python Programming"

print "var1 = ", var1

print "var2 = ", var2

When the above program is executed, it produces the following result −

var1 = Hello World!

var2 = Python Programming

Python does not support character type; these are treated as strings of

length one, thus also considered a substring.

To access substrings, use the square brackets for slicing along with the

index or indices to obtain your substring. Take a look at the following

code segment −

Study Session 7 Data Types

 113

var1 = 'Hello World!'

var2 = "Python Programming"

print "var1[0]: ", var1[0]

print "var2[1:5]: ", var2[1:5]

When the above code is executed, it produces the following result −

var1[0]: H

var2[1:5]: ytho

 ITQ

Question

Mention two conclusions that we can deduce from the Basic String

Concept

Feedback

From the aforementioned, we can deduce that

1. Strings in C are represented as arrays of characters.

2. We can constitute a string in C programming by assigning

character by character into an array of characters.

Study Session Summary

Summary

In this Study Session, you examined how to deal with data types, and

how to manipulate number data types (integer and float/real). In

addition, you explored character manipulation and string data types

manipulation. You concluded the session by describing data types in

python and gave examples of programs on data type manipulation.

Assessment

Assessment

SAQ 7.1 (tests Learning Outcome 7.1)

1. Discuss Data types?

2. Discuss C and Java Data types?

3. Discuss about Python Data types?

SAQ 7.2 (tests learning outcomes 7.2)

Discuss data types, numbers, character, and string manipulation?

SAQ 7.3 (tests learning outcome 7.3)

List the Basic Strings Concept that you know?

SAQ 7.4 (tests learning outcome 7.4)

1. What is important about Strings in Java?

Study Session 7 Data Types

 114

2. What is important about strings in Python?

Credits

Reading

This content of this lesson is adapted from

http://www.tutorialspoint.com/

Study Session 8 Decision-Making and Loops

 115

Study Session 8

Decision-Making and Loops

Introduction
In this study session, you will discuss the concept of decision-making and

loops. You will start the session by examining conditional statement.

Under which you will examine the if statement. You will end the session

by exploring loops. Here, you will look at the while loop, do-while-loop,

loops in java and loops in python.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

8.1 identify Conditional statements and their usefulness in

programming

8.2 explain and implement loops in programming

Terminology

Loop A programmed sequence of instructions that is repeated
until or while a particular condition is satisfied

Switch A programming construct that takes different actions
depending on the value of an expression

8.1 Conditional Statements
A conditional statement is a mechanism that allows for conditional

execution of instructions based upon the outcome of a conditional

statement, which can either be true or false.

8.1.1 The if Statement

Assuming we want to print a remark about a student based on his secured

marks. Following is the situation:

1. Assume given marks are x for a student:

2. If given marks are more than 95, then

3. Student is brilliant

4. If given marks are less than 30, then

5. Student is poor

6. If given marks are less than 95 and more than 30, then

7. Student is average

Study Session 8 Decision-Making and Loops

 116

Now, the question is how to write a programming code to handle such

situations. Almost all the programming languages provide conditional

statements that work based on the following flow diagram −

Let's write a C program with the help of if conditional statements to

convert the above given situation into a programming code −

#include <stdio.h>

main() {

 int x = 45;

 if(x > 95) {

 printf("Student is brilliant\n");

 }

 if(x < 30) {

 printf("Student is poor\n");

 }

 if(x < 95 && x > 30) {

 printf("Student is average\n");

 }

}

When the above program is executed, it produces the following result −

Student is average

The above program uses if conditional statements. Here, the first if

statement checks whether the given condition i.e., variable x is greater

Study Session 8 Decision-Making and Loops

 117

than 95 or not and if it finds the condition is true, then the conditional

body is entered to execute the given statements. Here we have only one

printf()statement to print a remark about the student.

Similarly, the second if statement works. Finally, the third if statement is

executed, here we have the following two conditions −

1. First condition is x > 95

2. Second condition is x < 30

The computer evaluates both the given conditions and then, the overall

result is combined with the help of the binary operator &&. If the final

result is true, then the conditional statement will be executed, otherwise

no statement will be executed.

8.1.2 if...else statement

An if statement can be followed by an optional else statement, which

executes when the Boolean expression is false. The syntax of an

if...elsestatement in C programming language is −

if(boolean_expression) {

 /* Statement(s) will execute if the boolean expression is true */

}

else {

 /* Statement(s) will execute if the boolean expression is false */

}

The above syntax can be represented in the form of a flow diagram as

shown below –

Study Session 8 Decision-Making and Loops

 118

An if...else statement is useful when we have to take a decision out of two

options. For example, if a student secures more marks than 95, then the

student is brilliant, otherwise no such situation can be coded, as follows −

#include <stdio.h>

main() {

 int x = 45;

 if(x > 95) {

 printf("Student is brilliant\n");

 }else {

 printf("Student is not brilliant\n");

 }

}

When the above program is executed, it produces the following result −

Student is not brilliant

 ITQ

Question

What follows an ‘if..else statement’?

Feedback

An Optional Else Statement

8.1.3 if...else if...else statement

An if statement can be followed by an optional else if...else statement,

which is very useful to test various conditions.

While using if, else if, else statements, there are a few points to keep in

mind:

1. An if can have zero or one else's and it must come after an else if.

2. An if can have zero to many else…if's and they must come

before theelse.

3. Once an else…if succeeds, none of the remaining else…if's or

else'swill be tested.

The syntax of an if...else if...else statement in C programming language is

−

if(boolean_expression 1) {

 /* Executes when the boolean expression 1 is true */

}

else if(boolean_expression 2) {

 /* Executes when the boolean expression 2 is true */

}

Study Session 8 Decision-Making and Loops

 119

else if(boolean_expression 3) {

 /* Executes when the boolean expression 3 is true */

}

else {

 /* Executes when the none of the above condition is true */

}

Now with the help of if...elseif...else statement, the very first program can

be coded as follows −

#include <stdio.h>

main() {

 int x = 45;

 if(x > 95) {

 printf("Student is brilliant\n");

 }else if(x < 30) {

 printf("Student is poor\n");

 }else if(x < 95 && x > 30) {

 printf("Student is average\n");

 }

}

When the above program is executed, it produces the following result −

Student is average

 ITQ

Question

What follows an ‘If’ statement?

Feedback

An if statement can be followed by an optional else if...else statement.

8.1.4 The Switch Statement

A switch statement is an alternative of if statements which allows a

variable to be tested for equality against a list of values. Each value is

called a case, and the variable being switched on is checked for each

switch case. It has the following syntax −

switch(expression){

 case ONE :

 statement(s);

 break;

Study Session 8 Decision-Making and Loops

 12
0

 case TWO:

 statement(s);

 break;

 default :

 statement(s);

}

The expression used in a switch statement must give an integer value,

which will be compared for equality with different cases given. Wherever

an expression value matches with a case value, the body of that case will

be executed and finally, the switch will be terminated using a break

statement. If no break statements are provided, then the computer

continues executing other statements available below to the matched

case. If none of the cases matches, then the default case body is executed.

