

 1

CSC 213

Digital Logic Design

By Nancy C. Woods

(PhD)

 2

Table of Content

LECTURE ONE .. 6

BASIC CIRCUIT THEORY .. 6

1.1 THE BASICS .. 6
1.2 KIRCHHOFF’S LAWS .. 9

1.2.1 Kirchhoff's First Law - The Current Law, (KCL) .. 10
1.2.2 Kirchhoff’s Second Law - The Voltage Law, (KVL) ... 10

1.4 THEVENIN’S THEOREM .. 13
1.3 NORTON’S THEOREM... 15

LECTURE TWO .. 20

SEMICONDUCTORS I ... 20

2.1 BASIC PARTS OF A COMPUTER SYSTEM .. 20
2.2 ATOMS AND ELECTRIC CHARGES .. 22
2.3 SEMICONDUCTORS ... 22

2.3.1 Intrinsic Semiconductors .. 22
2.3.2 Extrinsic Semiconductors ... 23

2.3.2.1 N-type Semiconductors ... 24
2.3.2.2 P-Type Semiconductors .. 24

2.4 P-N JUNCTION .. 24
2.5 DIODES ... 27

LECTURE THREE .. 32

SEMICONDUCTORS II .. 32

INTRODUCTION ... 32
3.1 TRANSISTORS .. 32

3.1.1 Bipolar Junction Transistor (BJTs) ... 32
The transistor as a switch .. 35

3.1.2 The Field Effect Transistor (FET).. 38
3.1.2.1 The Junction Field Effect Transistor (JFET) .. 38
3.1.2.2 The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) ... 41

SUMMARY ... 43

LECTURE FOUR ... 46

DIGITAL LOGIC FAMILIES ... 46

INTRODUCTION ... 46
4.1 INTEGRATED CIRCUITS .. 46
4.2 LOGIC FAMILIES .. 48
4.3 CLASSIFICATION OF LOGIC FAMILIES .. 48

4.3.1 Bipolar Logic Families ... 48
4.3.2 Unipolar Logic Families .. 49

4.4 OPERATING CHARACTERISTICS AND PROPERTIES OF LOGIC FAMILIES .. 49
4.4.1 DC Voltage Levels .. 49
4.4.2 Noise Immunity .. 50
4.4.3 Noise Margin ... 51
4.4.4 Propagation Delay .. 51
4.4.5 Fan-out .. 51

4.5 TRANSISTOR-TRANSISTOR LOGIC FAMILY (TTL) ... 52
4.6 COMPLEMENTARY METAL OXIDE SEMICONDUCTOR LOGIC FAMILY (CMOS) .. 54

LECTURE FIVE ... 56

 3

DIGITAL LOGIC GATES ... 56

INTRODUCTION ... 56
OBJECTIVES ... 56
5.1 DIGITAL LOGIC STATES ... 56
5.2 DIGITAL LOGIC GATE ... 57

5.2.1 The Logic "AND" Gate .. 57
5.2.2 The Logic "OR" Gate ... 59
5.2.3 The Logic "NOT" Gate .. 60
5.2.4 The “BUFFER” ... 61
5.2.5 The Logic "NAND" Gate... 61
5.2.6 The Logic "NOR" Gate .. 63
5.2.7 The Exclusive-OR Gate (XOR).. 64
5.2.8 The Exclusive-NOR Gate (XNOR) ... 65

5.3 UNIVERSAL LOGIC GATES .. 66
5.3.1 NAND gate.. 66
5.3.2 NOR Gate ... 67

SUMMARY .. 68

LECTURE SIX .. 70

COMBINATIONAL LOGIC DESIGN ... 70

INTRODUCTION ... 70
OBJECTIVES ... 70
6.1 COMBINATIONAL LOGIC CIRCUITS (CLC) .. 70

6.1.1 Truth Table .. 72
6.1.2 Boolean Expression ... 74
6.1.3 Logic Circuit diagram .. 77

6.2 EVALUATING LOGIC CIRCUIT OUTPUTS ... 80
SUMMARY .. 80

LECTURE SEVEN ... 83

STANDARD FORMS OF EXPRESSION ... 83

INTRODUCTION ... 83
OBJECTIVES ... 83
7.1 PRODUCT TERMS .. 83
7.2 SUM OF PRODUCT ... 84
7.3 FUNDAMENTAL SUM OF PRODUCT EXPRESSION ... 85
7.4 SUM TERMS ... 89
7.5 PRODUCT OF SUM ... 90
7.6 FUNDAMENTAL PRODUCT OF SUM EXPRESSION ... 91
SUMMARY .. 93

LECTURE EIGHT ... 94

SWITCHING FUNCTION MINIMIZATION .. 94

8.1 BOOLEAN ALGEBRA ... 94
8.2 KARNAUGH MAPS (K-MAPS)... 97
8.3 QUINE-MCCLUSKEY METHOD ... 104
SUMMARY .. 107

LECTURE NINE ... 109

STANDARD COMBINATIONAL LOGIC CIRCUITS ... 109

9.1 CLASSIFICATION OF COMBINATIONAL LOGIC .. 109
9.2 COMBINATIONAL LOGIC CIRCUITS FOR ARITHMETIC AND LOGICAL FUNCTIONS .. 110

9.2.1 The Binary Adder.. 110

 4

The Half Adder Circuit.. 111
The Full Adder Circuit .. 111
The 4-bit Binary Ripple Carry Adder .. 112

9.2.2 The 4-bit Binary Subtractor ... 113
9.2.3 The Digital Comparator ... 114

9.3 DATA TRANSMISSION COMBINATIONAL LOGIC CIRCUITS .. 116
9.3.1 The Multiplexer ... 116
9.3.2 The Demultiplexer .. 119
9.3.3 The Digital Encoder ... 120
9.3.4 Binary Decoder .. 122

9.4 CODE CONVERTERS .. 123
9.4.1 BCD to 7-Segment Display Decoder .. 123

SUMMARY .. 125

LECTURE TEN ... 128

SEQUENTIAL LOGIC CIRCUIT BASICS ... 128

INTRODUCTION ... 128
10.1 THE S-R FLIP-FLOP ... 130
10.2 THE JK FLIP-FLOP ... 132
10.3 THE T FLIP-FLOP .. 134
10.4 THE D-TYPE FLIP-FLOP ... 134
10.5 ASYNCHRONOUS AND SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS... 136
SUMMARY .. 137

LECTURE ELEVEN.. 139

REGISTERS AND COUNTERS.. 139

11.1 CLOCKS ... 139
11.2 LEVEL AND EDGE TRIGGERING .. 140
11.3 CLASSIFICATION OF SEQUENTIAL LOGIC CIRCUITS ... 141
11.4 REGISTERS ... 141

11.4.1 Serial-in Parallel-out ... 142
11.4.2 Serial-in-Serial-out ... 143
11.4.3 Parallel-in-Serial-out ... 144
11.4.4 Parallel-in-Parallel-out .. 144

11.5 COUNTERS ... 145
11.5.1 Binary up-counter... 147
11.5.2 Binary down-counter... 149

SUMMARY .. 150

LECTURE TWELVE .. 152

COMPUTER CODES ... 152

12.1 CODES... 152
12.1.1. Weighted Codes ... 153
12.1.2. Non-weighted Codes .. 153
12.1.3. Reflective Codes ... 153
12.1.4. Sequential Codes ... 153
12.1.5. Alphanumeric Codes .. 154
12.1.6. Error Detecting and Correcting Codes ... 154

12.2. BINARY CODES .. 154
12.3 BINARY-CODED DECIMAL (BCD) ... 154
12.4 EXCESS-3 CODE (XS-3) .. 157
12.5 GRAY CODE.. 159
SUMMARY .. 162

 5

LECTURE THIRTEEN .. 163

ERROR DETECTION AND CORRECTION .. 163

13.1 DIGITAL ERROR .. 163
13.2 PARITY BIT .. 164
13.2 HAMMING CODES ... 166
13.3 CYCLIC REDUNDANCY CHECK... 168
SUMMARY .. 169

 6

LECTURE ONE

BASIC CIRCUIT THEORY

Introduction

When studying electronic devices and electrical circuits, some basic subjects such as network

theorems, electrical circuit analysis, electronic devices and circuits, and so on are usually

involved. These network theorems are used to solve electrical circuits and also to calculate

different parameters such as voltage, current, etc., of the circuits. Different types of theorems

include Norton’s theorem, Substitution theorem, Thevenin’s theorem, and so on. In this lecture

we will discuss the theorems that are relevant to our course.

Objectives
At the end of this lecture, you should be able to:

1. Define what an electric circuit is.

2. Identify and name electric circuit symbols.

3. State Norton’s theorem, Thevenin’s theorem, Kirchoff’s laws

4. Analyze linear circuits and apply any of the theorems to reduce the circuit.

Pre Test
1. State Ohm’s law

2. When two or more resistors are connected in series, how do you calculate the

equivalent resistance?

3. What is the resistors are connected in parallel, how do calculate the total resistance?

1.1 The Basics

In any electrical circuit, some components are present in varying combinations and connections.

These components are resistors, capacitors, batteries, connecting wires, etc. A closed loop

through which current can flow is called an electric circuit. Every electric circuit, regardless of

where it is or how large or small it is, has four basic parts: a voltage / energy source (AC or DC),

a conductor, an electrical load (device), and at least one controller (switch). The voltage in a

circuit can be a battery for simple circuit or our electrical sockets in our homes circuit that

supply the voltage from an electric power plant. These voltage sources supply electric current

 7

to many homes and businesses in a community. The conductor in most circuits consists of one

or more wires. The conductor must form a closed loop from the source of voltage and back again

as shown in Figure 1.1. Most circuits have devices such as light bulbs that convert electrical

energy to other forms of energy. In the case of a light bulb, electrical energy is converted to light

and thermal energy.

Figure 1.1: A simple electric circuit

Many circuits have switches to control the flow of current. When the switch is turned on, the

circuit is closed and current can flow through it. When the switch is turned off, the circuit is

open and current cannot flow through it. Different parts of an electric circuit are represented by

standard circuit symbols. For simplicity we note that, 1) An ammeter measures the flow of

current through a circuit; 2) a voltmeter measures the voltage. A resistor is any device that

converts some of the electricity to other forms of energy. For example, a resistor might be a light

bulb or doorbell or a device known as resistor itself. Figure 1.2 shows some of the standard

symbols used when drawing an electric circuit. .

Figure 1.2: Circuit symbols

Activity

Only one of the circuit symbols must be included in every circuit. Which symbol is it?

 8

The standard units of electrical measurement used for the expression of voltage, current and

resistance are the Volt (V), Ampere (A) and Ohm (Ω) respectively. These electrical units of

measurement are based on the International (metric) System, also known as the SI System with

other commonly used electrical units being derived from SI base units. The following table

gives a list of a few of the standard electrical units of measure used in electrical formulas and

component values.

Electrical
Parameter

Measuring
Unit

Symbol Description

Voltage Volt V or E Unit of Electrical Potential
V = I × R

Current Ampere I or i Unit of Electrical Current
I = V ÷ R

Resistance Ohm R or Ω Unit of DC Resistance
 R = V ÷ I

Sometimes in electrical or electronic circuits and systems it is necessary to use multiples or

fractions of standard electrical measuring units when the quantities being measured are very

large or very small. The table below shows the prefixes as well and conversion rate for the

quantities.

Prefix Symbol Multiplier Power of Ten
Terra T 1,000,000,000,000 1012
Giga G 1,000,000,000 109
Mega M 1,000,000 106
kilo k 1,000 103

none none 1 100
centi c 1/100 10-2
milli m 1/1,000 10-3

micro µ 1/1,000,000 10-6
nano n 1/1,000,000,000 10-9
pico p 1/1,000,000,000,000 10-12

From the table above we note that :

We have just studied the basics with respect to electrical circuits. Next we study the rules that

can be applied to analyse a complex electrical circuit so as to make it smaller.

 9

1.2 Kirchhoff’s laws

It is possible to calculate a single equivalent resistance, when two or more resistors are

connected together in either series, parallel or combinations of both. We also know that the

resistors in a network obey Ohm’s law. However, for more complex circuits, we cannot simply

use Ohm's Law alone to find the voltages or currents circulating within the circuit. For these

types of calculations we need some other rules which will allow us to obtain the circuit

equations, one of such rules is Kirchhoff's Laws. The two rules were developed in 1845, by a

German physicist, Gustav Kirchhoff and the pair of rules or laws deal with the conservation of

current and energy within an electrical circuits.

When analysing electrical circuits using Kirchhoff’s Circuit Laws a number of terminologies

are used to describe the parts of the circuit being analysed. With reference to the figure, these

terms are used frequently in circuit analysis so it is important to understand them.

 Circuit - a circuit is a closed loop

conducting path in which an electrical

current flows.

 Path - a line of connecting elements or

sources with no elements or sources

included more than once.

 Node - a node is a junction, connection

or terminal within a circuit were two

or more circuit elements are

connected or joined together giving a connection point between two or more branches.

A node is indicated by a dot.

 Branch - a branch is a single or group of components such as resistors or a source which

are connected between two nodes.

 Loop - a loop is a simple closed path in a circuit in which no circuit element or node is

encountered more than once.

 10

1.2.1 Kirchhoff's First Law - The Current Law, (KCL)

Kirchhoff's Current Law, also known as

Kirchhoff's Junction Law and Kirchhoff's

First Law, defines the way that electrical

current is distributed when it crosses

through a junction - a point where three

or more conductors meet., the law

specifically states that:

The algebraic sum of currents in a network of conductors

meeting at a point is zero. (Assuming that current entering the

junction is taken as positive and current leaving the junction is

taken as negative).

Since current is the flow of electrons through a conductor, it cannot build up at a junction, it

must flow. This allows Kirchhoff's Current Law to be restated as:

At any node (junction) in an electrical circuit, the sum of currents

flowing into that node is exactly equal to the sum of currents

flowing out of that node

This idea by Kirchhoff is known as the Conservation of Charge. From figure 1.3 it can be seen

that there are 3 currents entering the node, I1, I2, I3 (all positive in value) and then 2 currents

leaving the node, I4 and I5 (negative in value). Then this means we can

also rewrite the equation as; I1 + I2 + I3 - I4 - I5 = 0

Activity:
Can you derive the Kirchhoff’s current equation at the point in this
figure?

1.2.2 Kirchhoff’s Second Law - The Voltage Law, (KVL)

It is a law referring to the potential field generated by voltage sources. In this potential field,

regardless of what electronic components are present, the gain or loss in "energy given by the

Figure 1.3: Kirchhoff’s current law

 11

potential field" must be zero when a charge completes a closed loop. Kirchhoff’s Voltage Law

or KVL, states that

"in any closed loop network, the total voltage

around the loop is equal to the sum of all the

voltage drops within the same loop" which is also

equal to zero.

In other words the algebraic sum of all voltages

within the loop must be equal to zero. This idea by Kirchhoff is

known as the Conservation of Energy.

There are some basic steps to follow when using Kirchhoff’s Circuit Laws to analyse an

electrical circuit. These steps are summarised below:

1. Assume all voltage sources and resistances are given. (If not label them V1, V2 ..., R1, R2 etc.)

2. Label each branch with a branch current. (I1, I2, I3 etc.)

3. Find Kirchhoff’s current law equations for each node.

4. Find Kirchhoff’s voltage law equations for each of the independent loops of the circuit.

5. Use linear simultaneous equations as required to find the unknown currents.

Example No1

Using Kirchhoff’s laws, find the current

flowing in the 40Ω Resistor in Figure 1.5.

Note that the 40Ω is RL

Figure 1.5: Example No 1

Figure 1.4: Kirchhoff’s second law

 12

From the terminologies just defined,

we can see that this circuit has 3

branches, 2 nodes (A and B) and 3

loops. Loop 1 and loop 2 are

independent.

Using Kirchhoff’s Current Law, the following equations are given as

 and

Using Kirchhoff’s Voltage Law, KVL the equations are given as;

Since we can rewrite the equations as;

Equation 1 and 2 are two "Simultaneous Equations" that can be solved to give us the value of

both I1 and I2 as follows: . You can crosscheck that!

Since , then the current flowing in resistor R3 is given as:

and the voltage across the resistor R3 is given as: 0.2854 x 40 = 11.42 volts

The negative sign for I1 means that the direction of current flow initially chosen was wrong, but

never the less still valid. In fact, the 20v battery is charging the 10v battery.

Activity
Why don’t you rework the above problem, but taking the direction the opposite way?

You should get the same answer

 13

1.4 Thevenin’s theorem

In the previous section we studied how to solve complex electrical circuits using Kirchhoff’s

circuit laws (KCL and KVL). There is another circuit analysis theorems available to calculate the

currents and voltages at any point in a circuit. In this tutorial we will look at one of the more

common circuit analysis theorems (next to Kirchhoff’s) that has been developed, Thevenin’s

Theorem.

Thevenin’s Theorem states that "Any linear circuit containing several

voltages and resistances can be replaced by just a Single Voltage in series with a

Single Resistor".

In other words, it is possible to simplify any "Linear" circuit, no matter how complex, to an

equivalent circuit with just a single voltage source in series with a resistance connected to a

load as shown in figure 1.6. Thevenin’s Theorem is especially useful in analyzing power or

battery systems and other interconnected circuits where it will have an effect on the adjoining

part of the circuit.

Figure 1.6: Thevenin’s equivalent circuit.

As far as the load resistor RL is concerned, any "one-port" network consisting of resistive circuit

elements and energy sources can be replaced by one single equivalent resistance RS and

equivalent voltage VS, where RS is the source resistance value looking back into the circuit and

VS is the open circuit voltage at the terminals.

The basic procedure for solving a circuit using Thevenin’s Theorem is as follows:

1. Remove the load resistor RL or component concerned.

 14

4Ω
A

RL
15Ω

12Ω 24V

B
Figure 1.7: Example 2 circuit

2. Find RS by shorting all voltage sources or by open circuiting all the current sources.

3. Find the open-circuit VS which appears across the two terminals from where the resistance

was removed.

4. Draw the equivalent circuit with the Load resistor included.

Let us take an example.

Example 2:

Find and draw the Thevenin’s

equivalent circuit for the circuit in

Figure 1.7. Then calculate the current

flowing in the load resistor RL.

Solution

Step 1: Remove load resistor as shown:

Step 2: Find RS by shorting all voltage sources
and looking into the circuit from the point of
view of the load

Step 3: Find VS .

From the circuit shown in step

1, if apply Ohm’s law, we can

find the current flowing in loop

in the circuit. Mind you the

point AB is open and the

resistors are in series in the

loop.

Note that since terminal AB is in parallel with the 12Ω resistor,

they have the same voltage.

4Ω

12Ω

4Ω
A

12Ω 24V

B

 15

Step 4: The Thevenin’s equivalent circuit can then be draw as shown below:

To calculate the current flowing in the Load resistor, note that from the equivalent circuit, the

two resistors are in series now so the same current will run through them.

Activity No 2

Find the Thevenin’s equivalent circuit for the circuit in figure 1.5. Also calculate the current

flowing in the Load resistor 40Ω. You should get

1.3 Norton’s Theorem

This is another useful theorem used to analyse electric circuits like Kirchhoff’s laws and Thevenin’s

theorem. This theorem helps to reduce or simplify any linear electrical complex circuit into a simple

circuit that consists of a single current source and a parallel equivalent resistance connected across the

load. The Norton’s equivalent circuit can be represented as shown in the figure 1.8.

Figure 1.8: Norton’s Theorem

18V

3Ω

A

B

15Ω

 16

Norton’s Theorem may be stated as:

Any Linear Electric Network or complex circuit with Current sources,

Voltage sources and resistances can be replaced by an equivalent circuit

containing of a single independent constant Current Source IS and a

Parallel Resistance RS.

The value of this "constant current" is one which would flow if the two output terminals where

shorted together while the source resistance would be measured looking back into the

terminals as in Thevenin’s theorem just studied.

The simple Steps to analyse an electric circuit using Norton’s Theorem are listed below:

1. Remove the load resistance across the given terminal and place a short-circuit across them.

2. Calculate / measure the Short Circuit Current (IS)

3. Open Current Sources, Short Voltage Sources and Open Load Resistor.

4. Calculate /measure the Open Circuit Resistance (RS) looking into the circuit from the

terminal

5. Redraw the circuit with measured short circuit Current (IS) in Step (2) as current Source

and measured open circuit resistance (RS) in step (4) as a parallel resistance and connect

the load resistor which we had removed in Step (1).

Example

Find the Norton’s equivalent circuit

for the circuit in figure 1.9

Figure 1.9: Norton example circuit

10Ω 8Ω

 8Ω RL

18V

 17

To find the Norton’s equivalent circuit of the

circuit in figure 1.9, we first remove the load

resistor RL as shown in the figure and short

out the voltage source. We can calculate the

Norton equivalent in two steps

1. Find the Equivalent Resistance (RS)

Replace voltage sources by short circuits

and calculate /measure the open circuit

resistance between the two terminals

where the load was removed

2. Calculate IS.

Replace the voltage source and calculate the

short circuit current IS.

If we short the load terminals to determine the

Norton current, IS. The two 8Ω are then in

parallel and this parallel combination are then

in series with 10Ω.

So the total resistance of the circuit with respect

to the source is:-

Since we have RT as 14Ω and we know that

the voltage supplied by the cell is 18V, we can

calculate the current flowing through the 10

Ω, which is the total current

Since the two resistors have the same value,

and following Kirchhoff’s current law, it

means that

10Ω 8Ω

 8Ω 18V

10Ω 8Ω

 8Ω

 18

The Norton equivalent circuit is therefore as shown below:

Summary

1. An electric circuit is a closed loop through which current can flow.

2. All electric circuits must have a voltage source, such as a battery, and a conductor, which

is usually wire. They may have one or more electric devices as well.

3. An electric circuit can be represented by a circuit diagram, which uses standard symbols

to represent the parts of the circuit.

4. Kirchhoff’s current law states that the algebraic sum of currents in a network of

conductors meeting at a point is zero; while Kirchhoff’s voltage law states the algebraic

sum of all voltages within a loop must be equal to zero.

5. Thevenin’s theorem simplifies any "Linear" circuit, no matter how complex, to an

equivalent circuit with just a single voltage source in series with a resistance connected

to the Load.

6. Norton’s Theorem allows a network consisting of linear resistors and sources to be

represented by an equivalent circuit with a single current source in parallel with a single

source resistance connected to the Load in Parallel.

0.9 A 12.44Ω

 19

Post-Test

1. What is an electric circuit?

2. Which two parts must all electric circuits contain?

3. Sketch a simple circuit that includes a battery, switch, and light bulb. Then make a

circuit diagram to represent your circuit,

using standard circuit symbols.

4. Find the Norton’s equivalent circuit for

this figure

5. a. Study the figure below. Note that R is the load.

i. Find and draw the Thévenin’s equivalent circuit for the figure.

ii. Find the current flowing through the equivalent circuit if R = 8Ω.

References

Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

Theraja, B.L. and Theraja, A.K., 2005. A textbook of electrical technology, S. Chand.

https://www.ck12.org/

https://www.hunker.com/

2Ω 3Ω

6Ω
RL
1.5Ω

12V

https://www.ck12.org/
https://www.hunker.com/

 20

LECTURE TWO

SEMICONDUCTORS I

Introduction

In this lecture, you will be introduced to the concept of semiconductors, their characteristics

and uses. You will also get to know the basic building block of most computer systems and

digital devices. However for a start, we will look at the basic parts of computer system as well

as their main functions.

Objectives

At the end of this lecture, you should be able to:

1. Define what a semiconductor is.

2. Differentiate between the two types of semiconductors.

3. Identify and state the uses of some diodes

4. Differentiate between the two main types of transistors.

Pre-Test

1. What is an atom?

2. What is referred to as the valence electron of any atom?

3. What is the maximum number of electrons that can be accommodated in the K-shell, L-

shell, M-shell and N-shell?

4. Which materials are referred to as conductors?

5. Which materials are referred to as insulators?

2.1 Basic Parts of a Computer System

The parts of any computer system or digital device can be broadly classified into the following:

1. Input / Output Devices: These devices enable the user of a system to give commands to

the system as well to receive signals from the system. The results that are stored in the

memory can be transformed into a form that can be understood by users of a computer

system by means of an output device. Some common output devices are monitor, printer,

 21

speaker etc; while some input devices are the keyboard/ keypad, mouse, the touch screen,

etc.

2. Mass storage Device: These devices allow computer to permanently retain large amounts

of data. Common mass storage device include disk drives, flash disk, memory cards, CDs

and tape drives.

3. Central Processing Unit (CPU): The CPU or processor is the brain of the computer. It is

the component that actually executes the instructions issued to any digital device. The CPU

itself has three components, namely, arithmetic logic unit (ALU), control unit (CU), and

memory unit (MU).

Arithmetic Logic Unit:-

Arithmetic logic unit (ALU) performs two types of operations- arithmetic and

logical. Fundamental arithmetic operations include addition, subtraction,

multiplication, and division. Logical operations include comparisons like equal

to, less than, greater than etc.

Control Unit:-

Control unit (CU) coordinates and controls the operations of a computer

system. It controls the activities between memory and ALU and between CPU

and input/output devices.

Memory Unit

A memory unit (MU) is also called primary memory or main memory or RAM

(random access memory). It holds data for processing, instructions for

processing data (program), and information (processed data). The contents of

main memory are lost when the computer is turned off.

Most of the parts mentioned above are made up of smaller components. These components

include: diodes, transistors, capacitors, resistors, inductors. Some of them are referred to as

Semi-conductors but first we will look at the structure of an atom and it’s properties.

 22

2.2 Atoms and electric charges

An atom consists of a nucleus that contains protons, which have a positive (+) electric charge,

surrounded by an equal number of electrons with a negative (-) charge. The nucleus also

contains uncharged neutrons. The charge on a proton is the same as that on an electron. An

atom can lose one or more electrons and when that happens, it becomes positively charged

because it then has more protons than electrons. It then means that if it gains one or more

electrons, it becomes negatively charged.

An electric current is produced

2.3 Semiconductors

You can easily tell if a material is a conductor by touch, though that may be dangerous! Pure

semiconductors are relatively good insulators as compared with metals, though not nearly as

good as a true insulator like glass. Semiconductors are materials whose conductivity lie between

that of a conductor and an insulator. There are two main types of semiconductors: Intrinsic and

Extrinsic semiconductors.

2.3.1 Intrinsic Semiconductors

Group IV elements (Silicon, Germanium, Carbon) are good semiconductors, they have 4 valance

electrons. Figure 2.1(a) shows four electrons in the valence shell of a semiconductor atom

forming covalent bonds to four other atoms. This is a flattened, easier to draw, version. All

electrons of an atom are tied up in four covalent bonds, pairs of shared electrons. Electrons are

not free to move about the crystal lattice. Thus, intrinsic, pure, semiconductors are relatively

good insulators as compared to metals.

 23

Fig 2.1a: A Silicon
Crystal Structure

Fig 2.1b:Dislodged electron
creating a hole.

Thermal energy may occasionally free an electron from the crystal lattice as in Figure 2.1(b).

This electron is free for conduction about the crystal lattice. When the electron was freed, it left

an empty spot with a positive charge in the crystal lattice known as a hole. The free electron and

hole both contribute to conduction about the crystal lattice. That is, the electron is free until it

falls into a hole. This is called recombination. Increasing temperature will increase the number

of electrons and holes, decreasing the resistance. The number of electrons and holes in an

intrinsic semiconductor are equal.

2.3.2 Extrinsic Semiconductors

Pure intrinsic semiconductors, by themselves, are not particularly useful. To make them useful,

their conductivity must be increased. As we saw in the previous section, that silicon forms rigid

crystals because of its four valence electron structure. Figure 2.2a: shows part of a silicon

crystal structure.

Fig 2.2a: A Silicon
Crystal Structure

Fig 2.2b: Silicon Doped
with Phosphorus

Fig 2.2c: Silicon Doped
with Boron

 24

Pure silicon is not a conductor because there are no free electrons. To make silicon conducting,

producers dope pure silicon by adding very small amounts of impurities which are other

elements with fewer outer valence electrons like boron, Aluminum or more outer valence

electrons like phosphorus and arsenic. The addition of a desired impurity to a semiconductor is

known as doping. Doping increases the conductivity of a semiconductor so that it is more

comparable to a metal than an insulator. Depending on the type of doping material used,

extrinsic semiconductors can be sub-divided into two classes: N-type and P-Type.

2.3.2.1 N-type Semiconductors
Phosphorus is a pentavalent element, that is, it has five valence electrons. Pentavalent doping

atom is known as donor atom because it donates or contributes one electron. When silicon is

doped with phosphorus (fig 2.2b) there is an extra electron and a net negative charge. This

type of material is called n-type silicon or N-type semiconductor. The extra electron in the

crystal cell is not strongly attached and can be released by normal thermal energy to carry

current; the conductivity depends on the amount of phosphorus added to the silicon. For N-

type semiconductors, the electron is the majority carrier.

2.3.2.2 P-Type Semiconductors
Boron on the other hand is trivalent, that is, it has only three valance electrons. Trivalent doping

atom is known as acceptor atom because it accepts one electron. When silicon is doped with

boron there is a "hole" where another electron would have been, if the boron atom were silicon;

see fig 2.2c. This gives the crystal cell a net positive charge. This type of material is referred to

as p-type silicon or P-Type semiconductor. It has the ability to pick up an electron easily from a

neighboring cell and therefore these materials are sometimes referred to as acceptors. For P-

type semiconductors, the hole is the majority carrier.

2.4 P-N Junction

Both p-type and n-type silicon will conduct electricity just like any conductor. However, if a

single semiconductor crystal is manufactured with P-type material at one section and N-type

 25

material at the other section as in Figure 2.3, the material has some unique properties. The P-

type material has positive majority charge carriers, holes, which are free to move about the

crystal lattice. The N-type material has mobile negative majority carriers, electrons. The plane

dividing the two zones is called the junction, P-N junction to be precise. Near the junction, the

N-type material electrons diffuse across the junction, combining with holes in P-type material.

The region of the P-type material near the junction takes on a net negative charge because of the

electrons attracted. Since electrons departed the N-type region, it takes on a localized positive

charge. The thin layer of the crystal lattice between these charges has been depleted of majority

carriers, thus, is known as the depletion region.

Figure 2.3: A P-N Junction show the depletion region

That region becomes non-conductive and this separation of charges at the P-N junction

constitutes a potential barrier that must be overcome by an external voltage source to make the

junction conduct. The formation of the junction and potential barrier, happens during the

manufacturing process and the magnitude of the potential barrier is a function of the materials

used in manufacturing. Silicon P-N junctions have a higher potential barrier than germanium

junctions.

Forward Biased junction

What is depicted in figure 2.3 is an unbiased on junction, because there is no external voltage

source connected to the device. If a battery is arranged such that the negative terminal is

connected to the N-type section and thus supplies electrons to the N-type material as shown in

figure 2.4a, electrons diffuse toward the junction. The positive terminal removes electrons from

the P-type semiconductor, creating holes. If the battery voltage is great enough to overcome the

junction potential (0.6V in Si), the N-type electrons and P-holes combine overpowering each

 26

other. This frees up space within the lattice for more carriers to flow toward the junction. Thus,

currents of N-type and P-type majority carriers flow toward the junction, thereby reducing the

width of the depletion region. The recombination at the junction allows a battery current to flow

through the P-N junction, from the p-side to the n-side of the lattice. Such a junction is said to be

forward biased.

Figure 2.4: Biased P-N junction

 27

Reverse Biased junction
If the battery polarity is reversed as in Figure 2.4(b) above, majority carriers are attracted away

from the junction toward the battery terminals. The positive battery terminal attracts N-type

majority carriers, electrons, away from the junction. The negative terminal attracts P-type

majority carriers, holes, away from the junction. This increases the thickness of the non-

conducting depletion region. There is no recombination of majority carriers; thus, no

conduction, current does not flow through the junction. This arrangement of battery polarity is

called reverse bias.

The P-N Junction is fundamental to the operation of diodes, transistors and other solid state

devices.

2.5 Diodes

A diode is a unidirectional semiconductor device. The symbol of a basic diode or pn diode is

depicted in Figure 2.5(b) corresponding to the doped semiconductor bar at figure 2.5(a).

Electrons only flows in one direction, from the n-side to the p-side of the bar, this means that

current flows in only one direction, from the P-side to the N-side. From our physics in

secondary school, we know that the flow of electricity is in the opposite direction of the flow of

electrons within the material.

The opposite end of the diode are called cathode and anode. The cathode of the diode

corresponds to N-type semiconductor while the anode corresponds to the P-type

semiconductor. To remember this relationship, Not-pointing (bar) on the symbol corresponds

to N-type semiconductor. Pointing (arrow) corresponds to P-type.

 28

Figure 2.5(a) Forward biased PN junction, (b) Corresponding diode schematic
symbol.

If a diode is forward biased, current will increase slightly as voltage is increased from 0 V. In the

case of a silicon diode a measurable current flows when the voltage approaches 0.6 V.

Increasing the voltage well beyond 0.7 V may result in high enough current to destroy the diode.

The forward voltage is a characteristic of the semiconductor: 0.6 to 0.7 V for silicon, 0.2 V for

germanium. If the diode is reverse biased, only the leakage current of the intrinsic

semiconductor flows.

There are different types of diodes for different functions. The p-n diode can be used as a

rectifier so some books may call them rectifier diode. We also have the common light emitting

diode used in our torch these days. The table below shows the symbol of some diodes and their

description. You may want to read more about their uses and mode of operation.

Symbol Name Description

Zener Diode
Allows current flow in one direction, but also can flow
in the reverse direction when above breakdown voltage

Schottky Diode Schottky diode is a diode with low voltage drop

Varactor / Varicap Diode Variable capacitance diode

Light Emitting Diode (LED) LED emits light when current flows through

 29

Photodiode
Photodiode allows current flow when exposed to light.
These are used in solar panels.

Summary
 Intrinsic semiconductor materials are poor conductors.

 N-type semiconductor is doped with a pentavalent impurity to create free electrons. Such a

material is conductive. The electron is the majority carrier.

 P-type semiconductor, doped with a trivalent impurity, has an abundance of free holes.

These are positive charge carriers. The P-type material is conductive. The hole is the

majority carrier.

 Most semiconductors are based on elements from group IVA of the periodic table, silicon

being the most prevalent. Germanium is all but obsolete. Carbon (diamond) is being

developed.

 PN junctions are fabricated from a piece of semiconductor with both a P-type and N-type

region in proximity at a junction.

 A forward biased PN junction conducts a current once the barrier voltage is overcome. The

external applied potential forces majority carriers toward the junction where

recombination takes place, allowing current flow.

 A reverse biased PN junction conducts almost no current. The applied reverse bias attracts

majority carriers away from the junction. This increases the thickness of the non-

conducting depletion region.

 Most modern diodes are based on semiconductor p-n junctions

 In a p-n diode, conventional current can flow from the p-doped side (the anode) to the n-

doped side (the cathode), but not in the opposite direction.

Post-Test
1. What is referred to as recombination?

2. What is the effect of doping?

3. What is a semiconductor?

4. Differentiate between intrinsic and extrinsic semiconductors?

5. How can silicon be made a p-type semiconductor?

6. How can silicon be made an n-type semiconductor?

7. The majority carriers in an n-type semiconductor defers from that of a p-type

semiconductor. What are these majority carriers and how are they created?

8. What is a p-n junction?

9. Describe the three ways of biasing a p-n junction as well as the effects.

10. List any three types of diodes and their description.

 30

 31

References
 rowe, ., and Barrie Hayes-Gill. 1998, .Introduction to Digital Electronics.

Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

Heuring, Vincent P., and Harry F. Jordan. 2004. Computer Systems Design and Architecture 2nd
Edition. Prentice Hall.

Hwang, Enoch O. 2005. Digital Logic and Microprocessor Design With VHDL. Brooks/ Cole.

Kuphaldt Tony R., 2009, Lessons In Electric Circuits, Volume III – Fifth Edition Semiconductors

Rocco, Ronald J., and Neal S. Wilmer. 2001. Digital Systems, Principles and Applications, Eighth
Edition. New Jersey: Prentice Hall.

Theraja, B.L. and Theraja, A.K., 2005. A textbook of electrical technology, S. Chand.

 32

LECTURE THREE

SEMICONDUCTORS II

Introduction

Another type of semiconductor device that is very vital to the operation of any computer

system, is the transistor. Microprocessors contain millions of transistors. We will discuss the

usefulness of transistors in subsequent lectures but first for this lecture, we will look at

Transistors.

Objectives
At the end of this lecture you should be able to

1. Explain what a transistor is

2. Differentiate between the two main types of transistors

3. Discuss how a transistor can be used as a switch

4. Identify the symbols of the different types of transistor

Pre test

1. What is your understanding of the operation of a switch?

2. What are the different types of switches you have come across?

3. What happens at a PN junction?

4. What are the majority charge carriers in semiconductos?

3.1 Transistors

We saw in the previous section that the diode is a two terminal device which allows current to

flow in only one direction as soon as the potential difference of the depletion region has been

overcome by an external voltage source. The transistor on the other hand is a three terminal

semiconductor device. There are two main types of transistor used in the computer systems.

These are Bipolar Junction Transistors (BJTs) and Field Effect Transistors (FETs).

3.1.1 Bipolar Junction Transistor (BJTs)

The bipolar junction transistor (BJT) is so called, because its operation involves conduction of

electricity by the two charge carriers; that is electrons and holes in the same crystal. However

some authors say that the name bipolar was given because the basic construction of the device

 33

consists of two PN-junctions as you can see in figure 3.1 (a). The first bipolar transistor was

invented at Bell Labs by William Shockley, Walter Brattain, and John Bardeen so late in 1947

that it was not published until 1948. Brattain fabricated a germanium point contact transistor,

bearing some resemblance to a point contact diode. Within a month, Shockley had a more

practical junction transistor. They were awarded the Nobel Prize in Physics in 1956 for the

transistor.

Figure 3.1: NPN vs PNP transistor

There are two basic types of bipolar transistor construction, NPN and PNP as shown in figure

3.1. The two different types basically describe the physical arrangement of the P-type and N-

type semiconductor materials on the crystal lattice. The principle of operation of the NPN and

PNP transistors, is exactly the same the only difference being in the biasing and the polarity of

the power supply for each type. The arrow in the circuit symbol always shows the direction of

conventional current flow between the base terminal and its emitter terminal, with the

direction of the arrow pointing from the positive P-type region to the negative N-type region,

exactly the same as for the standard diode symbol. For the rest of this lecture, we will describe

the NPN type.

 34

Figure 3.2: The structure of an NPN Bipolar Junction Transistor

As you may have seen from figure 3.1, a BJT is a semiconductor device that has three terminals

and three ‘layers’. The B T shown in Figure 3.2 is an NPN semiconductor device, with an emitter

and a collector at the ends, and a base in between the two. The key to the fabrication of a

bipolar junction transistor is to make the middle layer, the base, as thin as possible without

shorting the outside layers, the emitter and collector. Author’s usually cannot over emphasize

the importance of the thin base region, because this helps with the conduction of current

through the device. Basically, the NPN transistor device must meet the following rules:

1. The collector must be more positive than the emitter

2. The base-emitter and base-collector circuits, behave like diodes. Normally, the base-

emitter diode is conducting and the base-collector diode is reverse biased as shown in

the diode analogy.

3. Any given transistor has maximum values of Collector current (IC), Base current (IB), and

Voltage between the collector and the emitter (VCE) that cannot be exceeded without

costing the exceeder the price of a new transistor.

4. IC is roughly proportional to IB and can be written as

Figure 3.3: NPN transistor and it’s conventional current flow.

The transistor is a "CURRENT" operated device because a large current (IC) flows freely through

the device between the collector and the emitter terminals. However, this only happens when a

small biasing current (IB) is flowing into the base terminal of the transistor thus allowing the

base to act as a sort of current control input. The ratio of these two currents (IC/IB) is called the

 35

DC Current Gain of the device and is given the symbol of Beta, (β). Beta has no units as it is a

ratio. Also, the current gain from the emitter to the collector terminal, IC/IE, is called Alpha, (α),

and is a function of the transistor itself. As the emitter current IE is the product of a very small

base current to a very large collector current the value of this parameter α is very close to one,

and for a typical low-power signal transistor this value ranges from about 0.950 to 0.999.

One of the most important properties of the Bipolar Junction Transistor is that a small base

current can control a much larger collector current. One other point to remember about NPN

Transistors is that the collector voltage, (VC) must be greater than the emitter voltage, (VE) to

allow current to flow through the device between the collector-emitter junction.

Example.

An NPN Transistor has a value of 100. Calculate the base current IB required to switch a
resistive load of 4mA.

 Therefore, β = 100, IC = 4mA and IB = 40µA.

For the example above, assuming the Transistor has a value of 200, find IB and IE

The transistor as a switch
Let us see how a BJT can be used as a switch! We just learnt that the base current of a BJT when

present allows current to flow through the device. That is to say that because a transistor's

collector current is proportionally limited by its base current, it can be used as a sort of current-

controlled switch. A relatively small flow of electrons sent through the base of the transistor has

the ability to exert control over a much larger flow of electrons through the collector. Suppose

 36

we had a lamp that we wanted to turn on and off with a switch, we could draw such a circuit as

extremely simple as in Figure3.4 (a). For the sake of illustration, let's insert a transistor in place

of the switch to show how it can control the flow of electrons through the lamp in Figure 3.4 (b).

Figure 3.4: (a) mechanical switch, (b) NPN transistor switch.

Note that we need to supply a base current for the transistor to function, so to make the circuit

complete, we have to temporarily (we will see why) connect a switch between the base of the

transistor and the collector as shown in figure 3.5.

Figure 3.5: Transistor: (a) cutoff, lamp off; (b) saturated, lamp on.

If the switch is open as in Figure 3.5(a), the base wire of the transistor will be left “floating” (not

connected to anything) and there will be no current through it. In this state, the transistor is

said to be cutoff. If the switch is closed as in Figure3.5 (b), however, electrons will be able to

flow from the emitter through to the base of the transistor, through the switch and up to the left

side of the lamp, back to the positive side of the battery. This base current will enable a much

larger flow of electrons from the emitter through to the collector, thus lighting up the lamp. In

this state of maximum circuit current, the transistor is said to be saturated.

Of course, it may seem pointless to use a transistor in this capacity to control the lamp. After all,

we're still using a switch in the circuit, aren't we? Why not just go back to our original circuit

and use the switch directly to control the lamp current? Two points can be made here, actually.

First is the fact that when used in this manner, the switch contacts need only handle what little

 37

base current is necessary to turn the transistor on; the transistor itself handles most of the

lamp's current. This may be an important advantage if the switch has a low current rating: a

small switch may be used to control a relatively high-current load. More important, the current-

controlling behaviour of the transistor enables us to use something completely different to turn

the lamp on or off. Consider Figure 3.6(a), where a pair of solar cells, that serve as light sensor,

provides 1 V to overcome the 0.7 VBE of the transistor to cause base current to flow, which in

turn controls the lamp. Or Figure 3.6(b) where a thermocouple (many connected in series) is

used to provide the necessary base current to turn the transistor on. Or Figure 3.6(c) where

even a microphone with enough voltage and current (from an amplifier) output could turn the

transistor on, provided its output is rectified from AC to DC so that the emitter-base PN junction

within the transistor will always be forward-biased.

(a)

(b)

(c)

Figure 3.5 (a) Solar cell serves as light sensor. (b) a series of thermocouple
(c) a microphone uses sound

The point should be quite apparent by now: any sufficient source of DC current may be used to

turn the transistor on, and that source of current only need be a fraction of the current needed

to energize the lamp. Please note that the actual power for lighting up the lamp comes from the

battery to the right of the schematic. It is not as though the small signal current from the solar

cell, thermocouple, or microphone is being magically transformed into a greater amount of

power. Rather, those small power sources are simply controlling the battery's power to light up

the lamp by completing the circuit. Now you have seen how a BJT can be used as a switch, we

will look at the second type of transistor, the Field Effect Transistor.

 38

3.1.2 The Field Effect Transistor (FET)

In BJT section, we saw that the output Collector current is determined by the amount of current

flowing into the Base terminal of the device and thereby making the Bipolar Transistor a

CURRENT operated device. The Field Effect Transistor, on the other hand, uses the voltage that

is applied to their input terminal to control the output current, since their operation relies on

the electric field (hence the name field effect) generated by the input voltage. This then makes

the FET a VOLTAGE operated device. There are two basic natures of FET, the N-channel and the

P-channel which simply signify the type of semiconductor material the main body (called a

channel) is made of. The FET is often referred to as a unipolar semiconductor device that has

very similar properties to those of the Bipolar Transistor. "Unipolar" in the sense that the device

depends only on the conduction of Electrons (N-channel) or Holes (P-channel). From their

physical ‘arrangement’, only one PN-junction is present. The FET has one main advantage over

the BJT, in that their input impedance is very high, making them very sensitive to input signals,

but this high sensitivity also means that they can be easily damaged by static electricity. There

are two main types of field effect transistor, the Junction Field Effect Transistor (JFET) and

the Insulated-gate Field Effect Transistor (IGFET), which is more commonly known as the

standard Metal Oxide Semiconductor Field Effect Transistor (MOSFET).

3.1.2.1 The Junction Field Effect Transistor (JFET)

The JFET has a narrow "Channel" of N-type or P-type silicon with electrical connections at either

end commonly called the DRAIN and the SOURCE respectively (See figure 3.6). If the channel is

made of the N-type silicon, then it is an N-channel JFET. Both P-channel and N-channel FET's are

available. Within this channel there is a third connection which is called the GATE and this can

also be a P or N-type material forming a PN-junction. So if the channel is N-type, then the gate

connection is attached to a P-type portion. A comparison can be made between the terminals of

the FET and that of the BJT as shown below:

Bipolar Junction Transistor Field Effect Transistor

 39

Emitter - (E) Source - (S)

Base - (B) Gate - (G)

Collector - (C) Drain - (D)

The semiconductor "Channel" of the JFET is a resistive path through which a voltage Vds causes a

current Id to flow through the channel. We learnt from our last lecture that at an unbiased PN-

junction, there is a depletion region. The FET controls the current flow through them between

the drain and source terminals by controlling the voltage applied to the gate terminal. This is

achieved by controlling the biasing of the PN-junction. In an N-channel JFET this gate voltage is

negative while for a P-channel JFET the gate voltage is positive. We will see why shortly.

(a) (b) (c) (d)

Figure 3.6: Arrangement for an N-channel JFET and corresponding circuit
symbols.

Figure 3.6(a) shows the cross sectional diagram of an N-channel JFET with a P-type region

called the gate diffused into the N-type channel forming a PN-junction and this junction forms

the depletion layer around the gate area. Figure 3.6(b) is a simplified diagram of figure 3.6(a)

which should make it easy for you to understand how FET works. This depletion layer restricts

the current flow through the channel by reducing the effective width of the channel as can be

seen in the areas coloured pink (fig 3.6a) and yellow (fig 3.6b) and thus increasing the overall

resistance of the channel.

When the gate voltage Vg is equal to 0V and a small external voltage (Vds) is applied between the

drain and the source, maximum current (Id) will flow through the channel slightly restricted by

the small depletion layer. If a negative voltage

(Vgs) is now applied to the gate (that is to reverse

Figure 3.7: FET showing pinched
off section

 40

bias the junction) the size of the depletion layer begins to increase reducing the overall effective

area of the channel and thus reducing the current flowing through it. As the gate voltage (Vgs) is

made more negative, the width of the channel decreases until no more current flows between

the drain and the source and the FET is said to be "pinched-off" (See figure 3.7). In this pinch-

off region the gate voltage, Vgs controls the channel current and Vds has little or no effect.

The voltage Vgs applied to the gate controls the current flowing between the drain and the

source terminals. Vgs refers to the voltage applied between the gate and the source while Vds

refers to the voltage applied between the drain and the source. Because a Field Effect

Transistor is a VOLTAGE controlled device, "NO current flows into the gate!" then the source

current (Is) flowing out of the device equals the drain current flowing into it and therefore

(Id = Is).