The above syntax can be represented in the form of a flow diagram as

shown below −

Now, let's consider another example where we want to write the

equivalent English word for a given number. Then, it can be coded as

follows −

#include <stdio.h>

main() {

 int x = 2;

Study Session 8 Decision-Making and Loops

 121

 switch(x){

 case 1 :

 printf("One\n");

 break;

 case 2 :

 printf("Two\n");

 break;

 case 3 :

 printf("Three\n");

 break;

 case 4 :

 printf("Four\n");

 break;

 default :

 printf("None of the above...\n");

 }

}

When the above program is executed, it produces the following result −

Two

 ITQ

Question

What are Switch Statement?

Feedback

A switch statement is an alternative of if statements which allows a

variable to be tested for equality against a list of values.

8.1.5 Decisions in Java

The following is the equivalent program written in Java which too

supports if,if...else, if...elseif...else, and switch statements.

You can try to execute the following program to see the output, which

must be identical to the result generated by the above C example.

public class DemoJava {

 public static void main(String []args) {

 int x = 45;

 if(x > 95) {

 System.out.println("Student is brilliant");

Study Session 8 Decision-Making and Loops

 12
2

 }else if(x < 30) {

 System.out.println("Student is poor");

 }else if(x < 95 && x > 30) {

 System.out.println("Student is average");

 }

 }

}

8.1.6 Decisions in Python

Following is the equivalent program written in Python. Python provides

if,if...else, if...elif...else, and switch statements. Here, you must note that

Python does not make use of curly braces for conditional body, instead it

simply identifies the body of the block using indentation of the

statements.

You can try to execute the following program to see the output −

x = 45

if x > 95:

 print "Student is brilliant"

elif x < 30:

 print "Student is poor"

elif x < 95 and x > 30:

 print "Student is average"

print "The end"

When the above program is executed, it produces the following result −

Student is average

The end

 ITQ

Question

What does Python provide?

Feedback

Python provides if,if...else, if...elif...else, and switch statements

8.2 Loops
Let us consider a situation when you want to print Hello, World! five

times. Here is a simple C program to do the same −

#include <stdio.h>

main() {

Study Session 8 Decision-Making and Loops

 123

 printf("Hello, World!\n");

 printf("Hello, World!\n");

 printf("Hello, World!\n");

 printf("Hello, World!\n");

 printf("Hello, World!\n");

}

When the above program is executed, it produces the following result −

Hello, World!

Hello, World!

Hello, World!

Hello, World!

Hello, World!

It was simple, but again, let's consider another situation when you want to

write Hello, World! a thousand times. We can certainly not write printf()

statements a thousand times. Almost all the programming languages

provide a concept called loop, which helps in executing one or more

statements up to a desired number of times. All high-level programming

languages provide various forms of loops, which can be used to execute

one or more statements repeatedly.

Let's write the above C program with the help of a while loop and later,

we will discuss how this loop works

#include <stdio.h>

main() {

 int i = 0;

 while (i < 5) {

 printf("Hello, World!\n");

 i = i + 1;

 }

}

When the above program is executed, it produces the following result −

Hello, World!

Hello, World!

Hello, World!

Hello, World!

Hello, World!

The above program makes use of a while loop, which is being used to

execute a set of programming statements enclosed within {....}. Here, the

computer first checks whether the given condition, i.e., variable "a" is

Study Session 8 Decision-Making and Loops

 12
4

less than 5 or not and if it finds the condition is true, then the loop body is

entered to execute the given statements. Here, we have the following two

statements in the loop body −

1. First statement is printf() function, which prints Hello World!

2. Second statement is i = i + 1, which is used to increase the value

of variable i

After executing all the statements given in the loop body, the computer

goes back to while(i < 5) and the given condition, (i < 5), is checked

again, and the loop is executed again if the condition holds true. This

process repeats till the given condition remains true which means variable

"a" has a value less than 5.

To conclude, a loop statement allows us to execute a statement or group

of statements multiple times. Given below is the general form of a loop

statement in most of the programming languages −

This lesson has been designed to present programming's basic concepts to

non-programmers, so let's discuss the two most important loops available

in C programming language. Once you are clear about these two loops,

then you can pick-up C programming tutorial or a reference book and

check other loops available in C and the way they work.

 ITQ

Question

How does a loop help a programmer save time?

Feedback

A loop statement allows the programmer to execute a statement or group

of statements multiple times.

Study Session 8 Decision-Making and Loops

 12
5

8.2.1 The while Loop

A while loop available in C Programming language has the following

syntax −

while (condition) {

 /*....while loop body*/

}

The above code can be represented in the form of a flow diagram as

shown below −

The following important points are to be noted about a while loop:

1. A while loop starts with a keyword while followed by a condition

enclosed in ().

2. Further to the while() statement, you will have the body of the

loop enclosed in curly braces {...}.

3. A while loop body can have one or more lines of source code to

be executed repeatedly.

4. If the body of a while loop has just one line, then its optional to

use curly braces {...}.

5. A while loop keeps executing its body till a given condition holds

true. As soon as the condition becomes false, the while loop

comes out and continues executing from the immediate next

statement after the while loop body.

6. A condition is usually a relational statement, which is evaluated

to either true or false. A value equal to zero is treated as false and

any non-zero value works like true.

Study Session 8 Decision-Making and Loops

 12
6

 ITQ

Question

Mention one important to note with respect to While Loops

Feedback

A while loop starts with a keyword while followed by a condition

enclosed in ().

8.2.2 The do...while Loop

A while loop checks a given condition before it executes any statements

given in the body part. C programming provides another form of loop,

called the do...while that allows to execute a loop body before checking a

given condition. It has the following syntax −

do {

 /*....do...while loop body*/

} while (condition);

The above code can be represented in the form of a flow diagram as

shown below −

If you will write the above example using do...while loop, then Hello,

Worldwill produce the same result −

#include <stdio.h>

main() {

 int i = 0;

 do {

 printf("Hello, World!\n");

Study Session 8 Decision-Making and Loops

 127

 i = i + 1;

 }while (i < 5);

}

When the above program is executed, it produces the following result −

Hello, World!

Hello, World!

Hello, World!

Hello, World!

Hello, World!

 ITQ

Question

How does a ‘do…while loop’ function?

Feedback

A do…while loop allows to execute a loop body before checking a given

condition.

8.2.3 The break statement

When the break statement is encountered inside a loop, the loop is

immediately terminated and the program control resumes at the next

statement following the loop. The syntax for a break statement in C is as

follows:

break;

A break statement can be represented in the form of a flow diagram as

shown below –

Study Session 8 Decision-Making and Loops

 12
8

Following is a variant of the above program, but it will come out after

printing Hello World! only three times −

#include <stdio.h>

main() {

 int i = 0;

 do {

 printf("Hello, World!\n");

 i = i + 1;

 if(i == 3) {

 break;

 }

 }while (i < 5);

}

When the above program is executed, it produces the following result −

Hello, World!

Hello, World!

Hello, World!

 ITQ

Question

What do we encounter in a loop?