The are four different regions of operation for a JFET and these are given as:

 Ohmic Region - The depletion layer of the channel is very small and the JFET acts like a variable

resistor.

 Cut-off Region - The gate voltage is sufficient to cause the JFET to act as an open circuit as the

channel resistance is at maximum.

 Saturation or Active Region - The JFET becomes a good conductor and is controlled by the gate-

source voltage, (Vgs) while the drain-source voltage, (Vds) has little or no effect.

 Breakdown Region - The voltage between the drain and source, (Vds) is high enough to causes

the JFET's resistive channel to break down and pass current.

The control of the drain current by a negative gate potential makes the JFET useful as a switch,

just like BJTs. It is essential that the gate voltage is never positive for an N-channel JFET as the

channel current will flow to the gate and not the drain resulting in damage to the JFET. The

principals of operation for a P-channel JFET are the same as for the N-channel JFET, except that

the polarity of the voltages need to be reversed. Next, we study the second type of FET.

 41

3.1.2.2 The Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

The MOSFET is another FET, whose Gate input is electrically insulated from the main current

carrying channel and is therefore called an Insulated Gate Field Effect Transistor. The

MOSFET type of FET has a "Metal Oxide" gate (usually silicon dioxide), which is electrically

insulated from the main semiconductor N-channel or P-channel. So we can form a thin layer of

silicon dioxide along one surface of the channel, and then lay our metal gate region down over

the glass. The result is shown in figure 3.8. Silicon dioxide is simply glass, which is a good

insulator.

With no voltage applied to the gate (G) electrode, the channel really is just a semiconductor

resistance, and will conduct current according to the voltage applied between source (S) and

drain (D). There is no PN-junction, so there is no depletion region. As the gate terminal is

isolated from the main current carrying channel "NO current flows into the gate" and like the

JFET, the MOSFET also acts like a voltage controlled resistor. It can easily accumulate large

static charges resulting in the MOSFET becoming easily damaged unless carefully handled or

protected.

Figure 3.8: The MOSFET standard structure, Symbol and simplified
structure

The MOSFET is specially valuable as electronic switches or to make logic gates because with no

bias they are normally non-conducting and the high gate resistance means that very little

 42

control current is needed. Both the P-channel and the N-channel MOSFET is available in two

basic forms, the Enhancement type and the Depletion type.

Depletion-mode MOSFET

The Depletion-mode MOSFET, which is less common than the enhancement types is normally

switched "ON" without a gate bias voltage but requires a gate to source voltage (Vgs) to switch

the device "OFF". Similar to the JFET types. For N-channel MOSFET's a "Positive" gate voltage

widens the channel, increasing the flow of the drain current and decreasing the drain current as

the gate voltage goes more negative. The opposite is also true for the P-channel types. The

depletion mode MOSFET is equivalent to a "Normally Closed" switch.

Figure 3.9: Depletion-mode MOSFET Symbols

Depletion-mode MOSFET's are constructed similar to their JFET transistor counterparts where

the drain-source channel is inherently conductive with electrons and holes already present

within the N-type or P-type channel. This doping of the channel produces a conducting path of

low resistance between the drain and source with zero gate bias. ". Because this type of FET

operates by creating a depletion region within an existing channel, it is called a depletion-mode

MOSFET

Enhancement-mode MOSFET

The more common Enhancement-mode MOSFET is the reverse of the depletion-mode type.

Here the conducting channel is lightly doped or even undoped making it non-conductive. This

results in the device being normally "OFF" when the gate bias voltage is equal to zero. A drain

current will only flow when a gate voltage (Vgs) is applied to the gate terminal. This positive

 43

voltage creates an electrical field within the channel attracting electrons towards the oxide layer

and thereby reducing the overall resistance of the channel allowing current to flow. Increasing

this positive gate voltage will cause an increase in the drain current, Id through the channel.

Then, the Enhancement-mode device is equivalent to a "Normally Open" switch.

Figure 3.10: Enhancement-mode MOSFET circuit Symbols

Enhancement-mode MOSFET's make excellent electronics switches due to their low "ON"

resistance and extremely high "OFF" resistance and extremely high gate resistance.

Enhancement-mode MOSFET's are used in integrated circuits to produce CMOS type Logic

Gates and power switching circuits as they can be driven by digital logic levels.

The MOSFET has an extremely high input gate resistance and as such a easily damaged by static

electricity if not carefully protected. MOSFET's are ideal for use as electronic switches or

common-source amplifiers as their power consumption is very small. Typical applications for

MOSFET's are in Microprocessors, Memories, Calculators and Logic Gates etc. Also, notice that

the broken lines within the symbol indicates a normally "OFF" Enhancement type showing that

"NO" current can flow through the channel when zero gate voltage is applied and a continuous

line within the symbol indicates a normally "ON" Depletion type showing that current "CAN"

flow through the channel with zero gate voltage.

Summary

http://www.electronics-tutorials.ws/logic/logic_1.html
http://www.electronics-tutorials.ws/logic/logic_1.html

 44

 The Bipolar Junction Transistor (BJT) is a three layer device constructed form two

semiconductor diode junctions joined together, one forward biased and one reverse

biased.

 There are two main types of bipolar junction transistors, the NPN and the PNP transistor.

 Transistors are "Current Operated Devices" where a much smaller Base current causes

a larger Emitter to Collector current, which themselves are nearly equal, to flow.

 A transistor can also be used as an electronic switch to control devices such as lamps,

motors and solenoids etc.

 Transistor switches can be used to switch and control lamps, relays or even motors.

 When using bipolar transistors as switches they must be fully "OFF" or fully "ON".

 Transistors that are fully "ON" (fully conducting) are said to be in their Saturation

region.

 Transistors that are fully "OFF" (fully non-conducting) are said to be in their Cut-off

region.

 In a transistor switch a small Base current controls a much larger Collector current.

 The NPN transistor requires the Base to be more positive than the Emitter while the PNP

type requires that the Emitter is more positive than the Base.

 Field Effect Transistors, or FET's are "Voltage Operated Devices" and can be divided

into two main types: Junction-gate devices called JFET's and Insulated-gate devices called

IGFET´s or more commonly known as MOSFET's.

 Insulated-gate devices can also be sub-divided into Enhancement types and Depletion

types. All forms are available in both N-channel and P-channel versions.

 FET's have very high input resistances so very little or no current (MOSFET types) flows

into the input terminal making them ideal for use as electronic switches.

 45

 The input impedance of the MOSFET is even higher than that of the JFET due to the

insulating oxide layer and therefore static electricity can easily damage MOSFET devices

so care needs to be taken when handling them.

 FET's have very large current gain compared to junction transistors.

 They can be used as ideal switches due to their very high channel "OFF" resistance, low

"ON" resistance.

Post-Test

1. Why are BJTs referred to as current operated devices?

2. Draw a comparison between the terminals of the BJT and the FET.

3. Why are FETs said to be voltage operated devices?

4. Draw a tree-like diagram of the transistor family.

5. Why do you think the enhancement mode MOSFET is preferred to the depletion

mode MOSFET with respect to electronic switches?

6. When is a BJT said to be saturated?

7. Can you recall the different circuit symbols of all the transistors studied in this

lecture?

References
 rowe, ., and Barrie Hayes-Gill. 1998, .Introduction to Digital Electronics.

Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

Heuring, Vincent P., and Harry F. Jordan. 2004. Computer Systems Design and Architecture 2nd
Edition. Prentice Hall.

Hwang, Enoch O. 2005. Digital Logic and Microprocessor Design With VHDL. Brooks/ Cole.

Kuphaldt Tony R., 2009, Lessons In Electric Circuits, Volume III – Fifth Edition Semiconductors

Rocco, Ronald J., and Neal S. Wilmer. 2001. Digital Systems, Principles and Applications, Eighth
Edition. New Jersey: Prentice Hall.

Theraja, B.L. and Theraja, A.K., 2005. A textbook of electrical technology, S. Chand.

 46

LECTURE FOUR

DIGITAL LOGIC FAMILIES

Introduction

In the previous lecture, we studied what transistors are and how they can be used as electronic

switches. The main purpose of transistor switches is to enable researchers control electronic

circuits using small devices. By controlling the circuits, logical decisions are performed by the

circuits. In this lecture, we will study the characteristics of integrated circuits which are in turn

built using the two main types of transistors discussed in the previous chapter.

Objectives

At the end of this lecture, you should be able to:

1. Recall and compare the properties of TTL and CMOS integrated circuits

2. Define the terms: Fan out, propagation delay

3. Specify the different logic levels for the logic families

4. Define what an integrated circuit is as well as their groups.

Pre-Test

1. What is a transistor and how is it used?

2. List the two main types of transistors?

4.1 Integrated Circuits

An integrated circuit (IC) is a small semiconductor-based electronic device consisting of

fabricated transistors, resistors and capacitors in varying numbers. Integrated circuits are the

building blocks of most electronic devices and equipment. An integrated circuit, also known as a

chip or microchip, can function as an amplifier, oscillator, timer, counter, computer memory, or

microprocessor.

 47

Integrated Circuits can be grouped together into families according to the number of transistors

or "gates" that they contain. As we will see in the next lecture, a simple AND gate my contain

only a few individual transistors, were as a more complex microprocessor may contain many

thousands of individual transistor gates. Integrated circuits are categorized according to the

number of logic gates or the complexity of the circuits within a single chip with the general

classification for the number of individual gates given as:

Classification of Integrated Circuits

 Small Scale Integration or (SSI) - Contain up to 10 transistors or a few gates within a

single package such as AND, OR, NOT gates that we will study in the next lecture.

 Medium Scale Integration or (MSI) - between 10 and 100 transistors within a single

package and perform digital operations such as adders, decoders, counters, flip-flops

and multiplexers.

 Large Scale Integration or (LSI) - between 100 and 1,000 transistors or hundreds of

gates and perform specific digital operations such as I/O chips, memory, arithmetic and

logic units.

 Very-Large Scale Integration or (VLSI) - between 1,000 and 10,000 transistors or

thousands of gates and perform computational operations such as processors, large

memory arrays and programmable logic devices.

 Super-Large Scale Integration or (SLSI) - between 10,000 and 100,000 transistors

within a single package and perform computational operations such as microprocessor

chips, micro-controllers and calculators.

 Ultra-Large Scale Integration or (ULSI) – these contain more than 1 million transistors

and are used in computers CPUs and other complex devices.

 Giant Scale Integration (GSI): contain much more than 2000000 components per chip.

 48

While the "ultra large scale" ULSI classification is less well used, another level of integration

which represents the complexity of the Integrated Circuit is known as the System-on-Chip or

(SOC) for short. Here the individual components such as the microprocessor, memory,

peripherals, I/O logic etc., are all produced on a single piece of silicon and which represents a

whole electronic system within one single chip, literally putting the word "integrated" into

integrated circuit. These chips are generally used in mobile phones, digital cameras, micro-

controllers and robotic applications to mention a few, and which can contain up to 100 million

individual silicon-transistor gates within one single package.

In Digital Designs, our primary aim is to create an Integrated Circuit (IC). A Circuit

configuration or arrangement of the circuit elements in a special manner will result in a

particular Logic Family which we will discuss next.

4.2 Logic Families

A logic family is a collection of different IC chips that have similar input, output and internal

circuit characteristics i.e. group of compatible ICs with same logic levels and supply voltages but

perform different logic functions.

4.3 Classification of Logic Families

Logic families are mainly classified as two types namely the Bipolar logic family and the

Unipolar logic family. From our previous lecture, I guess you have an idea what these mean.

However we will still study them next.

4.3.1 Bipolar Logic Families

This logic family uses mainly bipolar devices like diodes, transistors as active elements, in

addition to passive elements like resistors and capacitors. They include:- Transistor-Transistor

 49

Logic (TTL), Resistor-Transistor Logic (RTL), Direct Coupled Transistor Logic (DCTL), Diode

Transistor Logic (DTL), High Threshold Logic(HTL), Integrated Injection Logic (IIL or I2L),

Schottky TTL, Emitter Coupled Logic (ECL). These are sub classified as saturated bipolar logic

family and unsaturated bipolar logic family. If you would like to know more, then read further.

4.3.2 Unipolar Logic Families

These mainly uses Unipolar devices like MOSFETs as active elements in addition to passive

elements like resistors and capacitors. These logic families have the advantages of high speed

and lower power consumption than Bipolar families. These are classified as P-Channel MOS

Logic Family (PMOS), N-Channel MOS Logic Family (NMOS) and Complementary Metal Oxide

Semiconductor Logic Family (CMOS).

Although there are many ways of making ICs and several technologies are available, as

discussed above, to the manufacturer, two major ‘families’ of general-purpose logic ICs remain

the most important. The TTL family and the CMOS family (CMOS is pronounced ‘sea-moss’).

Both families include a very large number of different devices: gates, flip-flops, counters,

registers and many other ‘building-block’ elements. For the rest of this lecture, we will discuss

the TTLs and the CMOS, but first we will look at the basic operating characteristics and

parameters of logic families.

4.4 Operating Characteristics and Properties of Logic Families

When studying logic families, it is important to get familiar with their basic operational

properties. These properties specify how each logic family operates. For the purpose of this

lecture, we will study the following main characteristics of Logic families: Voltage level, Fan-in,

Fan-out, Noise Immunity, Noise margin, Power Dissipation, Propagation delay.

4.4.1 DC Voltage Levels

The voltage levels allowed for any logic family are described here, with reference to Figure 4.1

and Figure 4.2. These values differ for the different logic families. First we define the terms and

 50

later we specify the values for the two main logic families we will discuss. Figure 4.1 shows the

range of the allowable input voltage levels. Values outside the given range are not allowed.

Therefore, for proper operation the input voltage levels to a logic must be kept outside the

indeterminate range. The terms are:

VIH(max) – is the maximum voltage required at an input to be recognized
as a logic level “1”.

VIH(min) –is the minimum voltage required at an input to be recognized as
a logic level “1”.

VIL(max) – is the maximum voltage required at an input that will still be
recognized as a logic level “0”.

VIL(min) is the minimum voltage required at an input that will be
recognized as a logic level “0”.

Figure 4.1: Input
Voltage level

The input voltage level values differ from the output voltage levels shown in figure 4.2 which are

defined as:

VOH(max) –This is the maximum voltage level at an output in the logical “1”
state under defined load conditions. That is the minimum value of output
recognized as a ‘logic 1’

VOH(min) – is the minimum value of output recognized as a ‘logic 1’

VOL(max) – is the maximum voltage level at an output in the logical “0” state

under defined load conditions.

VOL(min) – is the minimum voltage level at an output in the logical “0” state

Figure 4.2: Output

Voltage level

4.4.2 Noise Immunity

Noise is present in all real systems. Noise adds random fluctuations to voltages representing

logic levels. Noise Immunity is the maximum noise that a circuit can withstand without affecting

the output. It refers to the circuit’s ability to tolerate noise without causing a false change in its

output voltage. The noise voltage is usually produced by stray electric and magnetic fields on

the connecting wires in the circuit. Sometimes, too much noise voltage can cause the voltage at

the input to drop below VIH(min) or rise above VIL(max).

 51

4.4.3 Noise Margin

The noise margin of a logic family is a quantitative measure of the circuit’s noise immunity (see

figure 4.3). It is expressed in volts and there are usually two values of noise margin specified for

a given family.

1. The high level noise margin

2. The low level noise margin

Figure 4.3: Noise Margin

4.4.4 Propagation Delay

The propagation delay of a logic family is the amount of time that it takes for a change in input

signal to produce a change in output signal. That is, the propagation delay of a gate is basically

the time interval between application of input signal and occurrence of output signal. It is an

important characteristic because it limits the speed at which the logic family operates.

4.4.5 Fan-out

The fan–in of any logic family determines the number of

inputs the logic gate can handle, however, a more important

characteristic of a logic family is the Fan-out. The Fan-out of

a logic family is the maximum number of logic inputs (of the

same logic family) that an output can drive reliably. It

determines the number of circuits that a gate can drive and it

is also known as the loading factor. (see figure 4.4).
Figure 4.4: Logic Family

Loading Factor

 52

There are other characteristics of logic families, but the one discussed above are the very

important ones to note. Others include, power dissipation, power consumption, packing

density, etc. Next we are going to look at the values for the two main logic families we will be

discussing for the purpose of this class. These are the TTLs and CMOS.

4.5 Transistor-Transistor Logic Family (TTL)

There are a large variety of logic gate types in the TTL logic family and these can be identified by

their 7400 series code such as 74Lxx, 74LSxx, 74ALSxx, 74HCxx, 74HCTxx. The TTL integrated

circuits use NPN (or PNP) type BJTs for input and output circuitry, but the CMOS family are

more common. The TTL logic system uses "Positive logic", in which a logic level "0" or "LOW" is

represented by a zero voltage, 0v or ground and a logic level "1" or "HIGH" is represented by a

higher voltage such as +5 volts, with the switching from one voltage level to the other, from

either a logic level "0" to a "1" or a "1" to a "0" being made as quickly as possible to prevent any

faulty operation of the logic circuit. In standard TTL IC's the pre-defined voltage range for the

input and output voltage levels which define exactly what is a logic "1" level and what is a logic

"0" level are shown in figure 4.5.

TTL Input & Output Voltage Levels

Figure 4.5: TTL input/ output Voltage levels

 53

As shown in figure 4.5, when using a standard +5 volt supply any TTL voltage input between

2.0v and 5v is considered to be a logic "1" or "HIGH" while any voltage input below 0.8v is

recognized as a logic "0" or "LOW". The voltage region in between these two voltage levels

either as an input or as an output is called the Indeterminate Region and is unacceptable.

Operating within this region may cause the logic gate to produce a false output.

In addition to the voltage level characteristic discussed above, TTL I ’s require a stabilized 5V

±0.25V d.c. power supply. The current required is in Milliamperes while the input impedance is

low. The high level and low level noise margin for TTL is 0.4V. The fan-out for TTLs, range

between 10 and 40 depending on the sub-family. Table 4.1 shows this as well as other

characteristics of the various sub-families.

Table 4.1: Characteristics of TTL sub-family

One of the main disadvantages of the TTL logic series is that the gates are based on bipolar

transistor logic technology and as transistors are current operated devices, they consume large

amounts of power from a fixed +5 volt power supply. Also, TTL bipolar transistor gates have a

limited operating speed when switching from an "OFF" state to an "ON" state and vice-versa

called "propagation delay". To overcome these limitations complementary MOS called "CMOS"

logic gates using "Field Effect Transistors" or FET's were developed.

 54

4.6 Complementary Metal Oxide Semiconductor Logic Family (CMOS)

 MOS integrated circuits are more common than the TTL I ’s. The CMOS ICs use FET's for both

their input and output circuitry. The CMOS logic family uses a different level of voltages

compared to the TTL types with a logic "1" level operating between 3.0 and 18 volts and a logic

"0" level below 1.5 volts. Figure 4.6 shows the acceptable voltage levels for the CMOS family. As

shown in figure 4.6, any CMOS voltage input between 3.5 V and 5V is considered to be a logic "1"

or "HIGH" while any voltage input below 1.5 V is recognized as a logic "0" or "LOW". The voltage

region in between these two voltage levels either as an input or as an output is called the

Indeterminate Region and is unacceptable. As you can see from the figure, the output voltage

levels, for CMOS logic families is very close to both margins. That is, an output logic level 1

ranges from 4.9 V to 5 V, while a logic level ‘0’ is from 0 V to 0.1 V.

In addition to the voltage level characteristic, MOS I ’s will work on any unstabilized d.c.

voltage between 3 V and 15 V power supply.. The input impedance of CMOS family is very high

because of the FETs, this however makes the current required to be in Microamperes because

the FETs are voltage operated devices. The high level and low level noise margin for CMOS is

1.45 V while their fan-out is 50.

Figure 4.6: CMOS family input/ output voltage levels

 55

Summary
To summarize what we have learned in this lecture, let us consider the table below that shows a

comparison the two main logic families discussed in the lecture.

Post-Test
1. Define the terms: Propagation delay, Fan-out, Noise immunity.

2. How are integrated circuits categorized?

3. Differentiate between the TTL logic family and the CMOS logic family.

References
Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

Hwang, Enoch O. 2005. Digital Logic and Microprocessor Design With VHDL. Brooks/ Cole.

Theraja, B.L. and Theraja, A.K., 2005. A textbook of electrical technology, S. Chand.

Watson J. (1990) Logic families. In: Mastering Electronics. Macmillan Master Series. Palgrave,

London
www.electronics-tutorials.ws/logic/logic_8.html

 56

LECTURE FIVE

DIGITAL LOGIC GATES

Introduction

Digital electronics is concerned with two-state, switching-type circuits or devices. Their outputs

and inputs involve only two levels of voltage referred to as high (logic level ‘1’) and low (logic

level ‘0’). In the fourth lecture, we looked at the two main logic families in use today for

building integrated circuits as well as their characteristics that represent the two-state logic

levels. In this chapter we will study digital logic gates which are composed of transistors.

Objectives

At the end of this lecture, you should be able to:

1. Recall and draw the logic symbols for the AND, OR, NAND, NOR, ExOR, ExNOR, NOT and

BUF logic gates

2. Draw other logic gates using only the NAND or NOR logic gates

3. Recall the truth table for all the logic gates.

Pre-Test
1. When transistors are used as switches, what it their mode of operation?

2. What voltage ranges are regarded as logic ‘1’

3. What voltage ranges are regarded as logic ‘0’

5.1 Digital Logic States

As written in the introduction, in digital logic design only two voltage levels or states are

allowed and these states are generally referred to as Logic "1" and Logic "0", High and Low, True

and False and which are represented in Boolean Algebra and Truth Tables by the binary digits

of "1" and "0" respectively. A good example of a digital signal is a simple light as it is either "ON"

or "OFF" but not both at the same time.

 57

5.2 Digital Logic Gate

A Digital Logic Gate is an electronic device that makes logical decisions based on the different

combinations of digital signals present on its inputs. The Digital Logic Gate is the basic building

block from which all digital electronic circuits and microprocessor based systems are

constructed from. Basic digital logic gates perform logical operations of AND, OR and NOT on

binary numbers. A digital logic gate may have more than one input but only has one digital

output. Standard commercially available digital logic gates are available in two basic families,

TTL such as the 7400 series, and CMOS which is the 4000 series of chips. When studying logic

gates, it is necessary to specify three things about the gate. (1) the logic symbol, which is a

diagram of how that gate is represented in a circuit; (2) the truth table, which is a table that

gives all the possible input signal combinations as well as the corresponding output signal. (3)

Boolean Expression, which is an expression that represents the gate in Boolean algebra. Figure

5.1 shows a digital logic gate as they are manufactured. It would be interesting to know what

the circuit for these logic gates are! These we will study next.

Figure 5.1: Digital Logic Gate

5.2.1 The Logic "AND" Gate

The Logic AND Gate is a digital logic gate that has an output only goes "HIGH" to a logic level "1"

when ALL of its inputs are at logic level "1". The output of the gate only returns "LOW" again

when any of its inputs goes to a logic level "0". The Boolean expression for a logic AND gate is

that for Logical Multiplication which is denoted by a single dot or full stop symbol, (.) giving us

the Boolean expression of: A.B=Q. Therefore, the operation of a 2-input logic AND gate can be

described as:

 58

"If both A and B are true, then Q is true"

A simple 2-input logic AND is shown in figure

5.2 with the inputs connected directly to the

transistor bases A and B. Both transistors

must be saturated "ON" for an output to be

read at Q.

The standard symbol and truth table for a 2-

input AND gate is shown below. It is okay to

omit the ampersand character inside the symbol.

Symbol Truth Table

2-input AND Gate

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

Boolean Expression Q=A.B Read as A AND B gives Q

The 3-input AND Gate symbol and truth table are shown below.

Symbol Truth Table

3-input AND Gate

A B C Q

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Boolean Expression Q=A.B.C Read as A AND B AND C gives Q

Commonly available digital logic AND gate IC's include: 74LS08 Quad 2-input and CD4081 Quad

2-input.

Figure 5.2: 2-input AND gate using
TTL

 59

5.2.2 The Logic "OR" Gate

A Logic OR Gate or Inclusive-OR gate is a digital logic gate that has an output which only goes

"HIGH" to a logic level "1" when ANY of its inputs are at logic level "1". The output of a Logic OR

Gate only returns "LOW" again when all of its inputs are at a logic level "0". The Boolean

expression for a logic OR gate is denoted by a plus sign, (+) giving us the Boolean expression of:

A+B = Q. We can then define the operation of a 2-input logic OR gate as:

"If either A or B is true, then Q is true"

Figure 5.3 shows a simple 2-input logic OR gate

constructed using transistor switches connected

together as shown in the figure with the inputs

connected directly to the transistor bases. Either

transistor must be saturated "ON" for an output at

Q to be high. The symbol of the 2-input OR gate

and its truth table are presented below:

Symbol Truth Table

2-input OR Gate

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Boolean Expression Q = A+B Read as A OR B gives Q

Likewise, the 3-input OR Gate symbol and truth table are below:

Symbol Truth Table

3-input OR Gate

A B C Q

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Boolean Expression Q = A+B+C Read as A OR B OR C gives Q

Commonly available OR gate IC's include are 74LS32 Quad 2-input and CD4071 Quad 2-input

Figure 5.3: A 2-input logic OR gate

 60

5.2.3 The Logic "NOT" Gate

The digital Logic NOT Gate is another logical gate that is sometimes referred to as an Inverting

Buffer or simply a Digital Inverter. It is a single input device which has an output at logic level

"1" when its single input is at logic level "0", in other words it "inverts" (complements) its input

signal. The Boolean expression is . Then we can define the operation of a single input

logic NOT gate as being: "If A is NOT true, then Q is true". A simple transistor logic NOT gate

is shown in figure 5.5, with the input connected directly to the transistor base. The transistor

must be saturated, "ON" for an inversed output "OFF" to be read at Q.

The standard NOT gate is given a symbol

whose shape is a triangle pointing to the right

with a circle at its end as shown below. This

circle is known as an "inversion bubble" and

is used in NOT, NAND, NOR and XNOR

symbols at their output to represent the logical operation of the NOT function. This bubble

denotes a signal inversion (complementation) of the signal and can be present on either or both

the output and/or the input terminals.

Symbol Truth Table

Inverter or NOT Gate

A Q

0 1

1 0

Boolean Expression is . Read as Q is NOT A

Logic NOT gates provide the complement of their input signal and are so called because when

their input signal is "HIGH" their output state will be "LOW". Likewise, when their input signal is

"LOW" their output state will be "HIGH".

Commonly available logic NOT gate and Inverter IC's include 74LS04 Hex Inverting NOT Gate

and CD4009 Hex Inverting NOT Gate.

Figure 5.4: The digital NOT gate

 61

5.2.4 The “BUFFER”

The digital Logic Gate referred to as the buffer, performs absolutely no logical operation!

Surprised! Well, the buffer is the opposite of the NOT gate. It is a single input device with the

logic output signal exactly as its input signal. The Boolean expression is . This means that

we can define the operation as being: "If A is true, then Q is true". Using Figure 5.4 as a

reference, can you figure out what the transistor circuit configuration would look like?

The symbol as well the truth table of the BUF is presented below.

Symbol Truth Table

BUF

A Q

1 1

0 0

Boolean Expression is . Read as Q is NOT A

Some authors argue however, that the Buffer can be used as a time delay device that holds a

logical data and gives out the same signal when needed.

5.2.5 The Logic "NAND" Gate

The Logic NAND (Not - AND) Gate can be seen as a cascading of the digital logic AND gate with

the NOT gate connected together in series. The NAND gate has an output that is normally at

logic level "1" and only goes "LOW" to logic level "0" when ALL of its inputs are at logic level "1".

This makes the NAND Gate the reverse form of the AND gate we saw previously. The Boolean

expression for a logic NAND gate is denoted by a single dot or full stop symbol, (.) with a line or

bar, (‾‾) over the expression to signify the NOT of the NAND gate giving us the Boolean

expression of: . However, as earlier noted, the dot can be omitted. The operation of a

2-input logic NAND gate is described as: "If either A or B are NOT true, then Q is true".

Figure 5.5 shows a simple 2-input logic NAND gate constructed transistor switches. For a logic

level “1” output to be read at Q, then both or at least one of the transistors must be off.

 62

Figure 5.5: The logic NAND gate using transistors

The usual symbol and truth table for a 2-input NAND Gate is shown below.

Symbol Truth Table

2-input NAND Gate

B A Q

0 0 1

0 1 1

1 0 1

1 1 0

Boolean Expression : Read as A AND B gives NOT Q

While the usual symbol and truth table for a 3-input NAND Gate is shown below:

Symbol Truth Table

3-input NAND Gate

C B A Q

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Boolean Expression : Read as A AND B AND C gives NOT Q

Commonly available logic NAND gate IC's include: 74LS00 Quad 2-input, 74LS10 Triple 3-input,

CD4011 Quad 2-input.

 63

5.2.6 The Logic "NOR" Gate

 The Logic NOR (Not - OR) Gate or sometimes referred to as Inclusive-NOR gate is a combination

of the digital logic OR gate with a NOT gate connected together in series. The NOR gate has an

output that is normally at logic level "1" and only goes "LOW" to logic level "0" when ANY of its

inputs are at logic level "1". The Logic NOR Gate is the reverse form of the OR gate we have seen

previously. The Boolean expression for a logic NOR gate is denoted by a plus sign, (+) with a

line or Overline, (‾‾) over the expression to signify

the NOT operation of the NOR gate giving us the

Boolean expression of: . . We can then

define the operation of a 2-input logic NOR gate as

being: "If both A and B are NOT true, then Q is

true". Figure 5.6 shows a simple 2-input logic NOR

gate constructed using transistor switches with the

inputs connected directly to the transistor bases.

Both transistors must be cut-off "OFF" for a logic

level “1” output to be read at Q. The symbol, truth table and Boolean expression of a 2-input

NOR Gate is given below.

Symbol Truth Table

2-input NOR Gate

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

Boolean Expression Read as neither A NOR B gives Q

The 3-input NOR Gate symbol and truth table are presented below.

Symbol Truth Table

3-input NOR Gate

A B C Q

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

Figure 5.6: The logic NOR gate
using transistors

 64

1 1 1 0

Boolean Expression Read as A OR B OR C gives NOT Q

5.2.7 The Exclusive-OR Gate (XOR)

Previously, we saw that for a 2-input OR gate, if A = "1", OR B = "1", OR BOTH A and B are equal

to "1" then the output from the gate is also at logic level "1". This is known as an Inclusive-OR

function because it includes the case of Q = "1" when both A and B = "1". If however, an output

"1" is obtained ONLY when A = "1" or when B = "1" but NOT when both together at the same

time are equal to “1”, then this type of gate is known as an Exclusive-OR function or an Ex-Or

function for short because it excludes the "OR BOTH" case of Q = "1" when both A = B = "1".

Therefore, the output of a 2-input Exclusive-OR gate ONLY goes "HIGH" when its two input

terminals are at "DIFFERENT" logic levels with respect to each other, that is when .

Exclusive-OR Gates are used mainly to build circuits that perform arithmetic operations and

calculations especially Adders and Half-Adders. The symbol, truth Table and Boolean

expression for a 2-input Exclusive-OR gate is given below.

Symbol Truth Table

2-input Ex-OR Gate

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Boolean Expression Read as A OR B but NOT BOTH gives Q

In general, an Ex-OR gate will give an output value of logic "1" ONLY when there are an ODD

number of 1's on the inputs to the gate and this description can be expanded to apply to any

number of individual inputs as shown below for a 3-input Ex-OR gate.

Symbol Truth Table

3-input Ex-OR Gate

A B C Q

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Boolean Expression Read as "any ODD number of Inputs" gives Q

 65

Activity

Can you try and generate the truth table for a 4-input XOR gate?

5.2.8 The Exclusive-NOR Gate (XNOR)

The Exclusive-NOR Gate function or Ex-NOR for short, is a digital logic gate that is the reverse

form of the Exclusive-OR function. It is a combination of the Exclusive-OR gate and the NOT gate.

From the truth table it can be seen that a logic level “1” output is obtained, when the two inputs

are the same, that is when A = B = "1" or when A = B = “0” at the same time. This type of gate

gives and output "1" when its inputs are "logically equal" or "equivalent" to each other, which is

why an Exclusive-NOR gate is sometimes called an Equivalence Gate. The logic symbol for an

Exclusive-NOR gate is simply an Exclusive-OR gate with a circle or "inversion bubble" at its

output to represent the NOT function. The symbol, truth table and Boolean expression for a 2-

input XNOR Gate is shown below.

Symbol Truth Table

2-input Ex-NOR Gate

A B Q

0 0 1

0 1 0

1 0 0

1 1 1

Boolean Expression Read as if A AND B are the SAME gives Q

Unlike the XOR gate studied in the previous section, an XNOR gate will give an output value of

logic "1" ONLY when there are an EVEN number of 1's on the inputs to the gate except when all

its inputs are "LOW", and this description can be expanded to apply to any number of individual

inputs as shown below for a 3-input XNOR gate.

Symbol Truth Table

3-input Ex-NOR Gate

A B C Q

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Boolean Expression Read as "any EVEN number of Inputs" gives Q

 66

XNOR gates are used mainly in electronic circuits that perform arithmetic operations and data

checking such as Adders, Subtractors Parity Checkers or Digital Comparator circuits.

5.3 Universal Logic gates

Of all the eight different logic gates that we have studied above, two of them stand out. These

gates are referred to as "Universal" logic Gates because all the remaining six logic gates can be

produced using only these gates. The two gates are the NAND and the NOR gates.

5.3.1 NAND gate

The Logic NAND Gate is usually classified as a "Universal" gate because it is one of the most

commonly used logic gate types but more importantly, the NAND gates can also be used to

produce any other type of logic gate function. In practice, the NAND gate forms the basis of

most practical logic circuits. Figure 5.9 shows the NAND gate and how by connecting them

together in various combinations the three basic gate types of AND, OR and NOT function can be

formed.

Figure 5.9: Various Logic Gates using only NAND Gates

Activity

Can you try and decipher which logic gates are implemented in A and B below using only NAND

gates?

 67

 A B

5.3.2 NOR Gate

Similar to the NAND gate seen in the last section, the NOR gate can also be classed as a

"Universal" logic gate because they can also be used to produce any other type of logic gate

function by connecting them together in various combinations. Figure 5.10 below shows the

three basic gate types (AND, OR and NOT) implemented using only NOR gates.

Figure 5.10: Various Logic Gates using only NOR Gates

As you have deciphered from the last activity, apart from the three common types of gate

implemented above, the BUF, XOR, XNOR and standard NAND gates can also be formed using

just individual NOR gates.

 68

Summary

In this study session on Digital Logic Gates, we have seen that the main basic types of digital

logic gates are the AND gate, the OR gate, the NOT gate and the XOR gate. We have also seen that

each gate has an opposite or complementary form of itself in the form of the NAND gate, the

NOR gate, the Buffer and XNOR gate respectively. These individual gates can be connected

together to form more complex Combinational Logic circuits which we will study next. We also

studied that each logic gate has a specific symbol, Boolean expression as well as truth table. In

summary, the truth tables of the eight standard individual Digital Logic Gates are presented in

the next table.

Truth Table Summary

Inputs Truth Table Outputs for 2-input Logic Gates

A B AND NAND OR NOR EX-OR EX-NOR

0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 0 1 0 0 1

Truth Table Output for Single-input Gates

A NOT Buffer

0 1 0

1 0 1

Post-Test
1. What is the function of a NOT gate?

2. Which logic gates are referred to as Universal gates? Show how one of them can be used to

implement three other logic gates.

3. Figure 5.11 is a simple 2-input logic gate using

transistors as switches:

 i. Which logic gate does it represents?

 ii. What is the regular symbol for this logic?

 iii. Generate the truth table for this logic gate with

three inputs.

References

Figure 5.11.

 69

Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

Hwang, Enoch O. 2005. Digital Logic and Microprocessor Design With VHDL. Brooks/ Cole.

Theraja, B.L. and Theraja, A.K., 2005. A textbook of electrical technology, S. Chand.

Watson J. (1990) Logic families. In: Mastering Electronics. Macmillan Master Series. Palgrave,

London
www.electronics-tutorials.ws

 70

LECTURE SIX

COMBINATIONAL LOGIC DESIGN

Introduction

Having studied the different logic gates, it is pertinent that we study how they can be combined

together to form different electronic circuit that would do different things. When these gates

are combined to form larger circuits, those circuits are referred to as combinational logic

circuits.

Objectives

At the end of this lecture, you should be able to:

1. State and implement the various ways a combination Logic circuit can be represented.
2. Draw a circuit, given its Boolean expression.
3. Generate the Boolean expression of any digital logic circuit.
4. Generate the truth table of any given circuit.

6.1 Combinational Logic Circuits (CLC)

Suppose you want to design a circuit that will send some form of alarm when someone comes

close to your front window or your back window, as well as if there is some noise around your

house. It means you must have a movement sensor by the two windows and then a noise sensor

situated somewhere around the house. The output of these sensors which could be small

voltage values (that could represent logic “1” or logic “0”) can then be used as input to several

logic gates to implement what you want. Let us denote the:

Front window sensor output as F
Back window sensor output as B
Noise sensor output as N

From the scenario depicted above and using plain English language, it means that you what to

design a logic circuit that will give an alarm when:

Either Sensor F or Sensor B is one, and Sensor N is one.

 71

If any of the input signal changes, the output may also change. This is a simple illustration of a

CLC.

Combination Logic Circuits are made up from basic logic gates that are "combined" or connected

together to produce more complicated switching circuits. The logic gates we studied in the

previous lecture are the building blocks of combinational logic circuits. CLC can be very simple

or very complicated and any combinational circuit can be implemented with only NAND and

NOR gates as these are classed as "universal" gates. The outputs of CLC are only determined by

the logical function of their current input state, at any given instant in time because they have

no feedback, and any changes to the signals being applied to their inputs will immediately have

an effect at the output. In other words, in a CLC, the output is dependant at all times on the

combination of its inputs and if one of its inputs condition changes state so does the output.

There are three main ways of specifying the function of a combinational logic circuit. These are:

1. Truth Table: which provides a list that shows the output values in tabular form for each

possible combination of input variables.

2. Boolean function / Expression: this forms an output expression for each input variable

that represents a logic "1"

3. Logic Diagram: shows the wiring and connections of each individual logic gate that

implements the circuit.

An example of the three is shown below.

 72

As combinational logic circuits are made up from individual logic gates only, they can also be

considered as "decision making circuits" and combinational logic is about combining logic gates

together to process two or more signals in order to produce at least one output signal according

to the logical function of each logic gate. You will notice that there is a “dot” on the input line

for A as well as for B. This “dot” shows that the lines are connected together. However, notice

that when these two lines cross over the input, there is no “dot”, therefore no connection. We

will maintain this symbol for the rest of the document. Now let us study what the truth table is

briefly.

6.1.1 Truth Table

As written above, a truth table is a table that provides a list of each possible combination of

input variables and the corresponding output value(s). There is a trick in generating all the

possible combinations as well as the sequence. First of all, you need to know the number of

possible combinations and this can be calculated using the total number of inputs. For a 2-input

CLC we have 4 (22) possible combinations. For a 3-input CLC we have 8 (23) possible

combinations. Therefore, for an N-input CLC we will have 2N possible combinations.

Quiz: How many possible combinations would the truth table for your house alarm circuit?

 73

If you said three, then you are on track! Now that we know how to calculate the total number of

possible combinations, how do we generate their sequence? That, is also easy. Let us try with

a-input CLC. We will use the following steps:

1. Draw a table with the number of
row that correspond to the total
number of possible combinations
and the number of columns that
correspond to the total number
of inputs. Note that you will need
an additional row for labels and
an additional column (s) for the
output

F B N alarm (output)

2. Starting with the leftmost input

variable (N in this case), write a

“0” then a “1” alternating 20 = 1

time(s) in each row. Starting

from 0.

F B N alarm (output)
 0
 1
 0
 1
 0
 1
 0
 1

3. Move to the next column to the

left (input variable B) to fill the

column. This time write 21 = 2

zeros and ones. Alternating after

every set.

F B N alarm (output)
 0 0
 0 1
 1 0
 1 1
 0 0
 0 1
 1 0
 1 1

4. Move to the next column to the

left (input variable F) to fill the

column. This time write 22 = 4

zeros and ones. Alternating after

every set.

F B N alarm (output)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

5. If you have more columns to fill, This means that for the next column, we will have a

 74

then repeat step 4 above,

however note that you must

increase the number in each set

to the left to the next power of 2.

set of 23 = 8 zeros followed by a set of 8 ones. As so
on!

Once you generate all the possible combinations, then the next thing to do is to specify the

output which corresponds to a logic level “1” depending of the input combinations. For our

house alarm system mentioned in section 6.1, the complete truth table would look like this:

Row No. F B N Signal (output)
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 1

By inspection you can see that the rows 4, 6 and 8 represent cases where either F OR B is “1”

AND N is also one. There is another way to fill in the output column. We will look at that in

subsequent sections.

Quiz No. 2: Generate the truth table for a CLC that has a total of 5 inputs. Ignore the output
column

6.1.2 Boolean Expression

Boolean function forms an output expression for each input variable that represents a logic "1".

We can generate this expression, if the description is as simple as our alarm system described in

section 6.1:

 75

This basically says (Sensor F or Sensor B) and Sensor N will be on for the alarm to

ring. This translates to: (F OR B) AND N

Note that it is important, just like in arithmetic to place a bracket as the appropriate position, so

that the logic expression is not misinterpreted. For example, from our expression above, if we

had written it without any brackets, such as , it could interpreted as the

alarm will ring if the F sensor gives a signal or if both the B sensor and the N sensor give their

signals. This invariably means that the alarm could ring if someone comes close to you front

window, despite the fact that there is no noise around your house. So be prudent when

generating Boolean expressions and use your brackets well.

Alternatively, given a logic circuit diagram, we can also derive a Boolean function that describes

that circuit. We simply write down the Boolean logical expressions at the output of each gate as

we trace through the circuit from the primary input to the primary output. Below are some

simple examples:

Fig 6.1 Fig 6.2

Fig 6.3

Here are more example that are not so simple!

 76

Fig 6.4

Fig 6.5

Quiz: Generate the Boolean expression for the circuit in fig 6.6

Fig 6.6

It is also possible to generate Boolean expressions, given the truth table. This will be treated in

a separate lecture on Sum of Product and Product of Sum.

When dealing with Boolean expressions, it is important to note which gate take precedence over

the other just like in arithmetic where we are taught BODMAS. To begin with, AND takes

precedence over OR unless overridden by brackets. NOT is a special case in that it can act like a

set of brackets. If the bar indicating the NOT function spans a single variable, it takes precedence

 77

over AND and OR. If, however, the NOT bar spans an expression, the expression beneath the bar

must be evaluated before the NOT is taken. Figure 5-8 presents two examples of handling

precedence with the NOT function.

6.1.3 Logic Circuit diagram

The third way of representing combinational logic circuit is by using the logic diagram itself.

This is a diagram that shows the wiring and connections of each individual logic gate that

implements the circuit. Going back to our house alarm system in section 6.1, we can clearly

identify two distinct logic gates used from the English words OR and AND. Since our alarm

system would ring if either F OR B send signals as well as when N sends its own signal. The

logic diagram is as shown in figure 6.7

Figure 6.7

Alternatively, given a Boolean expression, you can always draw the logic circuit diagram by

taking each gate, drawing it and specifying it’s inputs. Let us take an example:

Draw the logic circuit diagram for

Looking at the expression we can clearly identify that it contains two AND gates and one OR

gate. The A and B inputs are “ANDed” together, then the A and inputs are also “ANDed”

together before their various outputs are “ORed” together. Let us see how this is drawn, using

the logic gate symbols.

B

N

F

Ring Alarm

 78

Figure 6.7

Another example: Draw the logic circuit for

Quiz: Draw the logic circuit for

By now you have seen that given a Boolean expression, you can draw the logic diagram and you

have also seen that given a logic diagram, you can generate the Boolean expression. How then

can you generate the truth table of a combinational logic circuit, given the logic diagram or the

Boolean expression? If you have the Boolean expression, you go ahead and generate the truth

table, as we will see shortly. However, if given the logic diagram, the first thing to do is to

generate the Boolean expression and then from the Boolean expression, generate the truth

table. Let us try that out with Fig 6.2. The Boolean expression generated was .

So following the step on how to create a truth table, we know that this CLC has three inputs (A,

B, C) and one output (X). It then means there will be 8 rows in the truth table, the number of

columns here will depend on how complex the Boolean expression is. The table below shows

the truth table for the Boolean expression .

A B C A+B

A

B

C

Z

C

A

F

B

 79

0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 0
1 1 1 1 1

The first three columns represent the primary inputs (A, B, C). The fourth column draws its

values, as depicted by the direction of the red arrows, from the logic operation A OR B. This is a

temporary output because it also contributes to the final output X. X on the other hand draws

its values, as shown by the blue arrows, from the logic AND operation between C and A+B. As

long as you follow this step by step method, you can generate the truth table for any Boolean

expression.

Let us take another Boolean expression which is a little bit more complex than the one we just

used and also has more primary inputs. We can also generate the truth table for the logic

diagram in Figure 6.4. This time around, there are 4 primary inputs (A, B, C, D) and one output

X. This means we will have 16 possible combinations for

A B C D
0 0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
0 0 1 1 1 0 0 1 0 0
0 1 0 0 1 0 0 0 1 0
0 1 0 1 1 0 0 1 0 0
0 1 1 0 1 1 1 0 1 1
0 1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0 0
1 0 1 1 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 1 0 0
1 1 1 0 0 1 0 1 0 0
1 1 1 1 0 1 0 1 0 0

Quiz: Generate the truth table for Figure 6.5

 80

From the truth table above, you would notice that from what seemed to be a complex circuit,

only ONE combination of the inputs gives a logic “1” output. That is the shaded row. This brings

us to another small topic. Given a Boolean expression, how do you evaluate its output for a

particular combination of its input?

6.2 Evaluating Logic circuit outputs

Given any Boolean expression, we can obtain the output logic level for any combination of its

inputs. For example, suppose we want to know the logic level for the output

when A=0, B=1, C=1 and D=1. We achieve this by substituting these logic values for their

placeholders as follows:

From the evaluation we see that the output will be 0. Why not try to evaluate the same

expression with A=0, B=1, C=1 and D=0. If you got 1 then you are on track.

Quiz: Evaluate the Boolean expression of figure 6.5. for
A=0 B=1 C=0 D=1 E=0

Summary

Is this lecture, we learned that Combinational Logic Circuits consist of inputs, two or more basic

logic gates and outputs. The logic gates are combined in such a way that the output state

depends entirely on the current input states. A combinational circuit performs an operation

assigned logically by a Boolean expression or truth table. The three main ways of specifying the

function of a Combinational Logic Circuit are Truth Table, Boolean Expression and Circuit

diagram. We also learned how to evaluate a Boolean expression for a given combination of

inputs. There are some common and standard combinational logic circuits which are made up

from individual logic gates to carry out desired application. These include Multiplexers, De-

 81

multiplexers, Encoders, Decoders, Full Adders, Half Adders etc. They will be discussed in

another lecture.

Post-Test
1. Sketch the logic diagram that represents .

2. Given that F= , draw its logic diagram and generate the truth table.

3. Generate the Boolean expression and truth table for the figure below.

4. Mr Felix has 5 children, 2 of which are twins. They are named Abiola, Busayo, Carol, Taiye

and Kenny. In order to teach his children the value of money, he installs a safe in their

reading room. This safe has two doors, one for putting money in (door IN) and the other

for taking money out (door OUT). Mr felix alone can open door IN when he wants to put

money in. For any of his children to take money out however, the child has to use his/her

key as well as their fathers’ key. But for the set of twins, both must use their keys as well as

their fathers’ key for any withdrawal. Using your knowledge of digital electronics

A. Design the logic circuit diagram that will open ‘door IN’.

B. Design the logic circuit diagram that will enable ‘door OUT’ to be opened.

C. Generate the truth table for B above.

5. Mrs Okafor bought three cartons of biscuits named Shortbread, Digestive and Cabin for her

pupils to share. There are 30 pupils in her class. She had two options for sharing the

biscuits. Option A was that each pupil will take one of each type of biscuit. However, by the

time the packets of biscuits in each carton were counted, she knew that Option A would not

work. She decided to use Option B, which was this:- A pupil must take either a pack of

Shortbread or a pack of Digestive but not both, in addition to that, he must take a packet of

Cabin biscuit. Using your knowledge of digital electronics,

A. Design the logic circuit that represents Option A.

B. Generate the truth table for Option B.

C. Design the logic circuit that represents Option B.

 82

References
Ronald J. Rocco and Neal S. Widmer, Digital Systems Principles and Applications, Eighth Edition.