Feedback

The Break Statement

Study Session 8 Decision-Making and Loops

 12
9

8.2.4 The continue statement

The continue statement in C programming language works somewhat like

the break statement. Instead of forcing termination, continue forces the

next iteration of the loop to take place, skipping any code in between. The

syntax for a continue statement in C is as follows −

continue;

A continue statement can be represented in the form of a flow diagram as

shown below

Following is a variant of the above program, but it will skip printing

when the variable has a value equal to 3 −

#include <stdio.h>

main() {

 int i = 0;

 do {

 if(i == 3) {

 i = i + 1;

 continue;

 }

Study Session 8 Decision-Making and Loops

 130

 printf("Hello, World!\n");

 i = i + 1;

 }while (i < 5);

}

When the above program is executed, it produces the following result −

Hello, World!

Hello, World!

Hello, World!

Hello, World!

8.2.5 Loops in Java

Following is the equivalent program written in Java that too supports

whileand do...while loops. The following program prints Hello, World!

five times as we did in the case of C Programming −

You can try to execute the following program to see the output, which

must be identical to the result generated by the above example.

public class DemoJava {

 public static void main(String []args) {

 int i = 0;

 while (i < 5) {

 System.out.println("Hello, World!");

 i = i + 1;

 }

 }

}

The break and continue statements in Java programming work quite the

same way as they work in C programming.

 ITQ

Question

What is peculiar about the break and continue statements in Java

programming?

Feedback

The break and continue statements in Java programming work quite the

same way as they work in C programming.

Study Session 8 Decision-Making and Loops

 131

8.2.6 Loops in Python

Following is the equivalent program written in Python. Python too

supports while and do...while loops. The following program prints Hello,

World! five times as we did in case of C Programming. Here you must

note that Python does not make use of curly braces for the loop body,

instead it simply identifies the body of the loop using indentation of the

statements.

You can try to execute the following program to see the output. To show

the difference, we have used one more print statement, which will be

executed when the loop will be over.

i = 0

while (i < 5):

 print "Hello, World!"

 i = i + 1

print "Loop ends"

When the above program is executed, it produces the following result −

Hello, World!

Hello, World!

Hello, World!

Hello, World!

Hello, World!

Loop ends

The break and continue statements in Python work quite the same way as

they do in C programming.

 ITQ

Question

What important point should you bear in mind about loops in python?

Feedback

Python does not make use of curly braces for the loop body; instead, it

simply identifies the body of the loop using indentation of the

statements.

Study Session Summary

Summary

In this Study Session, you discussed decision-making and loops, with

example of programs in C, Java and Python. You also examined the

necessary framework for you to use loops in other languages.

Study Session 8 Decision-Making and Loops

 132

Assessment

Assessment

SAQ 8.1 (tests Learning Outcome8.1)

1. What are Conditional Statements?

SAQ 8.2 (tests learning outcome 8.2)

1. Explain and implement loops in programming?

2. What is peculiar about the ‘break’ and ‘continue’ statement in

Java Programming?

Credit

Reading

This content of this lesson is adapted from

http://www.tutorialspoint.com/

Study Session 9 Arrays

 133

Study Session 9

Arrays

Introduction
In this study session, your focus will be on Arrays. You will begin by

explaining what an array is. You will then create, initialize and access

arrays. Thereafter, you will examine arrays in java and python.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

9.1 explain the term arrays

9.2 discuss arrays in java

9.3 describe arrays (lists) in python.

Terminology

Array A data structure that contains a group of elements.

9.1 Understanding Arrays
Consider a situation where we need to store five integer numbers. If we

use programming's simple variable and data type concepts, then we need

five variables of int data type and the program will be as follows −

#include <stdio.h>

main() {

 int number1;

 int number2;

 int number3;

 int number4;

 int number5;

 number1 = 10;

 number2 = 20;

 number3 = 30;

 number4 = 40;

 number5 = 50;

Study Session 9 Arrays

 134

 printf("number1: %d\n", number1);

 printf("number2: %d\n", number2);

 printf("number3: %d\n", number3);

 printf("number4: %d\n", number4);

 printf("number5: %d\n", number5);

}

It was simple, because we had to store just five integer numbers. Now

let's assume we have to store 5000 integer numbers. Are we going to use

5000 variables?

To handle such situations, almost all the programming languages provide

a concept called array. An array is a data structure, which can store a

fixed-size collection of elements of the same data type. An array is used

to store a collection of data, but it is often more useful to think of an array

as a collection of variables of the same type.

Instead of declaring individual variables, such as number1, number2, ...,

number99, you just declare one array variable number of integer type and

use number1[0], number1[1], and ..., number1[99] to represent individual

variables. Here, 0, 1, 2,99 are index associated with var variable and

they are being used to represent individual elements available in the

array.

All arrays consist of contiguous memory locations. The lowest address

corresponds to the first element and the highest address to the last

element.

9.1.1 Creating Arrays

To create an array variable in C, a programmer specifies the type of the

elements and the number of elements to be stored in that array. Given

below is a simple syntax to create an array in C programming:

type arrayName [arraySize];

This is called a single-dimensional array. The array Size must be an

integer constant greater than zero and type can be any valid C data type.

For example, now to declare a 10-element array called number of type

int, use this statement:

int number[10];

Here, number is a variable array, which is sufficient to hold up to 10

integer numbers.

Study Session 9 Arrays

 135

 ITQ

Question

1. What do most programming languages provide?

2. What do all arrays consist of?

Feedback

1. Arrays

2. All arrays consist of contiguous memory locations.

9.1.2 Initializing Arrays

You can initialize an array in C either one by one or using a single

statement as follows:

int number[5] = {10, 20, 30, 40, 50};

The number of values between braces { } cannot be larger than the

number of elements that we declare for the array between square brackets

[].

If you omit the size of the array, an array just big enough to hold the

initialization is created. Therefore, if you write −

int number[] = {10, 20, 30, 40, 50};

You will create exactly the same array as you did in the previous

example. Following is an example to assign a single element of the array

−

number[4] = 50;

The above statement assigns element number 5th in the array with a value

of 50. All arrays have 0 as the index of their first element which is also

called the base index and the last index of an array will be the total size of

the array minus 1. The following image shows the pictorial representation

of the array we discussed above −

9.1.3 Accessing Array Elements

An element is accessed by indexing the array name. This is done by

placing the index of the element within square brackets after the name of

the array. For example −

int var = number[9];

The above statement will take the 10th element from the array and assign

the value to var variable. The following example uses all the above-

mentioned three concepts viz. creation, assignment, and accessing arrays

−

#include <stdio.h>

Study Session 9 Arrays

 136

int main () {

 int number[10]; /* number is an array of 10 integers */

 int i = 0;

 /* Initialize elements of array n to 0 */

 while(i < 10) {

 /* Set element at location i to i + 100 */

 number[i] = i + 100;

 i = i + 1;

 }

 /* Output each array element's value */

 i = 0;

 while(i < 10) {

 printf("number[%d] = %d\n", i, number[i]);

 i = i + 1;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following

result −

number[0] = 100

number[1] = 101

number[2] = 102

number[3] = 103

number[4] = 104

number[5] = 105

number[6] = 106

number[7] = 107

number[8] = 108

number[9] = 109

 ITQ

Question

How do we access an element?