Prentice-Hall, 2001.

Watson J. (1990) Logic families. In: Mastering Electronics. Macmillan Master Series. Palgrave,

London
www.electronics-tutorials.ws

 83

LECTURE SEVEN

STANDARD FORMS OF EXPRESSION

Introduction

In the previous lecture, we studied combinational logic circuits and the three main ways of

specifying the function of a combinational logic circuit. In the design of digital systems, there

are some standards that are regularly applied to combinational logic. This chapter outlines two

standard representations of combinational logic circuits: Sum-of-Products and Product-of-Sums.

Both of these formats represent the fastest possible digital circuitry since, aside from a possible

inverter, all of the signals pass through exactly two layers of logic gates.

Objectives

At the end of this lecture, you should be able to:

1. State if a Boolean expression is in sum-of-product (SOP) term

2. State if a Boolean expression is in product-of-sum (POS) term

3. Convert a sum-of-product term to its standard or fundamental form

4. Generate the SOP or POS from truth tables.

7.1 Product Terms

A product term in a Boolean expression that makes use of the AND operator. That is a term that

contains inputs that are “ANDed” together. The inputs to the AND gates are either inverted or

non-inverted input variables. Some examples of product terms are:

1. this represents A AND B

2. this represents X AND NOT Y AND Z

 84

The following term is not a product term, because the bar covers two inputs, which makes the

operator between the two inputs a NAND operator.

1. this represents NOT C AND D

7.2 Sum of Product

A sum-of-products (SOP) expression is a Boolean expression in a specific format. The term sum-

of-products comes from the expression's form: a sum (OR) of one or more products (AND)

terms. As a digital circuit, an SOP expression takes the output of one or more AND gates and

OR's them together to create the final output. Since the inputs to the AND gates are either

inverted or non-inverted input signals, this arrangement limits the number of gates that any

input signal passes through before reaching the output to an inverter, an AND gate, and an OR

gate. We know from previous studies that each gate causes a delay in the transition from input

to output, and since the SOP format forces all signals to go through exactly two gates (not

counting the inverters), an SOP expression gives us predictable performance regardless of

which input in a combinational logic circuit changes. Below is an example of an SOP

expression:

1.

2.

3.

Note that each of the expressions above consist of two or more product terms that are ORed

together. Each product term consists of one or more inputs individually appearing in either

complemented or uncomplemented form. As earlier stated, one inversion sign cannot cover

more than one input in a term and there should be not brackets. The following expression is not

an SOP expression because it has brackets and the bar covers more than one input.

4.

 85

Quiz: Which of the following expressions is in SOP form?
a)

b)

c)

d)

e)

7.3 Fundamental Sum of Product Expression

Given that , we know by inspection that Y is an SOP expression. However Y is not

in the Fundamental or Canonical form, because by inspection we see that Y has three primary

inputs (A, B, C) but, none of the product terms in Y has all three inputs. For an SOP expression

to be in the Fundamental or Canonical form, each product MUST contain all the input variables

in either complemented or un-complemented form. There are two ways of converting an SOP

like Y to its Canonical form: (1) from its truth table (2) by Boolean algebra. Let us start with the

truth table which is shown below. By evaluating the Boolean expression, , we

know that Y = 1 when either of the product terms is 1. This is due to the fact that any

Boolean expression ORed with 1 gives a result of 1.

Now if (A =0) and (B= 1) are necessary for Y= 1 (i.e.

the product term being 1) then the value of C does

not matter. Therefore there are two rows of the truth

table (010) and (011) [rows 2 and 3] which

will give an output of 1 because . Similarly the

two rows corresponding to the product terms [rows 5 and 1] will

also give an output of 1 since for both of these = 1 irrespective of the variable A.

The four rows giving Y= 1 for both and = 1 correspond to the product terms, ,

 , which contain all three input variables. Product terms which contain all of

Row A B C Y Product
Term

0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 0
7 1 1 1 0

 86

the input variables are called fundamental product terms or sometimes minterms (m), because

each fundamental product term specifies the input conditions which produce an output of 1 in a

single row of the truth table. The minterms are sometimes referenced by the subscript that

represents it row in the truth table. And most often that not, the subscript on the minterm is the

decimal of the binary value represented. Now, since any Boolean expression OR'd with 1 gives a

result of 1, if these fundamental product terms are OR'd together then if any one of them is 1 the

result will be 1. Therefore the Boolean expression for Y in the fundamental SOP is:

Another way of converting an SOP expression like , to its fundamental form is by

using Boolean algebra. We know from the OR logic gate that, . To

convert each product term, we identify which variable is missing and include it as follows:

An alternative notation

As earlier written, the subscript on a minterm is the decimal of the binary value represented.

For example , which is the decimal no 2 so the minterm would be written as m2 we

can use the minterms to represent a Boolean expression. Alternatively, since each fundamental

product term corresponds to a row in the truth table another way of describing a fundamental

sum of products expression is simply to list the rows. To do this all that is required is to decide

upon an appropriate code. The obvious choice is to use the decimal equivalent of the binary

code held by the input variables. So for a truth table with three inputs we have row 0 (),

row 1 (), through to row 7 (ABC). Using this notation, the expression

 = would be written as:

 87

 or simply as

The expressions or are often

referred to as the canonical form of expression.

Quiz: Express the function in its canonical form

It is possible to convert any truth table to a fundamental SOP expression and thus it’s canonical

form. The conversion process is as follows: identify the rows with ones as the output, and then

come up with the unique product to put a one in that row. Let us take an example:

Example: Derive the SOP expression and Canonical form for the following truth table.
A B C X

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Solution
First, identify each row that contains a one as the output. That is the shaded rows.

Row A B C X Where
0 0 0 0 0
1 0 0 1 1 A = 0, B = 0, and C = 1
2 0 1 0 0
3 0 1 1 1 A = 0, B = 1, and C = 1
4 1 0 0 1 A = 1, B = 0, and C = 0
5 1 0 1 0
6 1 1 0 1 A = 1, B = 1, and C = 0
7 1 1 1 0

Next we need to make a product for each of these rows such that the output will be 1. For row1

(binary 001 or, decimal No. 1) where A=0, B=0, and C=1, the product that outputs a one must

invert A and B in order to have a product of 1·1·1 = 1. Therefore, our product term is:

 .

 88

Similarly we see that the product that outputs a one for the row3 (binary 011 or decimal No. 3)

where A=0, B=1, and C=1 must invert A in order to have a product of 1·1·1 = 1. This gives us:

 .

The third product term which outputs a one for the row4 (binary 100 or decimal No. 4) where

A=1, B=0, and C=0, must invert B and C in order to have a product of 1·1·1 = 1. This gives

us : .

The final product outputs a one for the row6 (binary 100 or decimal No. 6) where A=1, B=1,

and C=0. This time only C must be inverted, so we have :

OR'ing all of these product terms together gives us our SOP expression and as you would notice,

it is already in the fundamental SOP form.

To derive the canonical form, we have:

Quiz: Derive the SOP expression and Canonical form for the following truth tables

A B C X
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

A B C Y
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

A B C Z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

To generate the truth table for a fundamental SOP expression, first inspect the expression to

identify the total number of primary input variables. Then draw the appropriate number of

rows for the truth table and fill in all the possible combinations. Next, examine each product

term to determine when it is equal to a one. Where that product term is a one, a one will also be

 89

outputted from the OR gate. An easier will be to write under each minterm, the logic value of

individual input variables, taking After that, identify the rows with those

sequence of combination and put one as their output. Then fill the blank ones with zeros.

Example : Generate the truth table for

Solution:

By inspection we see that Y has three primary input variable (A, B, C) so the initial truth table

will be:

A B C Y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Next write out the logic values for each minterm:

A B C Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 This means is that by the time you invert all the zero input variables,
their minterm will give a product output of one.

Quiz: Generate the truth table for the Boolean expression

7.4 Sum Terms

A sum term is a Boolean expression that is made up of input variables that are ORed together.

That is variables that are derived from the logic OR gate. The inputs to the OR gates are either

 90

inverted or non-inverted input variables. The sum terms cannot have more than one variable

combined in a term with an inversion bar. The following terms are sum terms:

1.

2.

3.

However, the following terms are not sum terms:

4.

5.

6.

7.5 Product of Sum

The product-of-sums (POS) format of a Boolean expression is similar to the SOP format with its

two levels of logic (not counting inverters). The difference is that the outputs of multiple OR

gates are combined with a single AND gate which outputs the final result. So far in this lecture

we have approached all topics using positive level logic. In other words we have always

considered the output in terms of the input combinations giving an output of 1. We could

instead have used a negative level logic approach. The POS approach is sometimes referred to

as the negative logic approach because it makes use of the output that is at logic level 0.

The expressions below adhere to the format of a POS expression.

1.

2.

Quiz: Which of the following expressions is in POS form?
a)

b)

c)

d)

e)

 91

Since the SOP expression is more used than the POS expression, we will not dwell much on the

POS form. However, we will briefly study how to derive the fundamental POS expression.

7.6 Fundamental Product of Sum Expression

As you might have guessed, a Boolean expression is said to be in fundamental POS form if each

of the sum terms contain all the input variable. A sum term that contains all the variables in

complemented or un-complemented form is called a maxterm (M).

The following expressions are in fundamental POS forms.

Converting a POS expression to a truth table follows a similar process as the one used to convert

an SOP expression to a truth table. The difference is this: where the SOP conversion focuses on

rows with a one output, the POS conversion focuses on rows with a zero output. We do this

because the OR gate has an output of zero on exactly one row (See section 5.2.2) while all of the

other rows have an output of one. Below are a few examples of this behaviour.

 92

By AND'ing the output from these OR gates together, the final output will be zero anytime one of

the OR gates outputs a zero. Looking closely at the shaded rows we notice that to have an

output of zero, giving that we are using OR gate, then all the inputs MUST be ‘0’. For example:

 when , and this means

 When

Quiz: can you work out the combination(s) of the input variables that would give

for a CLC that has 3 primary input variables.

As you would have noticed, just as with SOP expressions, any truth table can be converted to a

POS expression. The conversion process follows these steps: (1) identify the rows with zeros as

the output (2) then come up with the unique sum to put a zero in that row, (3) the final group

of sums can then be AND'ed together producing the POS expression.

Just like we have for SOP, we can also generate the canonical form for a POS expression. This is

achieved by listing the row number for the rows where the function has zero outputs. For

example: Derive the Canonical POS form for the truth table below.

Solution
First, identify each row that contains a zero as the output. That is the shaded rows.

Row A B C X Where
0 0 0 0 1
1 0 0 1 0 A = 0, B = 0, and =0
2 0 1 0 0 A = 0, =0, and C = 0
3 0 1 1 1
4 1 0 0 0 = 0, B = 0, and C = 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

 or

 93

Summary

At this point, we should be able to convert any truth table to a Boolean expression and finally to

digital circuitry. It should also be clear that no truth table is represented by a unique circuit. In

this chapter however, we have studied the two standard forms of expression of Boolean

function. We in particular learned how to:

1. State if a Boolean expression in SOP or POS form

2. Convert a sum-of-product expression to its standard or fundamental form

3. Generate the SOP or POS from truth tables.

Post-Test
1. Convert the following expressions to standard sum of products:

a.

b.

c.

2. Generate the truth table for the expressions in 1 above.

3. Derive the SOP expression and Canonical form for the following truth tables

A B C X
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B C Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A B C Z
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

4. Derive the POS expression and Canonical form for the truth tables in question 2 above.

References
Ronald J. Rocco and Neal S. Widmer, Digital Systems Principles and Applications, Eighth Edition.

Prentice-Hall, 2001.

Essential Electronics

David Tarnoff, Computer Organization and Design Fundamentals, 2007.

 94

LECTURE EIGHT

SWITCHING FUNCTION MINIMIZATION

Introduction
In previous lectures, we studied how to design a digital electronic circuit. We also learned how

to generate the truth table as well the Boolean expression for any logic circuit. Sometimes the

derived Boolean expression may not be in the minimised form. That is to say, we could generate

another Boolean expression with fewer number of gates that would perform the same function.

In this chapter, we will look at three ways of minimising a Boolean expression. We would start

with the first one, Boolean Algebra, which is how the expressions got its name.

Objectives
At the end of this lecture, you should be able to:

1. Apply the laws of Boolean Algebra to minimize a Boolean expression
2. State De Morgan’s Theorem
3. Translate a truth table into a Karnaugh map.
4. Use Karnaugh maps to minimize a Boolean expression
5. Use Quine-McCluskey’s Algorithm to minimize a Boolean expression

8.1 Boolean Algebra

The following sections show how Boolean expressions can be used to modify combinational

logic in order to reduce complexity or otherwise modify its structure. In 1854, George Boole

performed an investigation into the "laws of thought" which were based on a simplified version

of the "group" or "set" theory, and from this Boolean or "Switching" algebra was developed.

Boolean Algebra deals mainly with the theory that both logic and set operations are either

"TRUE" or "FALSE" but not both at the same time. For example, A + A = A and not 2A as it would

be in normal algebra. Boolean algebra is a simple and effective way of representing the

switching action of standard Logic Gates and the basic logic statements which concern us here

are given by the logic gate operations of the AND, the OR and the NOT gate functions, that are

used mainly in SOP and POS forms of expression. Just like algebra, a set of rules exist that when

applied to Boolean expressions can dramatically simplify them. A simpler expression that

produces the same output can be realized with fewer logic gates. Boolean algebra uses "Laws of

 95

Boolean" to both reduce and simplify a Boolean expression. Boolean Algebra is therefore a

system of mathematics based on logic that has its own set of rules which are used to define and

reduce Boolean expressions. The variables used in Boolean Algebra only have one of two

possible values, a "0" and a "1" but an expression can have an infinite number of variables all

labelled individually to represent inputs to the expression. Following are the laws of Boolean

algebra.

Table 8.1: Laws of Boolean algebra/ Boolean Theorem
 Name

Identity

Annulment

Indempotent

Double Negation

Complement

Commutative

Associative

Absorptive

Distributive

de Morgan's Theorem

Note that the laws can be used from left to right as well as from right to left. Theorems 11 to 14

can be proved with other Boolean laws or with the truth table.

 96

Now that we have the rules, let us try some examples of reducing a Boolean expression or

proving the equality of two Boolean expressions. Bear in mind that to reduce any expression,

think of a way to reduce at least one redundant term at a time, using any of the rules as well as

any two product terms. You would notice that it is easier to reduce product terms than to

reduce sum terms.

Example 8.1: Prove that proving from left to right we have that

 Distributive law

 Distributive law

 Distributive law

 Annulment law

Example 8.2: Prove that

 Absorptive law

 Distributive law

 Complement law

 identity law

 Distributive law

 Commutative law

Example 8.3: Simplify

 Distributive law

 Associative law

 Complement law

 Annulment law

 97

 Associative law

Example 8.4: Prove that

You will notice that by the time you get the hang of it, using Boolean Algebra to minimize

Boolean expressions will be easy. So if given a truth table, you generate the SOP expression and

then minimize that expression. Now try these:

Quiz: Prove the following equalities

1.

2.

3.

8.2 Karnaugh Maps (K-Maps)

Another useful minimization aid is the k-map. This map can be easily generated from the truth

table of any digital circuit. K-maps can be used to minimise circuits with multiple inputs,

ranging from 3 to 6 but for the purpose of this class, we will limit our discussion to 3 and 4 input

circuits. Recall that in the SOP form of a Boolean expression, each row with an output of one

corresponded to a product. The OR of all of the products produced an expression that satisfied

the truth table, but not necessarily one that was reduced to its simplest form. Karnaugh Maps

are graphical representations of truth tables. They consist of a grid with one cell for each row of

 98

the truth table. The grid shown below in Figure 8.1 is the two-by-two Karnaugh map used to

represent a truth table with two input variables. A truth table for two input variables has two

input columns, one output column and four rows (one for each possible combination of inputs).

The corresponding Karnaugh map has four cells arranged as a square, with the two inputs, A

and B, used to label the columns and rows as shown.

Table 8.2

Option 1

 A

B 0 1

0

1

Option 2

 A

B

B

Product term for each cell

 A

B 0 1

0

1

Above, I have shown two options that could be used in labelling the k-map, I prefer option 1.

The third one, shows the product term for each cell. Therefore, to translate a truth table into a k-

Map, all you need do is place a ‘1’ in the cell that corresponds to the row in the truth table with a

1 as its output. For example below is a truth table and its corresponding k-Map.

Example 8.5

Truth Table
A B Q
0 0 0
0 1 0
1 0 0
1 1 1

K-map for Q

 A

B 0 1

0
0 0

1
0 1

Quiz: Generate the truth table for . Then draw the K-Map for R.

The purpose of Karnaugh maps is to rearrange truth tables so that adjacent cells can be

represented with a single product term and simplified using Theorem 5a in the Boolean laws

described above. This requires adjacent cells to differ by exactly one of their input values

thereby identifying the input that will drop out, when four rows or columns are needed as with

a 3- or 4-input Karnaugh map. This requires the rows/columns to be numbered 00-01-11-10 in

 99

order to have only one input change from row to row OR column to column. Example 8.6 is that

of a 3-input logic circuit.

Example 8.6: Draw the K-Map for

the Truth table

below

Truth Table
A B C Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 8.3: Option 1 arrangement of 3-input circuit

 AB

C 00 01 11 10

0

1 C

K-Map for Z

 AB

C 00 01 11 10
0 0 0 0 0

1 0 1 1 1

Quiz: Draw the K-Map for these Truth tables

Table 8.4
Truth Table

A B C X
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 8.5
Truth Table

A B C Y
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 8.6: The Layout for a 4-input logic function.

AB

CD 00 01 11 10

00

01

11 CD D

10 C

 100

Quiz: draw the K-Map for

Hint: just put a ‘1’ in the cell that corresponds to the fundamental product term in S.

Now that you have understood how to draw the K-Maps for 2 to 4 input logic functions, we will

study how to use it for minimisation.

The key to the effectiveness of a Karnaugh map is that each cell represents the output for a

specific pattern of ones and zeros at the input, and that to move to an adjacent cell, one and only

one of those inputs can change. Tables 8.2, 8.3 and 8.6 show the notation used for drawing

Karnaugh maps with two, three and four variables, respectively. Note that each cell represents

a Boolean product just as a row in a truth table does. This shows that an SOP expression can be

derived from a Karnaugh map just as it would be from a truth table. Below is the SOP for Z in

example 8.6

So the key to effectively using Karnaugh maps is to find the largest group of adjacent cells

containing ones. The larger the group, the fewer products and inputs will be needed to create

the Boolean expression that produces the truth table. In order for a group of cells containing

ones to be considered adjacent, they must follow some rules, some of which are listed below.

1. The grouping must be in the shape of a rectangle. There are no diagonal adjacencies allowed.

2. All cells in a rectangle must contain ones. No zeros are allowed.

 101

3. The number of cells in the grouping must equal a power of two, i.e., only groups of 1, 2, 4, 8, or

16 are allowed.

4. Outside edges of Karnaugh maps are considered adjacent, so rectangles may wrap from left to

right or from top to bottom.

5. Cells may be contained in more than one rectangle, but every rectangle must have at least one

cell unique to it. (In wrong example, the horizontal rectangle is an unnecessary duplicate.)

 102

6. Every rectangle must be as large as possible

7. Every 1 must be covered by at least one rectangle

Example 8.7: Minimize Z with K-Map

Truth Table
A B C Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Solution:

K-Map for Z

 AB

C 00 01 11 10

0 0 0 0 0

1 0 1 1 1

Looking at the blue group, we see that the only

variable that changed is A, which changed from

0 to 1, therefore it is removed from the

minimised term, so the blue group minimizes to

In the red group on the other hand, the only variable that changed within the grouping is B,

which changed from 1 to 0, so it is omitted from the reduced term for that group. The red

group is minimised to . The minimised expression for

 103

Example 8.8: Minimize

Truth Table
A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

 AB

C 00 01 11 10

0 0 0 1 0

1 0 0 1 1

Green group resolves to

Red group resolves to

You can check this with example 8.2

For the next examples we will look at 4 input variable circuits.

Example 8.9: Use K-Map to prove that:

1)

2)

Solution (1) : K-Map for Y

 AB

CD 00 01 11 10

00 1 0 0 1

01 1 0 0 1

11 0 0 0 0

10 0 1 1 0

In the blue group, observe that the variables A and D changed values for 0 to 1, while B and C

remained in their complemented state. Therefore, it resolves to . Within the red group,

only A changed, so that group resolves to

Solution for 2) : K-Map for

 AB

CD 00 01 11 10

 104

00 0 0 0 0

01 0 1 1 0

11 0 1 1 0

10 0 0 0 1

Quiz: use K-Map to minimize

Solution:

8.3 Quine-McCluskey Method

The Quine-McCluskey (QM) method is a systematic approach to obtaining minimal expressions

when a large number of variables are involved and is of considerable use in multifunctional

problems. It is an approach that can be programmed in a computer and is thus of great interest

in special large problems.

Essentially the QM method consists of repeated applications of the theorem . For

example, the expression can be reduced to by recognizing that and are the

only differences between the two terms. In a like manner the expression can be

reduced to by recognizing that is redundant. This is the essence of the technique. Just as

the Karnaugh map has only one-variable change between adjacent cells, the QM method

systematically searches for a one-variable difference between terms.

The first step in applying the QM method is to expand the function into a standard SOP

form of canonical terms. Actually, rather than expanding the function in a standard sum form, a

listing is made of all the canonical terms in a table.

Example 8.10

 105

Assume the weight assignments used are ; This just means

that the A input variable occupies the most significant position, followed by B then C and finally

D. This means that Table 8.7 will contain all the canonical terms for the above function in

algebra, binary, and decimal. The reason for this will become obvious as the examples are

explained. The next step is to compare each canonical term with every other canonical term,

looking for a one-variable difference. That is, the first term, , compares with the second

term, , with the variable being redundant. Because these two terms will reduce to ,

a three variable term, this is listed in a new table, Table8.8, and a check mark is placed alongside

each of the two terms to show that they have been used in a reduction. Notice that the binary

representation differed only in one variable, and this is identified in Table 8.8 by placing a dash

in this position. Furthermore, this comparison was between a decimal 5 and a decimal 4; this is

a difference of a decimal 1, which is a binary multiple as well as the weight for D.

The next term that compares with is the third term . This produces the

second term in Table 8.8, . A check mark is placed beside the term in Table 8.7, and

the reduced term is listed in Table 8.8. This time is the redundant variable and a dash is

placed in the position normally occupies. Furthermore, the decimal variable between these

terms is 2, a power of 2 , which is the weight of the variable . No further comparisons

can be made with the first term.

Table 8.7

Canonical
terms

Binary Decimal

 0 1 0 1 (5)

 0 1 0 0 (4)

 0 1 1 1 (7)

 1 0 0 1 (9)

 1 0 0 0 (8)

 1 0 1 1 (11)

 0 1 1 0 (6)

Table 8.8

Algebra Binary Decimal

 (4,5)

 (5,7)

 (4,6)

 (6,7)

 * (9,11)
 * (8,9)

 106

The second term is now compared with each term below it, and a check mark is placed

beside each term that compares according to the rule. Only one term develops, . The

process continues with the third term in Table 8.7. The third term, , compares with the

last term, , to produce . The process continues until all the possible comparisons

have been made. In this example Table 8.7 has been completely checked off and will be of no

further use. The comparisons process now continues with Table 8.8. Each term in Table 8.8 is

compared with every other term of Table 8.8 in an effort to eliminate redundant variables. The

first term, , compares with to eliminate the variable. Table 8.9 now lists these

comparisons. The binary form now contains two dashes, one for the variable and one for the

 variable. In addition, the decimal part contains the number represented by the binary form

with all possible combinations.