Feedback

Elements are generally accessed by indexing the names of the array.

Study Session 9 Arrays

 137

9.2 Arrays in Java
Following is the equivalent program written in Java. Java supports arrays,

but there is a little difference in the way they are created in Java using the

new operator.

You can try to execute the following program to see the output, which

must be identical to the result generated by the above C example.

public class DemoJava {

 public static void main(String []args) {

 int[] number = new int[10];

 int i = 0;

 while(i < 10) {

 number[i] = i + 100;

 i = i + 1;

 }

 i = 0;

 while(i < 10) {

 System.out.format("number[%d] = %d\n", i, number[i]);

 i = i + 1;

 }

 }

}

When the above program is executed, it produces the following result −

number[0] = 100

number[1] = 101

number[2] = 102

number[3] = 103

number[4] = 104

number[5] = 105

number[6] = 106

number[7] = 107

number[8] = 108

number[9] = 109

Study Session 9 Arrays

 138

 ITQ

Question

Does Java support arrays?

Feedback

Java support arrays though there is a little difference in the way they are

created.

9.3 Arrays (Lists) in Python
Python does not have a concept of Array, instead Python provides

another data structure called list, which provides similar functionality as

arrays in any other language.

Following is the equivalent program written in Python −

Following defines an empty list.

number = []

i = 0

while i < 10:

 # Appending elements in the list

 number.append(i + 100)

 i = i + 1

i = 0

while i < 10:

 # Accessing elements from the list

 print "number[", i, "] = ", number[i]

 i = i + 1

When the above program is executed, it produces the following result −

number[0] = 100

number[1] = 101

number[2] = 102

number[3] = 103

number[4] = 104

number[5] = 105

number[6] = 106

number[7] = 107

number[8] = 108

number[9] = 109

Study Session 9 Arrays

 139

 ITQ

Question

Can arrays be created using the Python programming?

Feedback

Python does not have a concept of Array; instead, Python provides

another data structure called LIST, which provides similar functionality

as arrays in any other language.

Study Session Summary

Summary

You began this session by describing what array means. You also

attempted to create, initialize and access arrays. You concluded the

session by pointing-out arrays in java and python.

Assessment

Assessment

SAQ 9.1 (tests learning outcome 9.1)

1. Explain the term array?

2. How do you initialize and access array elements?

SAQ 9.2 (tests learning outcome 9.2 and 9.3)

Discuss arrays in Java and Python?

Credit

Reading

This content of this lesson is adapted from

http://www.tutorialspoint.com/

Study Session 10 Computer Files

 14
0

Study Session 10

Computer Files

Introduction
In this study session, you will discuss computer files in relation to

programming language. You will also examine the opening, closing,

writing and reading of computer files. You will end the session by

exploring file I/O in java and file I/O in python.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to

10.1 discuss file input/output

10.2 explain operation modes

10.3 examine file I/O in Java

10.4 describe file I/O python

Terminology

File An aggregation of data on a storage device, identified by a
name

10.1 File Input/output
Usually, you create files using text editors such as notepad, MS Word,

MS Excel or MS PowerPoint, etc. However, many times, we need to

create files using computer programs as well. We can modify an existing

file using a computer program. File input means data that is written into a

file and file output means data that is read from a file. Actually, input and

output terms are more related to screen input and output. When we

display a result on the screen, it is called output. Similarly, if we provide

some input to our program from the command prompt, then it is called

input. For now, it is enough to remember that writing into a file is file

input and reading something from a file is file output.

Study Session 10 Computer Files

 141

 ITQ

Question

How else can we create files if we decide not to use computer programs?

Feedback

Files cannot only be created using computer programs. We could also

create files using MS Word, MS PowerPoint, and MS Excel.

10.2 File Operation Modes
Before we start working with any file using a computer program, either

we need to create a new file if it does not exist or open an already

existing file. In either case, we can open a file in the following modes −

1. Read-Only Mode − If you are going to just read an existing file

and you do not want to write any further content in the file, then

you will open the file in read-only mode. Almost all the

programming languages provide syntax to open files in read-only

mode.

2. Write-Only Mode − If you are going to write into either an

existing file or a newly created file but you do not want to read

any written content from that file, then you will open the file in

write-only mode. All the programming languages provide syntax

to open files in write-only mode.

3. Read & Write Mode − If you are going to read as well as write

into the same file, then you will open file in read & write mode.

4. Append Mode − When you open a file for writing, it allows you

to start writing from the beginning of the file; however it will

overwrite existing content, if any. Suppose we don’t want to

overwrite any existing content, then we open the file in append

mode. Append mode is ultimately a write mode, which allows

content to be appended at the end of the file. Almost all the

programming languages provide syntax to open files in append

mode.

In the following sections, we will learn how to open a fresh new file, how

to write into it, and later, how to read and append more content into the

same file.

 ITQ

Question

Which file mode would you select if you were ONLY interested in

writing into either an existing file, or a newly created file?

Feedback

In such a case as described above, you would open the file in a Write-

Only Mode.

Study Session 10 Computer Files

 14
2

10.2.1 Opening Files

You can use the fopen() function to create a new file or to open an

existing file. This call will initialize an object of the type FILE, which

contains all the information necessary to control the stream. Here is the

prototype, i.e., signature of this function call −

FILE *fopen(const char * filename, const char * mode);

Here, filename is string literal, which you will use to name your file and

access mode can have one of the following values −

Mode Description

R Opens an existing text file for reading purpose.

W Opens a text file for writing. If it does not exist, then a new file

is created. Here, your program will start writing content from the

beginning of the file.

A Opens a text file for writing in appending mode. If it does not

exist, then a new file is created. Here, your program will start

appending content in the existing file content.

r+ Opens a text file for reading and writing both.

w+ Opens a text file for both reading and writing. It first truncates

the file to zero length, if it exists; otherwise creates the file if it

does not exist.

a+ Opens a text file for both reading and writing. It creates a file, if

it does not exist. The reading will start from the beginning, but

writing can only be appended.

 ITQ

Question

How would you open a file?

Feedback

Files are often opened using the fopen() function.

Study Session 10 Computer Files

 143

10.2.2 Closing a File

To close a file, use the fclose() function. The prototype of this function is

−

 int fclose(FILE *fp);

The fclose() function returns zero on success, or EOF, special character,

if there is an error in closing the file. This function actually flushes any

data still pending in the buffer to the file, closes the file, and releases any

memory used for the file. The EOF is a constant defined in the header file

stdio.h.

There are various functions provided by C standard library to read and

write a file character by character or in the form of a fixed length string.

Let us see a few of them in the next section.

 ITQ

Question

What is the function for closing a file?

Feedback

int fclose(FILE *fp);

10.2.3 Writing a File

Given below is the simplest function to write individual characters to a

stream −

int fputc(int c, FILE *fp);

The function fputc() writes the character value of the argument c to the

output stream referenced by fp. It returns the written character written on

success, otherwise EOF if there is an error. You can use the following

functions to write a null-terminated string to a stream −

int fputs(const char *s, FILE *fp);

The function fputs() writes the string s into the file referenced by fp. It

returns a non-negative value on success, otherwise EOF is returned in

case of any error. You can also use the function int fprintf(FILE *fp,const

char *format, ...) to write a string into a file. Try the following example −

#include <stdio.h>

main() {

 FILE *fp;

 fp = fopen("/tmp/test.txt", "w+");

 fprintf(fp, "This is testing for fprintf...\n");

 fputs("This is testing for fputs...\n", fp);

 fclose(fp);

Study Session 10 Computer Files

 14
4

}

When the above code is compiled and executed, it creates a new file

test.txtin /tmp directory and writes two lines using two different

functions. Let us read this file in the next section.

 ITQ

Question

What is the key function in writing a file?

Feedback

int fputc(int c, FILE *fp);

10.2.4 Reading a File

Given below is the simplest function to read a text file character by

character −

int fgetc(FILE * fp);

The fgetc() function reads a character from the input file referenced by fp.

The return value is the character read; or in case of any error, it returns

EOF. The following function allows you to read a string from a stream −

char *fgets(char *buf, int n, FILE *fp);

The function fgets() reads up to n - 1 characters from the input stream

referenced by fp. It copies the read string into the buffer buf, appending

anull character to terminate the string.

If this function encounters a newline character '\n' or EOF before they

have read the maximum number of characters, then it returns only the

characters read up to that point including the new line character. You can

also use int fscanf(FILE *fp, const char *format, ...) to read strings from a

file, but it stops reading after encountering the first space character.

#include <stdio.h>

main() {

 FILE *fp;

 char buff[255];

 fp = fopen("/tmp/test.txt", "r");

 fscanf(fp, "%s", buff);

 printf("1 : %s\n", buff);

 fgets(buff, 255, (FILE*)fp);

 printf("2: %s\n", buff);

 fgets(buff, 255, (FILE*)fp);

 printf("3: %s\n", buff);

 fclose(fp);

Study Session 10 Computer Files

 14
5

}When the above code is compiled and executed, it reads the file created

in the previous section and produces the following result −

1 : This 2: is testing for fprintf... 3: This is testing for fputs...

Let's analyze what happened here. First, the fscanf() method reads

Thisbecause after that, it encountered a space. The second call is for

fgets(), which reads the remaining line till it encountered end of line.

Finally, the last call fgets() reads the second line completely.

 ITQ

Question

What is the key function in reading a file?

Feedback

int fgetc(FILE * fp);

10.3 File I/O in Java
Java provides even richer set of functions to handle File I/O. For more on

this topic, we suggest you to check our Java Tutorials.

Here, we will see a simple Java program, which is equivalent to the C

program explained above. This program will open a text file, write a few

text lines into it, and close the file. Finally, the same file is opened and

then read from an already created file. You can try to execute the

following program to see the output −

import java.io.*

public class DemoJava {

 public static void main(String []args) throws IOException {

 File file = new File("/tmp/java.txt");

 // Create a File

 file.createNewFile();

 // Creates a FileWriter Object using file object

 FileWriter writer = new FileWriter(file);

 // Writes the content to the file

 writer.write("This is testing for Java write...\n");

 writer.write("This is second line...\n");

 // Flush the memory and close the file

 writer.flush();

 writer.close();

 // Creates a FileReader Object

Study Session 10 Computer Files

 14
6

 FileReader reader = new FileReader(file);

 char [] a = new char[100];

 // Read file content in the array

 reader.read(a);

 System.out.println(a);

 // Close the file

 reader.close();

 }

}

When the above program is executed, it produces the following result −

This is testing for Java write... This is second line...

10.4 File I/O in Python
The following program shows the same functionality to open a new file,

write some content into it, and finally, read the same file −

Create a new file

fo = open("/tmp/python.txt", "w")

Writes the content to the file

fo.write("This is testing for Python write...\n");

fo.write("This is second line...\n");

Close the file

fo.close()

Open existing file

fo = open("/tmp/python.txt", "r")

Read file content in a variable

str = fo.read(100);

print str

Close opened file

fo.close()

When the above code is executed, it produces the following result −

This is testing for Python write... This is second line...

Study Session 10 Computer Files

 147

 ITQ

Question

What more can we say about file input/output in Java?

Feedback

Java provides even richer set of functions to handle File Input/Output.

Study Session Summary

Summary

In this study session, you discussed computer files in relation to

programming language. You also examine the opening, closing, writing

and reading of computer files. You finally described file I/O in java and

python.

Assessment

Assessment

SAQ 10.1 (tests learning outcome 10.1)

Discuss file Input/Output?

SAQ 10.2 (tests learning outcome 10.2)

1. Explain Operation Modes?

2. How would you open/close a file?

3. How would you write/read a file?

Credit

Reading

This content of this lesson is adapted from

http://www.tutorialspoint.com/

Notes on Self Assessment Questions Computer Files

 14
8

Notes on Self Assessment Questions

SAQ 1.1

1. The essence of programming languages is to allow a programmer

to manipulate numbers and texts (called variables) in different

ways, share them over a network or store them on disks for future

retrieval.

2. The essence of programming languages is to allow a programmer

to manipulate numbers and texts (called variables) in different

ways, share them over a network or store them on disks for

future retrieval.

SAQ 1.2

A computer program is a set of instructions, consisting of sequence of

separate commands or instructions, one after the other. Each step tells the

computer to perform a specific action.

SAQ 1.3

1. The core characteristics of a computer program includes

portability, readability, efficiency, structural, flexibility,

generality, and documentation. Additional features include

simplicity, naturalness, abstraction, compactness, and locality.

2. The core characteristics helps the computer obtain appropriate

instruction set (programs) needed to perform the required task.

The quality of the processing depends upon the given

instructions.

SAQ 1.4

1. A computer programmer, also known as developer, coder, or

software engineer is a person who writes computer software. The

term computer programmer can refer to a specialist in one area of

computer programming or to a generalist who writes code for

many kinds of software. A programmer's primary computer

language is often prefixed to these titles, and those who work in a

Web environment often prefix their titles with Web. As such,

based on computer programming language expertise, we can

name a computer programmers as follows −

i. C Programmer

ii. C++ Programmer

iii. Java Programmer

iv. Python Programmer

v. PHP Programmer

vi. Perl Programmer

vii. Ruby Programmer

2. The function of a computer programmer are:

i. A computer programmer figures out the process of

designing, writing, testing, debugging/troubleshooting and

maintaining the source code of computer programs.

Notes on Self Assessment Questions Computer Files

 14
9

ii. The computer programmer also designs a graphical user

interface (GUI) so that non-technical users can use the

software through easy, point-and-click menu options. The

GUI acts as a translator between the user and the software

code.

iii. A programmer will also use libraries of basic code that can

be modified or customized for a specific application. This

approach yields more reliable and consistent programs and

increases programmers' productivity by eliminating some

routine steps.

iv. The programmer will also be responsible for maintaining

the program’s health. As software design advances, some

programming functions has become automated, and

programmers have begun to assume some of the

responsibilities once performed only by software engineers.