Table 8.9
Algebra Binary Decimal

 (4,5,6,7)

Thus has 0 for and 1 for , giving the decimal 4. The two dashes represent a

possible magnitude of 3; therefore, the decimal part shows that the term represents and

contains the decimal numbers 4, 5, 6, and 7.

The next term in Table 8.8, , compares with to eliminate . This results in the term

 . But is already represented, and so it is not necessary to list it twice. This process

repeats just as before until all possible comparisons have been made. In this case no further

comparisons can be made. Notice that the last two terms, and have an asterisks

placed beside them because it was not possible to eliminate any variable with any of them by

comparing them with other product terms in Table 8.8. Then, looking at table 8.9, there can be

no further comparisons because the table has just one product term. Therefore, the reduced

expression is:

 107

Summary

In this lecture we have learned:

1. The three ways of reducing an SOP expression and these are Boolean Algebra, K-Maps

and Quine McCluskey.

2. We studied the laws of Boolean Algebra and applied them to minimize a Boolean

expression.

3. We also learned how to translate a truth table into a K-map and further use K-maps to

minimize a Boolean expression with 2 to 4 input variables.

4. How to use the Quine-Mc luskey’s Algorithm to minimize a Boolean expression with

more than 4 input variables.

Post-Test
1. Using Boolean Algerbra, prove that:

i.

ii.

iii.

iv.

v.

vi.

vii.

2. Minimize the following functions using either K-map or QM

i.

ii.

3. Write the minimal expression for the following maps

 AB

CD 00 01 11 10

00 0 0 1 0

 AB

CD 00 01 11 10

00 0 1 1 0

 108

01 0 1 1 1

11 0 0 0 1

10 0 0 0 1

01 0 1 0 0

11 0 1 0 0

10 0 1 1 0

References
Ronald J. Rocco and Neal S. Widmer, Digital Systems Principles and Applications, Eighth Edition.

Prentice-Hall, 2001.

David Tarnoff, Computer Organization and Design Fundamentals, 2007.

William E. Wickes, 1968, Logic Design with Integrated Circuits

 109

LECTURE NINE

STANDARD COMBINATIONAL LOGIC CIRCUITS

Introduction

From a previous lecture, we know that Combinational Logic Circuits consist of inputs, two or

more basic logic gates and outputs. The logic gates are combined in such a way that the output

state depends entirely on the input states. Combinational circuits have "no memory", "timing"

or "feedback loops", there operation is instantaneous. A combinational circuit performs an

operation assigned logically by a Boolean expression or truth table. Examples of common

combinational logic circuits include: half adders, full adders, multiplexers, de-multiplexers,

encoders and decoders all of which we will look at in this lecture.

Objectives

At the end of this lecture, you should be able to:

1. Classify combinational logic circuits
2. Describe the operations and functions of arithmetic and logic circuits
3. Describe the operations and functions data transmission circuits
4. State the operations and functions of code converters

9.1 Classification of Combinational Logic

The outputs of Combinational Logic Circuits are only determined by the logical function of

their current input state, logic "0" or logic "1", at any given instant in time as they have no

feedback, and any changes to the signals being applied to their inputs will immediately have an

effect at the output. In other words, in a Combinational Logic Circuit, the output is dependant

at all times on the combination of its inputs and if one of its inputs condition changes state so

does the output. There are some standard CLC that are used in building digital systems. These

CLC can be classified by the type of function they perform. Figure 9.1 shows this classification

as well as the circuits that belong there.

 110

Figure 9.1: Classification of Combinational
Logic circuits

9.2 Combinational Logic Circuits for Arithmetic and Logical functions

These are circuits that perform arithmetic and logical functions. They form part of the circuits

of the ALU of a computer or digital devices that support such functions. The standard circuits

include the Adders, Subtractors, Comparators and PLDs. For the purpose of lecture, we will

treat Adders, Subtractors and Comparators

9.2.1 The Binary Adder

The binary adder circuit is a very useful combinational logic circuit constructed using just a few

basic logic gates and adds together binary numbers. This circuit allow a device to "add"

together single bit binary numbers, A and B to produce two outputs, the SUM of the addition and

a CARRY called the Carry-out (Cout) bit. This circuit is used mainly in arithmetic and counting

circuits. Binary Addition follows the same basic rules as the decimal addition we were taught

in primary school, where addition starts from the least significant bit and progresses leftwards

until all the digits are expended. However, in binary addition, there are only two digits and the

largest digit is "1", so any "SUM" greater than 1 will result in a "CARRY". This carry 1 is passed

over to the next column for addition and so on. Consider the single bit addition below.

0 0 1 1

+ 0 + 1 + 0 + 1

0 1 1 10

 111

For a simple 1-bit addition problem shown above, if we ignore the resulting carry bit (in red),

the result for the sum resembles the output of an Ex OR date. We know that an Ex-OR gate will

only produce a “1” output when "EITHER" input is at logic "1", so we need an additional output

to produce a carry output, "1" when "BOTH" inputs "A" and "B" are at logic "1" and a standard

AND gate fits the function. Combining the Ex-OR gate with the AND gate results in a simple

digital binary adder circuit known commonly as the "Half Adder" circuit.

The Half Adder Circuit
From the truth table in Table

9.1, we can see that the SUM

output is the result of the Ex-

OR gate and the Carry output

is the result of the AND gate.

One major disadvantage of

the Half Adder circuit when

used as a binary adder, is that there is no provision for a "Carry-in" from the previous circuit

(column) when adding together multiple data bits. The most complicated operation the half

adder can do is "1 + 1" but as the half adder has no carry input the resultant added value would

be incorrect. One simple way to overcome this problem is to use a Full Adder type binary adder

circuit.

The Full Adder Circuit

The main difference between the Full Adder and the previous seen Half Adder is that a full

adder has three inputs, the same two single bit binary inputs A and B as before plus an

additional Carry-In (C-in) input as shown in Table 9.2. The 1-bit Full Adder circuit in Table 9.2

is basically two half adders connected together. The truth table for the full adder includes an

additional column to take into account the Carry-in input as well as the summed output and

carry-output. These full adder circuits are available as standard Integrated Circuit packages in

Table 9.1: 1-bit Binary Half Adder with Carry-Out

Circuit Truth Table

Input Output

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Boolean Expression:

 112

the form of the TTL 74LS83 which can add together two 4-bit binary numbers and generate a

SUM and a CARRY output.

Table 9.2: 1-bit Binary Full Adder with Carry-Out

Circuit Truth Table

Input Output

C-in A B Sum C-out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Boolean Expression: :

However, if we wanted to add together two n-bit numbers, then n 1-bit full adders need to be

connected together to produce what is known as the Ripple Carry Adder.

Quiz: Generate the Boolean expression for the Full Adder in SOP form.

The 4-bit Binary Ripple Carry Adder

The Ripple Carry Binary Adder is simply n, full adders cascaded together with each full adder

representing a single weighted column in the long addition. The carry signals produce a

"ripple" effect through the binary adder from right to left. For example, suppose we want to

"add" together two 4-bit numbers, the two outputs of the first full adder will provide the first

place digit sum of the addition plus a carry-out bit that acts as the carry-in digit of the next

binary adder. The second binary adder in the chain also produces a summed output (the 2nd

 113

bit) plus another carry-out bit and we can keep adding more full adders to the combination to

add larger numbers, linking the carry bit output from the first full binary adder to the next full

adder, and so forth. An example of a 4-bit adder is given in Figure 9.2. One main disadvantage of

"cascading" together 1-bit binary adders to add large binary numbers is that if inputs A and B

change, the sum at its output will not be valid until any carry-input has "rippled" through every

full adder in the chain.

Figure 9.2: A 4-bit Binary Adder

Consequently, there will be a finite delay before the output of a adder responds to a change in its

inputs resulting in the accumulated delay especially in large multi-bit binary adders becoming

prohibitively large. This delay is called Propagation delay. One solution is to generate the

carry-input signals directly from the A and B inputs rather than using the ripple arrangement

above. This then produces another type of binary adder circuit called a Carry Look Ahead

Binary Adder were the speed of the parallel adder can be greatly improved using carry-look

ahead logic.

9.2.2 The 4-bit Binary Subtractor

When you write a line of code and state

 , how would the computer perform

Figure 9.3: 4-bit Binary

Subtractor

 114

that operation? Well the computer will first convert the variables to binary before any further

operation. Assuming the two numbers are converted to 4-bits, we can perform the two 4-bit

binary number subtraction using the circuit above by using the 2’s-complement notation on all

the bits in B. This is achieved by inverting all the bits of B using a NOT gate and then adding

extra one using the carry-input as shown in Figure 9.3. Also, in the above circuit for the 4-bit

binary adder, the first carry-in input is held LOW at logic "0", for the circuit to perform

subtraction this input needs to be held HIGH at "1". With this in mind a ripple carry adder can

with a small modification be used to perform half subtraction, full subtraction and/or

comparison.

9.2.3 The Digital Comparator

This is a combinational logic circuit that compares the digital signals present at their input

terminals and produces an output depending upon the condition of those inputs. For example,

when you write a line of code and state that, If A>B, then …, the computer circuitry should be

able to perform that comparison. The digital comparator accomplishes this using several logic

gates that operate on the principles of Boolean algebra. So comparators are circuits used to

check whether two digital words are the same. There are two main types of digital

comparator:-

1. Identity Comparator:-this is a digital comparator that has only one output terminal

for when A = B , that is when A = B = 1 or A = B = 0

2. Magnitude Comparator:- this is a type of digital comparator that has three output

terminals, one for when A = B, one for when A > B, and the last one for when

A < B

A Digital Comparator is used to compare a set of variables or unknown numbers, for example A

(A1, A2, A3, An, etc) against that of a constant or unknown value such as B (B1, B2, B3, Bn, etc)

 115

and produce an output condition or flag depending upon the result of the comparison. For

example, a magnitude comparator of two 1-bits, (A and B) inputs would produce the following

three output conditions when compared to each other. This is useful if we want to compare two

variables and want to produce an output when any of the above three conditions are achieved.

Consider the simple 1-bit comparator in Figure 9.4.

Inputs Outputs

A B A>B A=B A<B

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

Figure 9.4: 1-bit Comparator

The operation of a 1-bit digital comparator is given in the Truth Table. You may notice two

distinct features about the comparator from the above truth table. Firstly, the circuit does not

distinguish between either two "0" or two "1"'s as an output A = B is produced when they are

both equal, either A = B = "0" or A = B = "1".

Quiz: Can you recall which logic gate has this characteristics?

In addition to comparing individual bits, we can design larger bit comparators by cascading

together n – comparators to produce an n-bit comparator just as we did for the n-bit adder. For

example, the symbol of a 4-bit Magnitude Comparator is shown in figure 9.5. Here, two 4-bit

words are compared to each other to produce the relevant output with one word connected to

inputs A and the other to be compared against connected to input B as shown.

 116

Figure 9.5: A 4-bit Magnitude
Comparator

When comparing large binary numbers, to save time the comparator starts by comparing the

MSB first. If equality exists, then it compares the next lowest bit and so on until it reaches the

LSB. If equality still exists then the two numbers are defined as being equal. If inequality is

found, then either A > B or A < B.

9.3 Data transmission Combinational Logic circuits

These are circuits that transfer data from one side of a circuit to another side. In some cases, the

devices will have to ‘choose’ which data to transmit, depending on some conditions. Such

circuits included the Multiplexers, De-multiplexers, Encoders and Decoders.

9.3.1 The Multiplexer

A Multiplexer is more commonly called data selector and shortened to "MUX" or "MPX".

Multiplexers are combinational logic switching devices that operate like very fast-acting

multiple position rotary switch. Multiplexers provide a way of selecting one out of many digital

signals. A multiplexer will in general have n inputs (either 2, 4, 8 or 16 individual inputs) usually

called “channels”, and one output, with m control lines which are used to select one of the n

inputs. The block diagram of a multiplexer is shown in Figure 9.6.

 117

Figure 9.6: A block diagram of a multiplexer

The job of a multiplexer is to allow multiple signals to share a single common output. The n-

input channel that is routed through to the output is determined by the bit pattern on the m

control lines. The relationship between n and m is given by . Hence, the number of input

lines that can be multiplexed is . Multiplexers are usually referred to as n-to-1 or 1-of-n

multiplexers or data selectors. Figure 9.10 shows the circuit of a 2-to-1 MUX.

Figure 9.10: a simple 2-to-1 MUX.

Note that it has two inputs (n= 2) D0 and D1, with a single control line (m= 1). So if A =0, then

the output from the AND gate with D1 as an input must be 0, whilst the output from the other

AND gate will be . So, the output from the multiplexer, .

Similarly if then . Therefore, in Boolean expression:

One way of thinking of the action of a multiplexer is that only one of the AND gates is ever

activated and so allows the input signal fed to it through to the OR gate. Multiplexers are used

as one method of reducing the number of logic gates required in a circuit or when a single data

line is required to carry two or more different digital signals.

Example 9.1: Draw the circuit diagram and truth table, and give the Boolean equation
describing the output, of a 4-to-1 multiplexer.

 118

Control Output

A B Y

0 0

0 1

1 0

1 1

Figure 9.11: 4-to-1 Channel Multiplexer

In this example at any one instant in time only ONE of the four AND gates is activated,

connecting only one of the input lines to the single output at Y. As earlier noted, the

gate which is active depends upon the addressing/ control input code on lines "A" and "B". The

symbol of this 4-to-1 MUX is shown in Figure 9.12.

Figure 9.12: Multiplexer Symbol

It is important to note that Multiplexers are not limited to just switching a number of different

input lines or channels to one common single output. There are also some multiplexers that can

switch their inputs to multiple outputs and have arrangements or 4-to-2, 8-to-3 or even 16-to-4.

An example of a simple Dual channel 4 input multiplexer (4 to 2) is given in Figure 9.13.

Figure 9.13: A 4-to-2 Multiplexer

 119

In Figure 9.13, the 4 input channels are switched to 2 individual output lines but larger

arrangements are also possible. This simple 4 to 2 configuration could be used for example, to

switch audio signals for stereo pre-amplifiers or mixers. The Multiplexer is a very useful

combinational device that has its uses in many different applications such as signal routing, data

communications and data bus control. When used with a demultiplexer, parallel data can be

transmitted in serial form via a single data link such as a fibre-optic cable or telephone line.

They can also be used to switch either analogue, digital or video signals.

In summary, you can see a multiplexer as a television channel selector. All of the stations are

broadcast constantly to the television's input, but only the channel that has been selected is

displayed.

9.3.2 The Demultiplexer

A Demultiplexer is often called a data distributor and shortened as "DEMUX". Demultiplexers

provide the reverse operation of multiplexers since they allow a single input to be routed to one

of n outputs, selected via m control lines . This circuit element is usually referred to as

a 1-of-n demultiplexer. The circuit basically consists of n AND gates, one for each of the

possible combinations of the m control inputs, with the single line input fed to all of these gates.

Since only one AND gate will ever be active this determines which output the input is fed to.

The block, and circuit, diagram of a 1-of-4 demultiplexer is shown in Figure 9.14. So you can say

that the demultiplexer converts a serial data signal at the input to a parallel data at its output

lines as shown in Figure 9.14.

 120

Addressing F routed
to Output a b

0 0 A

0 1 B

1 0 C

1 1 D

Figure 9.14: The 1 to 4 Demultiplexer truth table and structure

The function of the Demultiplexer in Figure 9.14 is to switch one common data input line to any

one of the 4 output data lines A to D. As with the multiplexer the individual solid state switches

are selected by the binary input address code on the output select pins "a" and "b" and by

adding more address line inputs it is possible to switch more outputs giving a 1-to-2n data line

outputs. The implementation of the demultiplexer above using individual logic gates would

require the use of six individual gates consisting of AND and NOT gates as shown in figure 9.15.

Demultiplexer Symbol

Figure 9.15: The 1 to 4 Demultiplexer Symbol and circuit diagram

9.3.3 The Digital Encoder

Encoders are circuits that convert a single active signal (out of r inputs) into a coded binary, s-

bit, output (this would be referred to as an r-line- to-s-line encoder). Unlike a multiplexer that

selects one individual data input line and then sends that data to a single output line or switch, a

Digital Encoder takes ALL its data inputs one at a time and then converts them into a single

a b

F A

B

C

D

 121

encoded output. A digital encoder is sometimes called a binary encoder, which is a multi-input

combinational logic circuit that converts the logic level "1" data at its inputs into an equivalent

binary code at its output. Generally, digital encoders produce outputs of 2-bit, 3-bit or 4-bit

codes depending upon the number of data input lines. An "s-bit" binary encoder has input

lines and s-bit output lines with common types that include 4-to-2 (Figure 9.16), 8-to-3 and 16-

to-4 line configurations. The output lines of a digital encoder generate the binary equivalent of

the input line whose value is equal to "1" and are available to encode either a decimal or

hexadecimal input pattern to typically a binary or BCD output code.

Figure 9.16: 4-to-2 Bit Binary Encoder

One of the main disadvantages of standard digital encoders is that they can generate the wrong

output code when there is more than one input present at logic level "1". For example, if we

make inputs D1 and D2 HIGH at logic "1" at the same time, the resulting output is neither at "01"

or at "10" but will be at "11" which is an output binary number that is different to the actual

input present. Also, an output code of all logic "0"s can be generated when all of its inputs are at

"0" OR when input D0 is equal to one. A way to overcome this problem is to "Prioritise" the level

of each input pin and if there was more than one input at logic level "1" the actual output code

would only correspond to the input with the highest designated priority. Then this type of

digital encoder is known commonly as a Priority Encoder. Priority encoders can be used to

reduce the number of wires needed in a particular circuits or application that have multiple

inputs. Other applications especially for Priority Encoders may include detecting interrupts in

microprocessor applications. Here the microprocessor uses interrupts to allow peripheral

devices such as the disk drive, scanner, mouse, or printer etc., to communicate with it, but the

 122

microprocessor can only "talk" to one peripheral device at a time. The processor uses "Interrupt

Requests" or "IRQ" signals to assign priority to the devices to ensure that the most important

peripheral device is serviced first. The order of importance of the devices will depend upon

their connection to the priority encoder.

9.3.4 Binary Decoder

A Decoder is the exact opposite of an Encoder. It is basically, a combinational logic circuit that

converts the binary code data at its input into one of a number of different output lines, one at a

time producing an equivalent decimal code at its output. Binary Decoders have inputs of 2-bit,

3-bit or 4-bit codes depending upon the number of data input lines. An n-bit decoder has

output lines. Therefore, if it receives n inputs (usually grouped as a binary or Boolean number)

it activates one and only one of its outputs based on that input with all other outputs

deactivated. A decoder output code/ lines normally has more bits than its input code and

practical binary decoder circuits include, 2-to-4, 3-to-8 and 4-to-16 line configurations. An

example of a 2-to-4 line decoder along with its truth table is given in figure 9.17. It consists of an

array of four AND gates, one of which is selected for each combination of the input signals A and

B.

Figure 9.17: 2-to-4 line binary decoder

 123

In this simple example of a 2-to-4 line binary decoder, the binary inputs A and B determine

which output line from D0 to D3 is "HIGH" at logic level "1" while the remaining outputs are held

"LOW" at logic "0" so only one output can be active (HIGH) at any one time. Therefore,

whichever output line is "HIGH" identifies the binary code present at the input, in other words it

"de-codes" the binary input and these types of binary decoders are commonly used as Address

Decoders in microprocessor memory applications.

9.4 Code Converters

These are Combinational logic circuits that convert their inputs from one number code to

another. The most common one is the BCD to 7-segment decoder.

9.4.1 BCD to 7-Segment Display Decoder

If you ever seen a digital message scrolling along what looks like dotted lines, then you have

seen a 7-segment display. The 7-segment LED (Light Emitting Diode) or LCD (Liquid Crystal)

displays, provide a very convenient way of displaying information or digital data in the form of

numbers, letters or even alpha-numerical characters and they consist of 7 individual LED's (the

segments), within one single display package.

In order to produce the required numbers or HEX characters from 0 to 9 and A to F respectively,

on the display, the correct combination of LED segments need to be illuminated and BCD to 7-

segment Display Decoders do that. A standard 7-segment LED display has 8 input

connections, one for each LED segment and one that acts as a common terminal or connection

for all the internal segments. Some single displays have an additional input pin for the decimal

point in their lower right or left hand corner. Figure 9.18 shows the display format for the

standard 7-segment LED, While the truth table for the circuit follows.

 124

Figure 9.18: 7-Segment Display
Format

Display Table for a 7-segment circuit

Individual Segments
Display

a b c d e f g

× × × × × ×

0

× ×

1

× ×

× ×

× 2

× × × ×

× 3

× ×

× × 4

×

× ×

× × 5

×

× × × × × 6

× × ×

7

Individual Segments
Display

a b c d e f g

× × × × × × × 8

× × ×

× × 9

× × ×

× × × A

× × × × × b

×

× × ×

C

× × × ×

× d

×

× × × × E

×

× × × F

7-Segment Display Elements for all Numbers.

It can be seen that to display the number 8, all 7 segments would need to be lit. The BCD to 7-

Segment Display Decoder are used to reduce the total number of connections. The decoder

sends a signal in BCD format as input while the output it used to drive the various segments,

depending on the current input. Binary Coded Decimal (BCD) numbers are made up using just

4 data bits and range from 0 to 9.

A binary coded decimal (BCD) to 7-segment display decoder have 4 BCD inputs and 7 output

lines, one for each LED segment. This allows a smaller 4-bit binary number to be used to display

all the denary numbers from 0 to 9 and by adding two displays together, a full range of numbers

from 00 to 99 can be displayed with just a single byte of 8 data bits.

 125

Figure 9.19: The block diagram of a BCD to 7-Segment
Decoder

Example: An example of the 4-bit BCD input (0100) representing the number 4 is given below.

In practice current limiting resistors of about 150Ω to 220Ω would be connected in series

between the decoder/driver chip and each LED display segment to limit the maximum current

flow.

Summary

 Combinational Logic circuits can be classified by the type of function they perform in the

microprocessor.

 Adder are used for binary arithmetic (addition) and with some modification, can also be

used for subtraction.

 126

 Comparators are used to compare the magnitude of binary digits and often give three

different outputs, depending on its finding.

 The multiplexer allows multiple signals to share a single common output, one at a time.

 The demultiplexer takes one single input data line and then switches it to any one of a

number of individual output lines one at a time.

 The Digital Encoder is a combinational circuit that generates a specific code at its

outputs such as binary or BCD in response to one or more active inputs. There are two

main types of digital encoder. The Binary Encoder and the Priority Encoder. The

Binary Encoder converts one of the inputs into an s-bit output. The Priority Encoder is

another type of combinational circuit similar to a binary encoder, except that it

generates an output code based on the highest prioritised input.

 A binary decoder converts coded inputs into coded outputs, where the input and

output codes are different.

Post-Test

1. What is the function of an 8-to-1 multiplexer?

2. What does a demultiplexer do?

3. Why can a decoder be constructed from a demultiplexer?

4. What three types of combinational logic circuits can an XOR gate be used to construct?

5. What does a full adder do?

6. What type of circuit is a ripple carry adder, what basic unit is it built from?

7. Differentiate between an identity comparator and a magnitude comparator

8. How many control input lines will the following have?

a. an 8-to-1 multiplexer

b. a 1-to-16 demultiplexer

9. Draw a sketch of a 4-bit Ripple Carry Binary Adder and show what the various outputs

will be if the device is used to add A=11102 to B=1012

10. What is the main difference between Standard Encoders and a Priority Encoders?

 127

References

Essential Electronics

Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

www.electronics-tutorials.ws

 128

LECTURE TEN

SEQUENTIAL LOGIC CIRCUIT BASICS

Introduction

In the preceding lectures, we have been studying combinational logic circuits, whose outputs

depend solely on their current input. However, once in a while, it would be good a digital

system to store some data for later retrieval, at least before the system is shut down. It means

there has to be a way to “remember” what has been “stored” and make such data readily

available for processing. This brings us to the topic of this lecture, Sequential logic circuits

which have some form of memory. In these types of circuits, things happen in a sequence, hence

their name.