SAQ 2.1

1. The history of programming languages dates back to the 19th

century, when Ada Lovelace (1815 – 1852) wrote a set of notes

after translating the memoir of Italian mathematician Luigi

Menabrea (1809 – 1896) about the Analytical Engine shown

below during a period of nine months between 1842 and 1843. .

The Analytical Engine was an invention of English

mathematician and computer pioneer Charles Babbage (1791-

1871). Some historians have recognized Ada Lovelace’s set of

notes, as the world’s first computer program as it contained a

ground-breaking description of the possibilities of programming

the machine to go beyond number-crunching to “computing”.

2. Her notes on the engine include what is recognized as the first

algorithm intended to be carried out by a machine. Because of

this, she is often regarded as the first computer programmer.

3. 47 years after Ada Lovelace, Herman Hollerith (1860 – 1929)

created what is considered the first computer language when he

realized he could encode information on punch cards.

4. In the 1940s, machine-specific assembly language was probably

the first (vaguely) human-readable programming language.

5. John Mauchly’s Short Code, proposed in 1949, was one of the

first high-level languages ever developed for an electronic

computer.

6. By the 1950s computer engineers realized that assembly

language was too complex and a fallible process to build entire

systems, and so the first modern programming language was

born.

7. In 1957, Backus and his team had created FORTRAN. Fortran

was the first high-level programming language to be put to broad

use.

8. John McCarthy invented lisp in 1958.

9. COBOL was later designed in 1959 by the Conference on Data

Systems Languages (CODASYL).

10. In 1970, Niklaus Wirth developed Pascal.

Notes on Self Assessment Questions Computer Files

 15
0

11. The language C was developed in 1972. The name was based on

an earlier language called B, which is now almost extinct.

12. Bjarne Stroustrup, a Danish computer scientist, created C++. The

motivation for creating a new language originated from

Stroustrup experience in programming for his Ph.D.

13. Primarily Brad Cox and Tom Love in the early 1980s at their

company Stepstone created objective-C in 1983.

14. Larry Wall originally developed Perl in 1987; it was developed

as a general-purpose Unix scripting language to make report

processing easier.

15. Python, a widely used general-purpose, high-level programming

language whose design philosophy emphasizes code readability,

and its syntax allows programmers to express concepts in fewer

lines of code was born in 1991.

16. Ruby, a dynamic, reflective, object-oriented, general-purpose

programming language came about in 1993. Ruby was designed

for programmer productivity and fun, following the principles of

good user interface design.

17. The year 1995 witnessed the evolution of three major modern

languages; Java, PHP and JavaScript.

18. Java is intended to let application developers “write once, run

anywhere” (WORA), meaning that compiled Java code can run

on all platforms that support Java without the need for

recompilation. The language derives much of its syntax from C

and C++.

19. Hypertext PreProcessor, PHP, is a server-side scripting language

designed for web development but also used as a general-purpose

programming language.

20. JavaScript is a high level, dynamic, untyped, and interpreted

programming language. It has been standardized in the

ECMAScript language specification. Alongside HTML and CSS,

it is one of the three essential technologies of World Wide Web

content production; the majority of websites employ it and all

modern web browsers without plug-ins support it.

21. C-sharp, C#, is intended to be a simple, modern, general-purpose,

object-oriented programming language.

22. Born in 2003, Scala is a programming language for general

software applications. Scala has full support for functional

programming and a very strong static type system. This allows

programs written in Scala to be very concise and thus smaller

than other general-purpose programming languages.

23. The Go language, commonly referred to as golang, was born in

2009. It is a programming language developed at Google, and is

recognizably in the tradition of C, but makes many changes to

improve conciseness, simplicity, and safety.

24. Swift was introduced at Apple’s 2014 Worldwide Developers

Conference (WWDC). It is a multi-paradigm, compiled

programming language created by Apple Inc. for iOS, OS X, and

watch OS development. Swift was designed to work with

Apple’s Cocoa and Cocoa Touch frameworks and the large body

of existing Objective-C code written for Apple products. It is also

Notes on Self Assessment Questions Computer Files

 151

intended to be more resilient to erroneous code (“safer”) than

Objective-C, and more concise.

SAQ 2.2

1. According to Simon Raik-Allen, computer languages are

categorized thus:

i. The High-Level Dawning

ii. The C Era

iii. The Age of Java

or

According to Raik-Allen, we have:

i. The Web Dimension

ii. The Corporate Dimension

iii. The Mobile Dimension

iv. The New Age Dimension

2. In approaching this question, your attention is being pointed to

the fact that a thorough mastery of the important languages by

year is highly essential. As a way of helping you, the table has

been brought below to help with a quick check of the important

dates.

Below is a Summary of important programming languages by

year:

1951 – Regional Assembly Language

1970 – Pascal

1993 – Ruby

1952 – Autocode

1972 – C

1994 – CLOS (part of ANSI Common Lisp)

1954 – IPL (forerunner to LISP)

1972 – Prolog

1995 – Ada 95

1955 – FLOW-MATIC (led to COBOL)

1972 – Smalltalk

1995 – Delphi (Object Pascal)

1957 – COMTRAN (precursor to COBOL)

1973 – ML

1995 – Java

1957 – FORTRAN (First compiler)

1975 – Scheme

1995 – JavaScript

Notes on Self Assessment Questions Computer Files

 15
2

1958 – ALGOL 58

1978 – SQL (a query language, later extended)

1995 – PHP

1958 – LISP

1980 – C++ (as C with classes, renamed in 1983)

1996 – WebDNA

1959 – COBOL

1983 – Ada

1997 – Rebol

1959 – FACT (forerunner to COBOL)

1984 – Common Lisp

1999 – D

1959 – RPG

1984 – MATLAB

2000 – ActionScript

1962 – APL

1985 – Eiffel

2000 – C#

1962 – Simula

1986 – Erlang

2001 – Visual Basic .NET

1962 – SNOBOL

1986 – Objective-C

2003 – Groovy

1963 – CPL (forerunner to C)

1987 – Perl

2003 – Scala

1964 – BASIC

1988 – Mathematica

2005 – F#

1964 – PL/I

1988 – Tcl

2007 – Clojure

1966 – JOSS

1989 – FL (Backus)

2009 – Go

Notes on Self Assessment Questions Computer Files

 153

1967 – BCPL (forerunner to C)

1990 – Haskell

2011 – Dart

1968 – Logo

1991 – Python

2012 – Rust

1969 – B (forerunner to C)

1991 – Visual Basic

2014 – Swift

1970 – Forth

1993 – Lua

SAQ 3.1

1. Specifically, the task of defining the problem consists of

identifying what it is that you know (input-given data), and what

it is you want to obtain (output-the result). This vital information

guides you in problem identity and providing a solution to the

identified problem.

2. In carrying out a thorough task, it is expected of you to be able to

plan and outline solutions to the problems you have identified.

First, the problem is divided into several modules or tasks and

assigned to each programmer. Two common ways of planning

the solution to a problem is either to draw a flowchart or write a

pseudocode, or possibly both. Flow chart is a map of what your

program is going to do and how it is going to do it while

Pseudocode permits you to focus on the program logic without

having to be concerned just yet about the precise syntax of a

particular programming language.

SAQ 3.2

The step by step process of coding a program involves:

i. Translation of the logic from the flowchart or pseudocode-or

some other tool-to a programming language.

ii. This is the step where you actually have to sit down at the

computer and type! Coding is a little bit like writing an essay.

iii. To achieve this, you would require a programming language. A

programming language is a set of rules that provides a way of

instructing the computer what operations to perform. Examples

of programming languages include BASIC, COBOL, Pascal, etc.

iv. The correct use of the language is the required first step. Then,

your coded program must be keyed, probably using a terminal or

personal computer, in a form the computer can understand. This

is done using a text editor or a paper for beginners.

Notes on Self Assessment Questions Computer Files

 15
4

v. Finally, before doing the coding, the programmer has to choose a

computer language based on the nature of the problem, the

programming language available on the computer, and the

facilities and limitations of the computer installation.

SAQ 3.3

Compilation turns the program into the instructions made up of 0's and 1's

that the computer can actually follow. This is necessary because the chip

that makes your computer work only understands binary machine code.

SAQ 3.4

Debugging is the process of correcting the mistakes made in the course of

programming. A compiler must have identified these mistakes. This is

important as failure to do so will affect the execution of the program.

SAQ 3.5

The aim of testing is to ensure that what you have written solves the

original problem. This is important as it is possible for you to write a

program correctly without errors but the program would fail in its bid to

solve the problem it has been designed for. That is why we test to ensure

this purpose has not been defeated.

This can be achieved by subjecting the program to carefully work out set

of tests that put it through its paces, and check that it meets the

requirements and specification. Where mistakes are identified, there is a

need to figure out where in the code the mistake is. Once identified, the

problem should be fixed by changing the code and recompiling.

SAQ 3.6

Documentation is a written detailed description of the programming cycle

and facts about the program. Typical program documentation materials

include the origin and nature of the problem, a brief narrative description

of the program, logic tools such as flowcharts and pseudocode, data-

record descriptions, program listings, and testing results. Essentially,

program documentation instructs you on how to interact with a software

or a program.

2. The following are some types of documentation that exist:

 Requirement documentation

 Architecture/Design documentation

 Technical documentation

 End-user documentation

 Marketing documentation

SAQ 4.1

The characteristics of programming languages are:

i. Functionality across languages

Notes on Self Assessment Questions Computer Files

 155

ii. Syntax and structure

iii. Natural lifespan

iv. One creator

v. Written in English and all use the same English keywords and

syntax in their code

SAQ 4.2

One way to classify programming languages is either as low-level

languages or high-level languages. Low-level languages interact directly

with the computer processor or CPU, are capable of performing very

basic commands, and are generally hard to read. By contrast, high-level

languages use natural language so it is easier for people to read and write.

High-level programming languages must be converted to low-level

programming languages using an interpreter or compiler, depending on

the language. Interpreted languages are considered more portable than

compiled languages, while compiled languages execute faster than

interpreted languages.

SAQ 4.3

The classification of programming languages are:

i. Modular Programming language: It is the first programming

language that introduced subprogram concepts and variable

declaration. Modular programming methodology advocates the

breakdown structure approach of a large project into several

smaller and manageable modules. Then each small module is

programmed comfortably and then put together in order to

generate program and hence the answer to the entire problem.

ii. Structured Programming Language: Structured programming

utilizes structures normally used for performing any tasks. These

include the Sequence, Selection, Iteration, and CASE structure.

An example of the structured programming language is Pascal.

iii. Business Oriented Language: An example for the business-

oriented language is COmmon Business Oriented Language

(COBOL). It has a peculiar feature such that COBOL programs

can be easily understood even by non-programmers due to its

self-∙ documenting nature and verbose of the grammar. It is also

an ideal language for processing voluminous data files making it

an excellent language for commercial data processing. Another

example is PROLOG, which stands for PROgramming in LOGic.

It has a core feature making it exclusively for Artificial

Intelligence (AI) and knowledge representation∙ techniques.

iv. Object Oriented Programming (OOP) Language: The aim of

using an object oriented programming language is to handle

complex software design projects in a very easy, simple and

efficient manner. Some of the famous objects oriented

programming languages are: Object Pascal, C++, Smalltalk,

Simula, Eiffel, Java, Ada. A major advantage of C++ is its ability

to support object oriented programming, while retaining the high

Notes on Self Assessment Questions Computer Files

 15
6

level of compactness and speed offered by the C programming

language.

v. Visual Programming Languages: Visual programming is one of

the key points for developing any software product with

multimedia and graphical user interface. Visual effects are one of

the most salient features and characteristics of the modern

software especially on microcomputer systems. Icons, graphics,

animated pictures and texts form the foundation for designing a

visual system. Visual programming systems are computer

systems, which support both visual programming and

visualization. Visual programming means the use of visual

expressions (such as icons, drawings or gestures) in the process

of programming and visualization. In visual programming

languages, objects have logical meaning but not visual image.

Objects are then assigned a visual representation so that it can be

visualized

SAQ 5.1

The problem solving process is a series of steps to be taken to arrive a

logical resolution of the identified problem. These steps have been

divided into phases and they include:

i. Phase 1: Understanding the problem.

ii. Phase 2: Devising a plan.

iii. Phase 3: Carrying out the plan.

iv. Phase 4: Looking back.

SAQ 5.2

An algorithm is a well-defined computational procedure consisting of a

set of instructions, which takes some value or set of values, as input, and

produces some value or set of values, as output. In other words, an

algorithm is a procedure that accepts data; manipulate them following the

prescribed steps, to eventually fill the required unknown with the desired

value(s).

SAQ 5.3

Pseudo-codes uses the structural conventions of a normal programming

language, but is intended for human reading rather than machine reading.

Pseudocode typically omits details that are essential for machine

understanding of the algorithm, such as variable declarations, system-

specific code and some subroutines.

The purpose of using pseudocode is that it is easier for people to

understand than conventional programming language code, and that it is

an efficient and environment-independent description of the key

principles of an algorithm.

SAQ 5.4

Flowcharts are often used as illustrations for algorithms. A flowchart is a

graphical representation of an algorithm, which will describe the

operations (and in what sequence) are required to solve a given problem.

These flowcharts play a vital role in the programming of a problem and

Notes on Self Assessment Questions Computer Files

 157

are quite helpful in understanding the logic of complicated and lengthy

problems

SAQ 6.1

A program environment refers to a set-up such as a base on top of which

programs are created. Thus, it is essential to have to have the required

software setup in order to facilitate the proper execution of this function.

The following are necessary set-ups to start with in programming using

any language.

 A text editor to create computer programs.

 A compiler to compile the programs into binary format.

 An interpreter to execute the programs directly.

SAQ 6.2

The basic syntax of programming refers to codes that written on a

program to generate a specified output. These codes comes in forms of

commands that are then interpreted to carry out the specified outcome. It

is also important to note that if there are any grammatical error (Syntax

errors in computer terminologies), then they must be fixed before

conversion into a binary format.