Objectives

At the end of this lecture, you should be able to:

1. State the main difference between a combinational logic circuit and a sequential logic

circuit.

2. Name the four main types of Flip Flops

3. Draw and describe the operation of the S-R flip-flop

4. State what a T-type flip-flop does

5. State what is means to “store” 1 bit in a flip flop.

Introduction

Sequential circuits consist of combinational logic as well as memory elements (used to store

certain circuit states). Their outputs depend on BOTH current input values and previous input

values. Put another way, the output of a sequential circuit may depend upon its previous

 129

outputs and so in effect has some form of 'memory'. This means that sequential circuits are

essentially combinational circuits with feedback. A block diagram of a generalised sequential

circuit is shown in Figure 10.1. The circuit contains a block of combinational logic which has two

sets of inputs and two sets of outputs described as follows:

 A, the present (external) inputs to the circuit;

 y, the inputs fed back from the outputs;

 Z, the present (external) outputs from the combinational circuit;

 Y, the outputs that are fed back into the combinational circuit.

Figure 10.1: The general form of a sequential logic circuit

Note that the outputs, Y, are fed back via the memory block to become the inputs, y, and that y

are called the 'present state' variables because they determine the current state of the circuit,

with Y the 'next state' variables as they will determine the next state the circuit will enter.

An important concept to note is that sequential circuits can be considered at any time to occupy

a certain 'state'. These 'states' are dependent upon the internal feedback, and sometimes the

external inputs as well. This idea of the circuit possessing states is fundamental to sequential

circuits since they are often designed and analysed by the manner, or sequence, in which the

available states are visited for given sequences of inputs. The sequential logic circuits we will

study in this lecture are usually called Bistables or Flip-flops. Bistables are switching circuits

 130

with two stable states. The states are either a logic level "1" or a logic level "0" and they will

remain "latched" indefinitely in a state or condition until some other input trigger pulse or

signal is applied which will cause it to change its state once again. They are fundamental

components/ devices used in Counters, Shift registers and Memories.

10.1 The S-R Flip-Flop

An S-R Flip-Flop acts as a basic one-bit memory device that has two inputs, one which will "SET"

the device and another which will "RESET" the device back to its original state. It also has two

outputs; an output Q that will be either at a logic level "1" or logic "0" depending upon this

Set/Reset condition and the other output, it’s complement, . This flip-flop can be constructed

using any of the universal logic gates (can you recall them?).

These devices are termed "Flip-flop" because of the actual operation of the device, as it can be

"Flipped" into one logic state or "Flopped" back into another. The simplest way to make any

simple one-bit Set/Reset (SR) flip-flop is to connect together a pair of cross-coupled 2-input

NAND Gates to form a Set-Reset Bistable, so that there is feedback from each output to one of

the other NAND Gate inputs. This device consists of two inputs, one called the Set, S and the

other called the Reset, R with two outputs Q and its inverse or complement , as shown in

figure 10.2.

Figure 10.2: NAND gate S-R Bistable / flipflop

Before we look at the mode of operation of this flip-flop, I want you to draw the truth table for a

two-input NAND gate and keep it close by. You will need it!

The Set State

 131

Studying figure 10.2, you can see that If the input R is at logic level "0" and input S is at logic

level "1", then the Y - NAND Gate has at least one of its inputs at logic "0" therefore, its output Q

must be at a logic level "1" (remember I asked you to keep the NAND gate truth table handy!).

Output Q is also fed back to input A. This makes both inputs to the X - NAND Gate to be at logic

level "1", and therefore its output must be at logic level "0". If the Reset input R changes state,

and now becomes logic "1" with S remaining at logic level "1", the Y- NAND Gate inputs are now

R = "1" and B = "0" and since one of its inputs is still at logic level "0" the output at Q remains at

logic level "1" and the circuit is said to be "Latched" or "Set" with Q = "1" and = "0".

Reset State

In this second stable state, Q is at logic level "0", and is at logic level "1". This is given by R =

"1" and S = "0". The X NAND gate has one of its inputs at logic "0" therefore, its output must

equal logic level "1". Output is fed back to input B, so both inputs to the Y-NAND gate are at

logic "1", therefore, Q = "0". If the set input, S now changes state to logic "1" with R remaining at

logic "1", output Q still remains at logic level "0" and the circuit's "Reset" state has been latched.

Table 10.1: Characteristic Table for Set-Reset Function

State S R Q (Q bar)

Set
1 0 1 0

1 1 1 0

Reset
0 1 0 1

1 1 0 1

Indeterminate
0 0 1 1

1 1 ? ?

Indeterminate State

From Table 10.1 you can see that when both inputs S = "1" and R = "1" , the outputs Q and Q-bar

can be at either logic level "1" or "0", depending on the state before this input condition existed.

Therefore things must happen in sequence for the device to function well. Both R and S must

not be at logic level “1” simultaneously. The SR Latch is said to be in an "invalid" condition

(Meta-stable) if both the Set and Reset inputs are activated simultaneously. Similarly, the input

 132

state R = "0" and S = "0" is an undesirable or invalid condition and must be avoided because this

will give both outputs Q and to be at logic level "1" at the same time!

Figure 10.3 shows how to construct a simple 1-bit SR Flip-flops using two NOR Gates connected

the same configuration. The circuit will work in a similar way to the NAND gate circuit above,

except that the invalid condition exists when both its inputs are at logic level "1".

Figure 10.3: The NOR Gate SR Flip-flop

Quiz: Draw the Characteristic Table for the NOR gate implementation of the SR flip-

flop.

10.2 The JK Flip-Flop

From the section 10.1, we know that the SR NAND Flip-flop suffers from two basic problems: (1)

the S = 0 and R = 0 condition or S = R = 0 must always be avoided, and (2) if S and R (S=R=1) are

activated simultaneously. To overcome these two problems the JK Flip-Flop was developed.

The JK Flip-Flop is basically an SR Flip-Flop with the addition of clock input circuitry that

prevents the illegal or indeterminate output that can occur when both input S and input R

equals logic level "1". The symbol and circuit diagram for a JK Flip-flop is shown in figure 10.4.

Figure 10.4: The J-K Flip-Flop

 133

From figure 10.4 you will notice that the S and the R inputs of the SR Bistable have been

replaced by two inputs called the J and K inputs, respectively. The two 2-input NAND gates of

the gated SR Bistable have now been replaced by two 3-input NAND gates with the third input

of each gate connected to the outputs Q and Q-bar. This cross coupling allows the previously

invalid condition of S = "1" and R = "1" state to be usefully used to turn it into a "Toggle action"

as the two inputs are now interlocked. The Characteristic table for the JK flip-flop is shown in

Table 10.2.

Table 10.2 The Characteristic Table for the JK flip-flop

J K Q after clock pulse

0 0 Stays at 0 or 0

0 1 Resets to 0

1 0 Sets to 1

1 1 Toggles

From its circuit diagram, we notice that the JK Flip-flop is basically an SR Flip-flop with feedback

and which enables only one of its two input terminals, either Set or Reset at any one time

thereby eliminating the invalid condition seen previously in the SR Flip-flop circuit. Also when

both the J and the K inputs are at logic level "1" at the same time, and the clock input is applied,

the circuit will "Toggle" from a Set state to a Reset state, or visa-versa. This results in the JK Flip-

flop acting more like a T-type Flip-flop when both terminals are "HIGH". In summary, when

clock pulses are applied to Clk input of the JK flip-flop, it:

(i) Retains it’s present state if

(ii) Acts as a D-type flip-flop if J and K are different,

(iii) Acts as a T-type flip-flop if

(iv) Sets to 1, if J=1

(v) Resets to 0, if K= 1

 134

10.3 The T flip-flop

The T flip-flop gets its name from the ability of the device to toggle or change state with every

input clock pulse, as long as the control, T is at logic level “1”. That is, regardless of the state of

the flip-flop at time t, it will assume the complement state on command of a pulse if the input T

is high. Whenever it is desired that the flip-flop remain stable and not change state, the T input

must be held to a logic “0” level. T flip-flops are used mainly in counter devices on digital

circuits as we will see in the next lecture. The T flip-flop can be achieve using the JK flip-flop by

setting .

10.4 The D-type flip-flop

The symbol and circuit diagram of the D-type flip-flop is given in figure 10.5. Recall that one of

the main disadvantages of the SR NAND Gate flip-flop circuit is that the indeterminate input

condition of "SET" = logic "0" and "RESET" = logic "0" is forbidden. That state will force both

outputs to be at logic "1", over-riding the feedback latching action and whichever input goes to

logic level "1" first will lose control, while the other input still at logic "0" controls the resulting

state of the latch. In order to prevent this from happening an inverter can be connected between

the "SET" and the "RESET" inputs to produce a D-Type Data Latch or simply Data Latch as it is

generally called.

Figure 10.5: The D-Type Flip-flop

By connecting an inverter to the SR flip-flop we can "SET" and "RESET" the flip-flop using just

one input as now the two latch inputs are complements of each other. This single input is simply

 135

called the "DATA (D)" input. If a logic 1 is applied to the D input, regardless of what state the

flip-flop is in before the pulse, it will assume a 1 state on its normal Q output. This happens

however, when a clock or enable input is applied. The flip-flop acts as a buffer. It will store and

output whatever logic level is applied to its data terminal so long as the clock input is high. Once

the clock input goes low the flip-flop will not change state, therefore it store whatever data was

present on its output before the clock transition occurred. In other words the output is "latched"

at either logic "0" or logic "1". The Characteristic table for the data-latch is given in Table 10.3.

Table 10.3: Characteristic Table for the D-type Flip-flop

Clk D Q Q bar OUTPUT

0 x Q Q bar HOLD

1 0 0 1 RESET

1 1 1 0 SET

Suppose you design a circuit and would want to store and hold an n-bit binary number for

further processing, how do you imagine the computer achieves this? Well, as we just studied,

the data latch will hold and output whatever input signal is applied to its D-input as long as the

clock pulse is high. Once the clock pulse is set low, it will hold (store) the last input that was

applied. The Data Latch is a very useful devices in electronic and computer circuits, they are

used to build registers, which are temporary memory locations in digital devices. Figure 10.6

shows the arrangement of a 4-bit data latch.

Quiz: How many flip-flops were used?

Figure 10.6 A 4-bit Data Latch

 136

10.5 Asynchronous and Synchronous Sequential logic circuits

Sequential logic circuits can be either synchronous or asynchronous in nature. The timing of the

operation of asynchronous circuits, is not controlled by any external timing mechanism.

Rather, as soon as changes are made at the inputs of such a circuit they take effect at the

outputs. Synchronous circuits are those that possess a clock of some sort which regulates the

feedback process. Hence the timing of changes in the outputs, in response to changes at the

inputs, are controlled by the 'ticking' of a clock. Consequently, the timing of the operation of

sequential circuits can be, and usually is, synchronised to other parts of a larger circuit. Figure

10.7 shows the block diagrams for these two types of sequential circuits. Synchronous

sequential circuits are also referred to as clocked circuits, whilst Asynchronous ones are known

as unclocked.

Figure 10.7: General structure of asynchronous and synchronous
sequential circuits

Despite the fact that asynchronous circuits are more difficult to design than synchronous

circuits, asynchronous circuits do have certain benefits. One of such benefits include the fact

 137

that because they are free running, their speed of operation is limited solely by the

characteristics of the components from which they are built and not by the speed at which they

are clocked. Consequently, asynchronous circuits have the potential to work at higher speeds

than synchronous ones. Also: some systems may require a circuit to respond immediately to

changing inputs (i.e. the inputs cannot be synchronised to the rest of the circuit); in very large

circuits the unavoidable delays as a signal.

Summary

 The SR Bistable latch is activated or Set by a logic "1" applied to its S input and

deactivated or Reset by a logic "1" applied to its R.

 The JK Flip-Flop was invented to eradicate the invalid state of the SR flip-flop.

Therefore, when the clock pulse is applied to the Clock input of the JK flip-flop, the flip-

flop:

(i) Retains it’s present state if

(ii) Acts as a D-type flip-flop if J and K are different,

(iii) Acts as a T-type flip-flop if

 The T flip-flop toggles or changes state with every clock pulse, as long as the control, T is

at logic level “1”.

 The Data-Latch, serves as a memory location that will hold whatever signal is applied to

its input, as long as the clock pulse is low.

 The operation of asynchronous circuits, is not controlled by any external timing

mechanism. Synchronous circuits are those that possess a clock of some sort which

regulates the feedback process.

Post-Test

1 What is the basic difference between sequential and combinational logic circuits?

2 What is the general form of a sequential logic circuit?

 138

3 What are the basic differences between asynchronous and synchronous sequential

circuits?

4 Draw the NAND SR flip-flop and analyse it’s mode of operations

5 How can a JK flip-flop be converted into a Toggle flip-flop

References

Essential Electronics

Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

www.electronics-tutorials.ws

Mark Balch, 2003, Complete Digital Design, A Comprehensive Guide to Digital Electronics and

Computer System Architecture, McGraw-Hill

William E. Wickes, 1968, Logic Design with Integrated Circuits

 139

LECTURE ELEVEN

REGISTERS AND COUNTERS

Introduction

The Flip-flops treated in the previous lecture are programmed as counters and registers in one

mode or another. They are found in almost all equipment containing digital logic. A computer

continuously counts clock pulses, representing time, to control the sequencing of the internal

program. A digital washing machine may count pulses that determine the step-by-step

operation of a programmed sequence of events. There are binary counters, decade counters,

random counters, synchronous counters, ripple counters, ring counters and shift registers, to

mention a few. This chapter will treat the most important type of counters and give examples of

how they are implemented.

Objectives

At the end of this lecture, you should be able to:

1. Recognize and describe the action of binary up counters

2. State what is meant by the term ‘modulo’

3. Draw the block diagram of counters of different modulo

4. Draw the block diagram of an n-bit register

5. State the four modes in which shift registers operate

11.1 Clocks

In the previous lecture wee mentions clock pulses. In this lecture, we will study further how

these clock pulses are used to ‘control’ registers and counters. What then are clock pulses?

Clock pulses are supplied by some form of pulse generator, which may be a crystal-controlled

 140

oscillator with a very steady repetition frequency, e.g. 10MHz, or an astable multivibrator or a

mechanical switch turning a D.C. supply on and off. The pulse should have fast rise and fall

times, that is, be good square waves. Figure 11.1 shows the wave form of clock pulses and the

associated properties.

Figure 11.1: The clock pulse symbol

From figure 11.1 you can see that the clock wave form has four sides, the rising edge, falling

edge, logic level 1 and logic level 0. Their meaning are self-explanatory from the figure. They

determine when a Bistable will change state and ultimately the device which those Bistables are

used to implement.

11.2 Level and Edge Triggering

There are two types of clocking or triggering operation in sequential circuits. In level triggering,

bistables change state when the logic level of the clock pulse is 1 or 0. Those bistables are

referred to as level triggered. In edge triggering, a change in voltage causes switching. If it

occurs during the rise of the clock pulse from logic level 0 to 1 it is rising or positive-edge

triggering and most modern clocked logic is of this type. In falling or negative-triggering,

switching occurs when the clock pulse falls from 1 to 0. The T-type bistable is edge triggered.

In general, edge triggering is more satisfactory than level triggering because in the former,

output changes occur at an exact instant during the clock pulse and any further input changes

do not affect the output until the next clock rise (or fall). In level triggering, output changes can

occur at any time while the clock pulse is 1, which may not be desirable.

Rising edge

Falling edge

Logic level 1

Logic level 0

 141

11.3 Classification of Sequential Logic circuits

In Sequential Logic circuits, the actual clock signal determines when things will happen next.

Simple sequential logic circuits can be constructed from standard Bistable circuits studied in the

previous lecture such as Flip-flops and Latches. These Sequential Logic circuits can be divided

into 3 main categories:

1 Clock Driven – These are also called synchronous circuits because they are

synchronised to a common clock signal. A synchronous circuit has

all of its flip-flops transition at the same time so that they settle at

the same time.

2 Event Driven – Also termed asynchronous circuits as they react or change state

when an external event occurs. It also means that the Flip-flops do

not react to the same clock pulse.

3 Pulse Driven - A Combination of Synchronous and Asynchronous.

Although Sequential logic circuits can fall into any of the categories mentioned above, they also

have another quality. A Sequential logic circuit that returns back to its original state once reset,

is said to be "Cyclic" in nature.

11.4 Registers

Registers are collections of multiple flip-flops arranged in a group with a common function. The

most common type being the shift registers. A shift register is a group of flip-flops programmed

in such a way that data shifts from one flip-flop to the next in synchrony. A shift register is also

recognized as a memory which stores a binary number and shifts it out when required. It

consists of several D-type or J-K flip-flops cascaded together, such that one flip-flop stores a bit

(0 or 1) in the binary number. Shift registers are used, for example, in calculators to store two

binary numbers before they are added. Register arrangement can be for 8-bit, 16-bit, etc

 142

depending on the architecture of the system. Shift registers provide a common clock and clock

enable for all flip-flops. The clock enable allows external control of when the flip-flops get

reloaded with new D-input values and when they retain their current values.

Shift registers exist in all permutations of serial and parallel inputs and outputs. The role of a

shift register is to somehow change the sequence of bits in an array of bits. The bits may be fed

in and out serially, i.e. one after the other, or in parallel, i.e. all together. As you soon see, shift

registers consists of a number of single bit "D-Type Data Latches" connected together in a chain

arrangement so that the output from one data latch becomes the input of the next latch and so

on, thereby moving the stored data. They are usually provided with a Clear or Reset connection

so that they can be "SET" or "RESET" as required. Generally, Shift Registers operate in one of

four different modes: (1) Serial-in, Parallel-out (SIPO), (2) Serial-in, Serial-out (SISO), (3)

Parallel-in, Parallel-out (PIPO), (4) Parallel-in, Serial-out (PISO). This will be explained using

4-bit shift registers.

11.4.1 Serial-in Parallel-out

Figure 11.2 depict the arrangement of a 4-bit Serial-in Parallel-out (SIPO) Shift Register. QD

denotes the least significant bit of the binary number, while QA denotes the most significant bit.

Figure 11.2: 4-bit Serial-in-Parallel-out Shift Register

Lets assume that all the flip-flops (FFA to FFD) have just been reset, this means that all the

outputs QA to QD are at logic level "0". If a logic "1" is connected to the D input pin of FFA then

on the first clock pulse the output of FFA and the resulting QA will be set to logic "1" with all the

other outputs remaining at logic "0". Assume now that the D input pin of FFA has returned to

 143

logic "0", then the next clock pulse will change the output of FFA to logic "0" and the output of

FFB and QB to logic "1". The logic "1" that was initially applied to the input of FFA, has now

moved or been "Shifted" one place along the register to the right. Consequently, when the third

clock pulse arrives this logic "1" value moves to the output of FFC (QC) and so on until the

arrival of the fifth clock pulse which sets all the outputs QA to QD back again to logic level "0"

because the input to FFA has remained at a constant logic level "0".

The effect of each clock pulse is to shift the DATA contents of each stage one place to the right,

and this is shown in table 11.1 until the complete DATA is stored, which can now be read

directly from the outputs of QA to QD. Then the DATA has been converted from a Serial Data

signal to a Parallel Data word.

Table 11.1 Output per clock pulse

Clock Pulse No QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 0 0 0 0

Quiz: Suppose, this was an 8-bit register, how many clock pulses would
be needed to store/ convert the same data?

11.4.2 Serial-in-Serial-out

This Shift Register is very similar to the one in section 11.4.1 except that this time the DATA is

allowed to flow straight through the register. Since there is only one output the DATA leaves

the shift register one bit at a time in a serial pattern and hence the name Serial-in-Serial-Out

Shift Register. Figure 11.3 shows its arrangement.

Figure 11.3: 4-bit Serial-in to Serial-out (SISO) Shift Register

 144

This type of Shift Register also acts as a temporary storage device or as a time delay device, with

the amount of time delay being controlled by the number of stages in the register, 4, 8, 16 etc or

by varying the application of the clock pulses. For example, four clock pulses are needed to

enter a four-bit number such as 0101 and another four pulses are need to move the data out

serially.

11.4.3 Parallel-in-Serial-out

Parallel-in-Serial-out Shift Registers act in the opposite way to the Serial-in-Parallel-out one.

The D input is applied in parallel form to the parallel input pins PA to PD of the register and is

then read out sequentially from the register one bit at a time from PA to PD on each clock cycle

in a serial format.

Figure 11.4 4-bit Parallel-in to Serial-out (PISO) Shift Register

As this type of Shift Register converts parallel data, such as an 8-bit data word into serial data it

can be used to multiplex many different input lines into a single serial DATA stream which can

be sent directly to a computer or transmitted over a communications line.

11.4.4 Parallel-in-Parallel-out

Parallel-in-Parallel-out Shift Registers also act as a temporary storage device or as a time delay

device, with the amount of time delay being varied by the frequency of the clock pulses. The

data is presented in a parallel format as shown in figure 11.5, to the parallel input pins PA to PD

 145

and gets shifted simultaneously to the corresponding output pins QA to QD when the registers

are clocked.

Figure 11.5 4-bit Parallel-in/Parallel-out (PIPO) Shift Register

Quiz: If the data, 1010 are applied to PA, PB, PC, PD for the PIPO shift register, how

many clock pulses will be needed to read the outputs at QA, QB, QC, QD.

It is possible to have bi-directional shift registers especially for SIPO, which can shift the data

stored in them to the left or to the right. For such devices, you will notice that depending on the

data stored, a shift to the left signifies integer arithmetic multiplication by 2, while a shift to the

right signifies integer division by 2. Check this out with the following four bit numbers

0100 0011 0111

11.5 Counters

Counters consist of flip-flips, especially the T-type, connected so that they toggle when the

pulses to be counted are applied to their clock input. Counting is done in binary code, the bit 1

and 0 being represented by the ‘high’ and ‘low’ states of the bistable’s Q output. Counters can

either count up that is from zero to the maximum (useful in a digital clock or wrist watch) or

 146

they can count down that is from the maximum to zero (useful in the display of digital

microwave ovens and stop watches on you smart phones!). Digital counters have the following

important characteristics:

 Maximum number of count
 Up-Down Count
 Asynchronous or Synchronous Operation
 Free-Running or Self-Stopping

Asynchronous counter are commonly referred to as ripple counter because the effect of the

input clock pulse is first “felt” by first flip-flop (FF0). That is the LSB flip-flop. So the effect of an

input clock pulse “ripples” through the counter, taking some time, due to propagation delays, to

reach the last flip-flop. Usually, only the first flip-flop receive clock pulse from the source, other

flip-flops receive clock pulse from either Q or Q’ of prior flip-flop. In Synchronous Counters on

the other hand, the flip-flops have a fixed time relationship with each other AND receive clock

pulse from a common source.

Modulo of a Counter

The modulus or simply “MOD” of a counter is the number of output states the counter goes

through before returning itself back to zero or its starting point, that is, one complete cycle. A

counter with n-flip-flops (if n=3) will count from 0 to 7 that is, . It is called a Modulo-8 or

MOD-8 counter. More example are given below:

 A 3-bit Binary Counter = , is a modulo-8 or MOD-8 counter, but counts from 0 to 7 as

seen above.

 A 4-bit Binary Counter = , is a modulo-16 or MOD-16 counter and counts from 0 to

15

Quiz: An 8-bit Binary Counter is a modulo _______ counter and counts from 0 to ____

 147

11.5.1 Binary up-counter

A simple sketch of an asynchronous three-bit binary up counter is shown in Figure 11.6,

consisting of cascaded T-type flip-flops FF0, FF1, FF2 with the Q output of each feeding the clock

input (CK) of the next to the left. The total count is given at any time by the states of Q0 (the

L.S.B.), Q1 and Q2 (the M.S.B.), that is the current count is read as, . The counting

progresses upwards from 000 to 111 (7 in decimal) as shown in the table 11.2, before resetting

to 000.