SAQ 6.3

Reserved word (also known as a keyword) is a word in programming that

cannot be used as an identifier, such as the name of a variable, function,

or label – it is "reserved from use"

SAQ 6.4

An operator in a programming language is a symbol that tells the

compiler or interpreter to perform specific mathematical, relational or

logical operation and produce result.

Logical operators are very important in any programming language as

they help us in taking decisions based on certain conditions. C

programming and Java provide almost identical set of operators and

conditional statements.

SAQ 6.5

Functions are small units of programs used to carry out a specific task.

Kindly note that C programming provides various built-in functions like

main(), printf(), etc., which are used in programs based on the

requirement. A function is a block of organized, reusable code used to

perform a single, related action. Functions provide better modularity for

your application and a high degree of code reusing.

SAQ 6.6

The parts of a function have been described as follows:

1) Return Type

2) Function Name

3) Parameter List

4) Function Body

Notes on Self Assessment Questions Computer Files

 15
8

SAQ 7.1

1. The types of data we deal with on a daily basis include strings,

characters, whole numbers (integers), and decimal numbers

(floating point numbers). Different programming languages use

different keywords to specify different data types. For example,

C and Java programming languages use int to specify integer

data, whereas char specifies a character data type.

2. C and Java support almost the same set of data types. The

common types include Character, Number, Small Number, Long

Number, and Decimal Number.

3. Python has five standard data types. These include Numbers,

String, List, Tuple, and Dictionary. Please note that Number

specifies all types of numbers including decimal numbers and

string represents a sequence of characters with a length of 1 or

more characters.

SAQ 7.2

i. Every programming language provides support for manipulating

different types of numbers such as simple whole integers and

floating point numbers. The major types of data include

Character, Number, Small Number, Long Number, and Decimal

Number. These data types are called primitive data types and you

can use these data types to build more data types, which are

called user-defined data types.

ii. Note that Java provides almost all the numeric data types

available in C programming. Java also provides a full range of

built-in functions for mathematical calculation and you can use

them in the same way as you did in C programming.

iii. Python is a little different from C and Java; it categorizes

numbers in int, long, float and complex. Python also provides a

full range of built-in functions for mathematical calculations and

you can use them in the same way you have used them in C

programming.

iv. Characters are simple alphabets like a, b, c, d...., A, B, C, D... but

with an exception. In computer programming, any single digit

number like 0, 1, 2 ...and special characters like $, %, +, -... etc.,

are also treated as characters and to assign them in a character

type variable, you simply need to put them inside single quotes.

A character data type consumes 8 bits of memory, which means

you can store anything in a character whose ASCII value lies in

between -127 to 127, so it can hold any of the 256 different

values. Note that you can keep only a single alphabet or a single

digit number inside single quotes and more than one alphabets or

digits are not allowed inside single quotes.

v. Escape Sequence refers to when a character is preceded by a

backslash (\) and many programming languages support this

concept. Java handles character data types much in the same way

as we have seen in C programming. However, Java provides

additional support for character manipulation. Java also supports

escape sequence in the same way you have used them in C

programming. Python does not support any character data type

Notes on Self Assessment Questions Computer Files

 15
9

but all the characters are treated as string, which is a sequence of

characters. Python supports escape sequences in the same way as

you have used them in C programming

SAQ 7.3

The basic string concepts include:

 Strings in C are represented as arrays of characters.

 We can constitute a string in C programming by assigning

character by character into an array of characters.

 We can constitute a string in C programming by assigning a

complete string enclosed in double quote.

 We can print a string character by character using an array

subscript or a complete string by using an array name without

subscript.

 The last character of every string is a null character, i.e., ‘\0’.

 Most of the programming languages provide built-in functions

to manipulate strings

SAQ 7.4

1. Java provides strings as a built-in data type like any other data

type. It means you can define strings directly instead of defining

them as array of characters.

2. Creating strings in Python is as simple as assigning a string into a

Python variable using single or double quotes. Python does not

support character type; these are treated as strings of length one,

thus also considered a substring.

SAQ 8.1

1. A conditional statement is a mechanism that allows for

conditional execution of instructions based upon the outcome of a

conditional statement, which can be either true or false. Examples

include:

 The ‘If Statement’

 The ‘If…Else Statement’

 The ‘If…elseif….Else Statement’

 The Switch Statement

SAQ 8.2

1. A Loop is an important tool in programming. Almost all the

programming languages provide this concept (i.e. loop), which

helps in executing one or more statements up to a desired number

of times e.g. rather than repeating the statement ‘hello world’ a

thousand times by writing ‘printf()’ a thousand times, you can

bypass this challenge by simply using a loop. All high-level

programming languages provide various forms of loops, which

can be used to execute one or more statements repeatedly. The

Notes on Self Assessment Questions Computer Files

 16
0

most important types of loop are ‘The While Loop’, and the ‘The

Do…While Loop’

2. The break and continue statements in Java programming work

quite the same way as they work in C programming.

SAQ 9.1

1. An array is a data structure, which can store a fixed-size

collection of elements of the same data type. An array is used to

store a collection of data, but it is often more useful to think of an

array as a collection of variables of the same type. All arrays

consist of contiguous memory locations. The lowest address

corresponds to the first element and the highest address to the last

element.

2. To create an array variable in C, a programmer specifies the type

of the elements and the number of elements to be stored in that

array. Array in C can be initialized either one by one or using a

single statement. You should know that the number of values

between braces { } cannot be larger than the number of elements

that we declare for the array between square brackets []. If you

omit the size of the array, an array just big enough to hold the

initialization is created. An element is accessed by indexing the

array name. This is done by placing the index of the element

within square brackets after the name of the array.

SAQ 9.2

Java support arrays though there is a little difference in the way they are

created

Python does not have a concept of Array, instead Python provides

another data structure called list, which provides similar functionality as

arrays in any other language.

SAQ 10.1

File input means data that is written into a file and file output means data

that is read from a file. When we provide some input to our program from

the command prompt, then it is called input.

SAQ 10.2

1. Operation modes refer to a format through which a file can be

opened. This include the Read-Only Mode, Write-Only Mode,

Read & Write Mode, and the Append Mode.

2. Usually, we use the fopen() function to create a new file or to

open an existing file. This call will initialize an object of the type

FILE, which contains all the information necessary to control the

stream. In closing files, To close a file, we adopt the fclose()

function. The prototype of this function is − int fclose(FILE *fp

);. The fclose() function returns zero on success, or EOF, special

character, if there is an error in closing the file. This function

actually flushes any data still pending in the buffer to the file,

closes the file, and releases any memory used for the file.

Notes on Self Assessment Questions Computer Files

 161

3. In writing a file, we make use of the function int fputc(int c,

FILE *fp);. The function fputc() writes the character value of the

argument c to the output stream referenced by fp. It returns the

written character written on success, otherwise EOF if there is an

error. In reading a file, we make use of the function int fgetc(

FILE * fp);. The fgetc() function reads a character from the input

file referenced by fp. The return value is the character read; or in

case of any error, it returns EOF.