Figure 11.6: A 3-bit asynchronous binary-up counter

Suppose the flip-flops are triggered on the falling edge of a pulse and that initially Q0, Q1 and Q2

are all reset to zero. On the falling edge ab of the first clock pulse, shown in Figure 11.7, Q0

switches from 0 to 1. The resulting rising of edge AB of Q0 is applied to CK of FF1, which does

not change state because AB is not a falling edge. Hence the output states are Q2 = 0, Q1 = 0 and

Q0 = 1, giving a binary count of 001.

Table 11.2 Outputs for a 3-bit binary up
counter

Clock
Pulse No

Outputs

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

 148

Figure 11.7 States of a 3-bit binary up

counter
7 1 1 1

The falling edge cd of the second clock pulse makes FF0 change state again and Q0 goes from 1 to

0. The falling edge CD of Q0 switches FF1 this time, Q1 = 1. The rising edge LM of Q1 leaves FF2

unchanged. The count is now Q2 = 0, Q1 = 1 and Q0 = 0, i.e. 010.

The falling edge ef of the third clock pulse to FF0 changes Q0 from 0 to 1 again but the rising edge

EF does not switch FF1 leaving Q1 = 1, Q2 = 0 and the count at 011. The action thus ripples along

the flip-flops, each one waiting for the previous flip-flop to supply a falling edge at its clock input

before changing state.

Quiz: sketch the arrangement of a 4-bit binary up ripple counter

Synchronous counter
The counter described above is a ripple or asynchronous type. In a synchronous counter all flip-

flops are clocked simultaneously and the propagation delay time is much less than for a ripple

counter with a large number of flip-flops where there is the risk of a ‘race condition’.

Synchronous counters are therefore used for high-speed counting but their circuits are more

complex than those of ripple types. Figure 11.8 shows the arrangement of a 2-bit Synchronous

counter.

 149

Figure 11.8 a 2-bit Synchronous counter

11.5.2 Binary down-counter

In a binary down-counter, the count decreases by one for each clock pulse, so if it is a 3-bit

counter, it would count from 111 down to 000. To convert the up counter in Figure 11.6 into a

binary down counter, the output (instead of the Q) of each flip-flop is coupled to the CK input

of the next, as shown in Figure 11.9. The count is still given by the Q outputs.

Figure 11.9: A 3-bit binary down counter.

Quiz: is the counter in figure 11.9 synchronous or asynchronous?

Decade counter
A four-bit binary up-counter, modified as in Figure 11.10, acts as a modulo-10 counter, and

counts up from 0 to 9 before resetting. When the count is 1010 (decimal 10), Q3 = 1, Q2 = 0, Q1 =

 150

1 and Q0 = 0 and since both inputs to the AND gate are 1s (i.e. Q3 and Q1), its output is 1 and this

resets all the flip-flops to 0 (otherwise it would be a modulo-16 counter counting from 0 to 15).

Figure 11.10: A decade counter

Summary

 Clock pulses are supplied by some form of pulse generator
 The two types of clocking or triggering operation are level triggering and edge triggering
 Sequential circuits can be clock driven, event driven or pulse driven
 Registers are collections of multiple flip-flops arranged in a group with a common

function to store bits
 The four modes of operation of shift registers are SISO, SIPO, PIPO, PISO
 Counters are digital circuits that count either upwards or downwards.

Post-Test

1 Differentiate between synchronous and asynchronous counters.

2 What is referred to as the modulo of a counter?

3 List the four modes of operation of shift registers.

4 With suitable illustrations, differentiate between edge-triggered and level-triggered

clock pulses

5 Sketch the diagram of a modulo-13 binary-up asynchronous counter

6 Walter needs to hold and transfer the data X=10112 from one point in a digital circuit he

designed to another. He has the option of using any of the 4 modes of data transfer for

shift registers. He wants to make this transfer as fast as possible so he designs four 4-bit

shift register. (i.e. one for each mode.)

 i. How many flip-flops did he use in each of the design?
 ii. By tabulating the 4 modes and how long (clock pulses) it will take to read

all his data, advise him on the best mode to use for his final
implementation.

References

 151

Essential Electronics

Duncan, Tom. 1997, Electronics for Today and Tomorrow. Spain: John Murray.

www.electronics-tutorials.ws

Mark Balch, 2003, Complete Digital Design, A Comprehensive Guide to Digital Electronics and

Computer System Architecture, McGraw-Hill

William E. Wickes, 1968, Logic Design with Integrated Circuits

 152

LECTURE TWELVE

COMPUTER CODES

Introduction

In the preceding lectures, we have studied how the binary digits are generated, represented and

stored. We are all too familiar with the binary coding system, however the binary coding

system is not the only way data is represented or manipulated in the computer system or digital

devices. There are various other computer codes used for different purposes. Some of these

will be studied in this lecture.

Objectives

At the end of this lecture, you should be able to:

1. State characteristics of a weighted coding system and give examples

2. State characteristics of unweighted coding system

3. Convert a decimal number to BCD and vice versa

4. Convert a decimal number to XS-3 and vice versa

5. Convert a decimal number to Gray code

12.1 Codes

A code is a systematic way of representing data and sometimes, information. Digital devices,

especially computers use a variety of codes and different points to represent, manipulate or

correct data. These various codes have different features and can be characterised as follows:

 153

12.1.1. Weighted Codes

Weighted codes obey a positional weight system (or more specifically, positional numbering

system) where a specific weight is assigned to each position of the number. This means that

value of each digit depends on the position of that digit. Remember the Hundreds Tens and

Units (H T U) we were taught in primary school? For example, given the decimal number 679, in

that system we were taught that the value of 6 (6 hundred) is higher than the value of 9 (9 unit).

Other example of weighted codes are Binary and BCD. Weighted codes are used, in Data

manipulation during arithmetic operation, for input/output operations in digital circuits, to

represent the decimal digits in calculators, volt meters etc.

12.1.2. Non-weighted Codes

Non-weighted (un-weighted) codes do not obey positional weight principle, therefore positional

weights are not assigned to the digits of the number. In these codes, the digit value does not

depend upon their position i.e., each digit position within the number is not assigned fixed

value. Example include Excess-3 code, Gray code. Non weighted codes are used, to perform

certain arithmetic operations, for error detecting purposes, to mention a few.

12.1.3. Reflective Codes

A code is said to be reflective when it’s code for 9 is the complement of it’s code for 0. Likewise,

its code for 8 is the complement of the code for 1, it’s code for 7 is the complement of it’s code

for 2, it’s code for 6 is the complement of it’s code for 3 and finally, it’s code for 5 is the

complement of it’s code for 4. The excess-3 (XS-3) code is an example.

12.1.4. Sequential Codes

A code is said to be sequential when each succeeding code is one binary number greater than

preceding code. Example Binary, XS-3

 154

12.1.5. Alphanumeric Codes

These are codes designed to represent numbers as well as alphabetic characters. They can also

be used to represent symbols as well as instructions. They include ASCII, EBCDIC

12.1.6. Error Detecting and Correcting Codes

These are codes used to detect and correct digital transmission errors, because these special

type of codes are capable of detecting and correcting the errors. Examples include: Parity code,

Hamming code. Error Detecting and Correcting Codes will be discussed in the next lecture.

Now that we know the different features of computer codes, we will study a few of the examples

of these codes.

12.2. Binary Codes

By now you are very familiar with the binary coding system, because we have been using this

system through this course. In summary, you know that the binary coding system, also known

as base two, uses only two digits 0 and 1. It is possible to represent 2n different messages in a

purely binary code of n bits. The binary code is a straightforward direct conversion of a decimal

number (I trust you know how to do the conversion) to the binary. The binary coding system is

the most common code used in digital devices because it is a systematic arrangement of the

digits. It is a weighted code.

Quiz: Convert 25010 to binary

Quiz: Convert 1011012 to decimal

12.3 Binary-Coded Decimal (BCD)

The next most common code, in digital devices, is the binary-coded decimal code. The need for a

code for each of the 10 decimal digits, 0 through 9, arises often, and there is a large variety of

 155

codes from which to choose. In computer and digital systems, binary-coded decimal (BCD) is an

encoding for decimal numbers in which each digit is represented by its own binary sequence. It

allows for easy conversion to decimal digits for printing or display and faster decimal

calculations. In BCD, a digit is usually represented by four bits which, in general, represent the

values or digits or characters 0-9. To encode a decimal number in, BCD, each decimal digit is

stored in a four-bit nibble. Table 12.1 shows this encoding.

Table 12.1: BCD equivalent of decimal digits

Decimal

BCD

8 4 2 1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

From table 12.1 we can see that the BCD code makes use of the first 10 combinations of the 4-bit

binary arrangement, that is 4-bit binary equivalent of the decimal numbers 0 to 9. This provides

a weighted code in which the LSB has the weight of , the next bit has a weight of ,

the third bit has the weight of , and the MSB has the weight of . That is why some

author refer to it as the 8-4-2-1 BCD code. Thus the decimal equivalent of the binary code is

determined by the presence of 1’s in the number sequence. From Table 12.1 we see that the

decimal numbers 0 to 9 already have their codes. How then do we convert bigger decimal

numbers to BCD? Simply express each decimal digit with its equivalent 4-bit BCD code. Hence,

the BCD encoding for the decimal number 256 would be:

 156

2 5 6

0010 0101 0110

Giving

Quiz: what is the BCD code for the decimal number 5682

This means that the smallest number in BCD is 0000 which is 0 and largest is 1001 which is 9.

After which decimal numbers with two or more digits will be expressed by combinations, for

example 10 = 0001 0000 and this is known as packed BCD.

The conversion of a binary BCD number to its decimal equivalent is done in the reverse manner,

as illustrated by the following: Convert

1001 0011 0010 0111

9 3 2 7

Giving 932710

Quiz: Convert the following BCD code to its decimal equivalent.

 001101110000

Since most computers store data in eight-bit bytes, there are two common ways of storing four-

bit BCD digits in those bytes:

1. Each digit is stored in one byte, and the other four bits (the most significant 4 bits) are

used as zone bits which are then set to all zeros, all ones (as in the EBCDIC code), or to

0011 (as in the ASCII code)

2. Two digits are stored in each byte.

As earlier written, BCD is very common in electronic systems (digital wrist watches, Microwave

displays, washing machine displays, …) where a numeric value is to be displayed, especially in

 157

systems consisting solely of digital logic, and not containing a microprocessor. By utilising BCD,

the manipulation of numerical data for display can be greatly simplified by treating each digit as

a separate single sub-circuit.

Advantages of BCD codes include (1) it is similar to decimal number system, (2) we need to

remember binary equivalents of decimal numbers 0 to 9 only, (3) conversions from decimal to

BCD or BCD to decimal is very simple and no calculation is needed! However, its drawbacks are

the increased complexity of circuits needed to implement mathematical operations and it is less

efficient than binary, since it needs more bits than in binary to store the same decimal number.

Even though the importance of BCD has diminished, it is still widely used in financial,

commercial, and industrial applications. Note that there are other forms of the weighted BCD

codes, were the weights assigned are 6-3-1-1, 5-2-1-1, 7-4-2-1, 5-4-2-1.

12.4 Excess-3 code (XS-3)

Excess-3 code, is a non-weighted, reflective code used to

express decimal numbers. Whereas the BCD code makes

use of the first 10 of the 16 different combinations of

four bits, the excess-3 code adds 3 to decimal number

and then converts to binary as shown in table 12.2. This

code is called a non-weighted code because the binary

1’s do not represent decimal value. The advantage of

this type of code is that at least one 1 is present in all

states, providing an error-detection ability.

Table 12.2 Excess-3 Code

Decimal Excess-3 Code

0 0 0 0

0 0 0 1

0 0 1 0

0 0 0 1 1

1 0 1 0 0

2 0 1 0 1

3 0 1 1 0

4 0 1 1 1

5 1 0 0 0

6 1 0 0 1

7 1 0 1 0

8 1 0 1 1

9 1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

 158

It is another fundamental binary code that is particularly significant for arithmetic

operations as it overcomes the shortcomings encountered while using the 8421 BCD

code. The Excess-3 codes presented in Table12.2 for a given decimal number is

determined by adding '3' to each decimal digit in the given number and then replacing

each digit of the newly found decimal number by its four bit binary equivalent. For

example, XS-3 code of 3410 is obtained as follows:

3 4

+3 +3

6 7

0110 0111

Thus, XS3 code of 34 is 0110 0111.

The Excess-3 code is also a reflective code, so it is self-complementing. For example, the

XS-3 code for decimal 6 is 1001. The l's complement of 1001 is 0110, which is the XS-3

code for decimal 3, and 3 is the 9's complement of 6. This property of Excess-3 code

makes it useful in some arithmetic operations. Here is another example, the XS-3 code

for decimal number 27 is 01011010.

Quiz: What is the XS-3 code for 65710

How do we convert a sequence of binary digits in XS-3 to its decimal equivalent? There

are two ways. But the first thing to do is to first split the number into groups of four-

bits, starting from the LSB for whole numbers or the radix point for floating point

numbers. Then (1) look up the decimal value for each group from Table 12.2 or (2) By

 159

subtracting 0011 (3) from each four-bit group, which will gives us the 8-4-2-1 BCD

equivalent of the given XS-3 code, this can then be converted into the equivalent

decimal number. For example; Let us suppose we want to determine the decimal

equivalent for the XS-3 code 1000110. First we make group of 4 bits starting from radix

point.

Subtracting 0011 from each group, we obtain the new number as 0001 0011. Its

decimal equivalent is 13. Therefore, 1000110 XS-3= 1310

Quiz: What is the decimal equivalent of 10110100011XS-3

12.5 Gray Code

The Gray code is an unweighted code that was designed by Frank Gray at Bell Labs in 1953. It is

also reflective in nature because the lower-order bit sequence is the same when starting from

the middle of the count and progressing in either direction. It belongs to a class of codes called

the minimum change code. The successive coded characters never differ in more than one-bit.

Owing to this feature, the maximum error that can creep into a system using the binary gray

code to encode data is much less than the worst -case error encountered in case of straight

binary encoding.

Since the Gray code is an unweighted code, the gray code is not suitable for arithmetic

operations but finds applications in input/output devices, some of which are: analog-to-digital

converters and designation of rows and columns in Karnaugh map. One can easily remember

the gray codes because a three-bit gray code can be obtained by merely reflecting the two-bit

 160

code about an axis at the end of the code and assigning a third-bit as 0 above the axis and as 1

below the axis (see figure 12.1). The reflected gray code is nothing but code written in reverse

order. By reflecting three-bit code, a four-bit code may be obtained.

Figure 12.1: The process of obtaining 3-bit gray code by reflecting 2-bit
gray code

Table 12.4 3-bit Gray codes

Decimal 3-bit Gray Codes
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 0 0
5 1 0 1
6 1 1 1
7 1 1 0

Quiz: Generate the table for the 4-bit Gray codes.

Using the table you just generated, let us take a few examples. The four-bit gray code

for decimal number 39 is 00101101

 161

Similarly, gray code for (825.1)10 = (1100 0011 0111.0001) Gray code

How can we convert from Binary to Gray code? The steps are below:

1: Write MSB of given Binary number as it is.

2: Ex-OR this bit with the next bit of that binary number and write the result.

3: Ex-OR each successive sum until LSB of that binary number is reached.

Example: Convert (1010011)2 to its equivalent Gray code.

Therefore (1010011)2= (1111010)Gray

And to convert from Gray to Binary, we use the following steps:

1: Write MSB of given Binary number as it is.

2: Ex-OR this bit with next bit of that binary number and write the result.

3: Continue this process until LSB of that binary number is reached.

Example: Convert (1010111)Gray to its equivalent Binary number

Therefore (1010111)Gray = (1100101)2

 162

Summary

 A code is a systematic way of representing data and computer codes can be classified by

there characteristics into weighted codes, non-weighted codes, reflective codes,

sequential codes, alphanumeric codes and error detecting and correction codes.

 The most common code used by digital devices to store data are binary codes.

 Binary coded decimal codes are used mainly for displays.

 The other codes are Excess-3 code and gray codes.

Post-Test

1. Convert following decimal numbers to BCD:

(a)394 (b) 4954 (c) 73291

2. Convert following BCD codes to decimal equivalent:

(a)1001 1000 (b) 0001 0100 0110 (c) 0111 0011 0101

3. Convert following binary numbers to BCD codes: (Hint: convert to decimal first)

(a)1100 (b) 10001 (c) 1010101

4. Convert following BCD codes to binary equivalent:(Hint: convert to decimal first)

(a) 0010 1000 (b) 1001 0111 (c) 1000 0000

5. Obtain XS-3 equivalent of following numbers:

(a) 43710 (b) 14610 (c) 0111 1000BCD (e) 1010102(hint: first convert to decimal)

6. Convert the binary codes in question 3 to gray codes.

References
Amraja Shivkar, 2018, lecture notes on CODES, http://techgurutechnolic.weebly.com/

Dinesh Thakur, 2018, lecture notes on Excess-3 Codes.

https://mywbut.com

William E. Wickes, 1968, Logic Design with Integrated Circuits

 163

LECTURE THIRTEEN

ERROR DETECTION AND CORRECTION

Introduction

In the previous lecture, we studied some regular codes used by the computer and digital devices

to store and retrieve data. Regardless of the coding method used, no communications channel

or storage medium can be completely error-free. It is physically impossible. As more bits are

packed per square millimetre of storage, flux densities increase. Error rates increase in direct

proportion to the number of bits per second transmitted, or the number of bits per square

millimetre of magnetic storage.

Objectives

At the end of this lecture, you should be able to:

13.1 Digital Error

When a digital information is transmitted, it may not be received correctly by the receiver,

because there may be error due to electrical disturbance of circuit, which is also called noise.

This noise may force a logic level ‘1’ to change to a logic level ‘0’ or vice versa, thereby altering

the original information that was sent. For example, with binary number transmission, usually

single-bit errors may occur such that the data 0010 may be erroneously transmitted as 0011, or

0000, or 0110, or 1010. The error, therefore, has to be detected and corrected or the sender

may be asked to resend the data. There are various codes and methods used to detect and

correct such errors, some of these will be briefly treated. However, bear in mind, as you study

the various methods, that it is impossible to create an error-free medium, it is also impossible to

detect or correct 100% of all errors that could occur in a medium.

 164

13.2 Parity Bit

The party bit error detection method is best suited for detection of single-bit errors in a

predefined number of binary digits transmitted or stored, as in the example under section 13.1.

Parity is the most basic of all error detection methods and it is easy to implement in simple

devices. In using parity for detection of error an extra bit called the parity bit is attached to code,

usually as the most significant bit. This bit is used to specify the number of ‘1s’ in the

transmitted/ received data. Therefore it makes sense to use either even parity or odd parity.

For example: If a 7 bit data 1001110 is to be transmitted, then using even

parity code, it will be transmitted as the 8 bit word 01001110 or using odd

parity code, it will be transmitted as 11001110.

Notice that the parity is decided by the extra MSB (parity bit) which is introduced in original

data. So if the total number of ‘1’s in the transmitted/ received word is even then the parity is

even and if total number of ‘1’s in transmitted/ received word is odd then the parity is odd.

Table 13.1 shows the BCD codes for 0 to 9 with odd or even parity bits.

Table 13.1 BCD code with parity bits

 165

How then is error detected using parity bit? Suppose that a 7 bit data, say 1011010 is to be

transmitted with even parity, then it will be transmitted as 01011010 where the MSB which is

the parity bit will be kept as 0 in order to maintain even parity of transmitted word.

If the data is received as 01011010, that is without error then the parity still remains even.

Hence, the data is declared as correct word.

However, what if it is received as 01111010, that is with 1 error then parity becomes odd,

therefore it is declared as incorrect word.

As earlier stated, this method of error detection is best suited for single-bit error. One of the

disadvantages of this method is that if the data is received with 2 errors, for instance if the 7-bit

data above were transmitted as 01110010 then the parity still remains even and declared as

correct word even in spite of being incorrect (see figure 13.1). Another disadvantage is that this

method cannot detect where exactly the error has occurred.

Figure 13.1 Parity bit error detection

Quiz: Generate the correct bits that would be transferred if the following data are using

(1) even parity (2) odd parity.

(A) 0101100 (B) 1011 (C) 0000111

 166

13.2 Hamming Codes

In digital data communications, it is adequate to have the ability to detect errors in the

transmitted data and when a communication device determines that a message contains an

erroneous bit, all it has to do is request retransmission. Storage systems and memory do not

have this luxury. Consequently, storage devices and memory must therefore have the ability to

not only detect but to correct a reasonable number of errors. Another effective error recovery

code is the Hamming code. Hamming codes are an adaptation of the concept of parity, whereby

error detection and correction capabilities are increased in proportion to the number of parity

bits added to an information word.

Hamming codes are used in situations where random errors are likely to occur, so in our

following discussion, we present Hamming codes in the context of memory bit error detection

and correction. As earlier mentioned, Hamming codes use parity bits, also called check bits or

redundant bits. The memory word itself consists of m bits, but r redundant bits are added to

allow for error detection and/or correction. Thus, the final word, called a code word, is an n-bit

unit containing m data bits and r check bits. There exists a unique code word consisting for n =

m + r bits for each data word as follows:

The number of bit positions in which two code words differ is called the Hamming distance of

those two code words. For example, if we have the following two code words:

we see that they differ in 3 bit positions, so the Hamming distance of these two code words is 3

(we will soon discuss how to create code words). The Hamming distance between two code

 167

words is important in the context of error detection. If two code words are a Hamming distance

d apart, d single-bit errors are required to convert one code word to the other, which implies

this type of error would not be detected. Therefore, if we wish to create a code that guarantees

detection of all single-bit errors (an error in only 1 bit), all pairs of code words must have a

Hamming distance of at least 2.

The Hamming distance of a code must be at least 2k + 1 in order for it to be able to correct k

errors. Code words are constructed from information words using r parity bits. Most often than

not, the 7-bit Hamming code is commonly used, but this concept can be extended to any number

of bits. The arrangement of the data as well as the party bits for the 7-bit Hamming code is

shown in figure 13.2

Figure 13.2: Arrangement of 7-bit Hamming code.

In figure 13.2 we note that the portions labelled as N represent the original number/data bits,

while P denotes the Parity bits. The humming Parity bits are introduced at each 2n bit where n =

0, 1, 2, 3…therefore the:

1st parity bit is at 20 = 1 i.e., 1st place and denoted by P1

2nd parity bit is at 21 = 2 i.e., 2nd place and denoted by P2

3rd parity bit is at 22 = 2 i.e., 4th place and denoted by P4

4th parity bit will be at 23 = 8 i.e., 8th place. But since we have only 7 bit code it

cannot have this parity bit. So 7 bit Hamming code has only 3 parity bits P1, P2, P4.

Let us take an example of how to construct a 7-bit hamming code for a transmitted data.

 168

13.3 Cyclic Redundancy Check

Checksums are self-checking codes that will quickly indicate whether the preceding digits have

been misread. Cyclic redundancy check (CRC) is a type of checksum used primarily in data

communications that determines whether an error has occurred within a large block or stream

of information bytes. The larger the block to be checked, the larger the checksum must be, to

provide adequate protection. CRCs are a type of systematic error detection scheme, meaning

that the error-checking bits are appended to the original information byte. The group of error-

checking bits is called a syndrome. The original information byte is unchanged by the addition

of the error-checking bits. The implementation and calculation of the CRC method for error

detection is beyond the scope of this class.

 169

Summary

 When a digital data is transmitted, it may altered by noise and as such introduce error in

the data.

 When using parity bit for error detection, an extra bit is added as the MSB of each piece

of data. The parity code can either specify even or odd parity. For even parity, the

additional bit supplied is to make total number of ‘1’s even while for odd parity, the

additional bit supplied is to make total number of ‘1’s odd.

 The Hamming code is another error detection and correction code that constructs the

code using the data being transmitted.

Post-Test

1. Generate the correct bits that would be transferred if the following data are transmitted

using (1) even parity (2) odd parity.

(A) 0101111 (B) 101100 (C) 0010111

2. Construct the even parity 7-bit Hamming code for the following data

(A) 1011 (B) 1111 (C) 0010

References
Amraja Shivkar, 2018, lecture notes on CODES, http://techgurutechnolic.weebly.com/

Dinesh Thakur, 2018, lecture notes on Excess-3 Codes.

https://mywbut.com

William E. Wickes, 1968, Logic Design with Integrated Circuits

