

SCIENTIFIC PROGRAMMING

(WITH MATLAB)

A COURSE MATERIAL FOR

CSC 231

S. O. AKINOLA

Associate Professor,

Computer Science Department,

University of Ibadan

General Introduction and Course Objective

Many of the scientific and engineering problems that were being solved manually in the days

past are now being computerized. A computer receives, stores and processes data in a fast and

accurate manner. This peculiarity of computer makes it a good choice of tool for solving real life

problems today. Scientific and Engineering applications are characterized as those problems

which predominantly manipulate numbers and arrays of such numbers using mathematical and

statistical principles as basis for their algorithms. These algorithms encompass such problems as

statistical significant tests, linear programming, regression analysis and numerical

approximations for the solutions of differential and integral equations. Programmers must be

well-versed in the mathematical principles underlying the algorithms in order to be able to

develop programs for these problems.

In this book, we explore the basic principles of Scientific Programming using MATLAB as a

language tool for solving scientific problems. The MATLAB programming language, descended

from FORTRAN, has evolved to include many powerful and convenient graphical and analysis

tools. It has become an important platform for engineering and science education, as well as

research.

MATLAB is a tool for doing numerical computations with matrices and vectors. It is very

powerful and easy to use. In fact, it integrates computation, visualization and programming all

together in an easy-to-use environment and can be used on almost all the platforms: windows,

Unix, and Apple Macintosh, etc.

The MATLAB programming language provides an excellent introductory language, with built-in

graphical, mathematical, and user-interface capabilities. The goal is that the student learns to

build computational models with graphical user interfaces (GUIs) that enable exploration of

model behaviour.

MATLAB language is easier for beginners than many alternatives: it is interpreted rather than

compiled; variable types and array sizes need not be declared in advance; it is not strongly typed;

vector, matrix, multidimensional array, and complex numbers are basic data types; there is a

sophisticated integrated development and debugging environment; and a rich set of mathematical

and graphics functions is provided.

Course Curriculum Contents

Introduction to a relevant Scientific programming language. Implementations of basic

programming constructs in the language. Procedure calls. Recursion. Extensive laboratory

exercises in the programming language. Introduction to Scientific Computation and practical

exercises in relevant scientific language like MATLAB or MAPLE.

4 Units, Required

Table of Contents

General Introduction and Course Objective

Study Session 1: Introduction to MATLAB

1.1 MATLAB's Power of Computational Mathematics

1.2 Features of MATLAB

1.3 Uses of MATLAB

1.4 MATLAB - Environment Setup

1.5 Understanding the MATLAB Environment

1.6 MATLAB Arithmetic Operators

1.7 MATLAB Logical Operators

1.8 Variable Name in MATLAB

Study Session 2: MATLAB - Basic Syntax

2.1 MATLAB’s Command Prompt

2.2 Use of Semicolon (;) in MATLAB

2.3 Adding Comments

2.4 Commonly used Operators and Special Characters

2.5 Special Variables and Constants

2.6 Naming Variables

2.7 Saving Your Work

2.8 MATLAB - Variables

2.9 Multiple Assignments

2.10 Long Assignments

2.11 The format Command

2.12 Creating Vectors

2.13 Creating Matrices

2.14 MATLAB’s Commands

Study Session 3: MATLAB M-Files and Data Types

3.1 The M Files

3.2 Creating and Running Script File

3.3 MATLAB - Data Types

3.4 MATLAB – Operators

3.5 MATLAB - Decision Making

3.6 MATLAB - Loop Types

3.7 Loop Control Statements

Study Session 4: MATLAB Operators

4.1 MATLAB – Operators

4.2 Arithmetic Operators

4.2 Relational Operators

4.3 Logical Operators

4.4 Bitwise Operations

4.5 Set Operations

Study Session 5: Decision Making and Loop Controls

5.1 MATLAB - Decision Making

5.2 MATLAB - Loop Types

5.3 Loop Control Statements

Study Session 6: MATLAB Vectors and Matrices Manipulations

6.1 Types of MATLAB - Vectors

6.1.1 Row Vectors

6.1.2 Column Vectors

6.1.3 Referencing the Elements of a Vector

6.1.4 Vector Operations

6.2 MATLAB - Matrix

6.2.1 Referencing the Elements of a Matrix

6.2.2 Deleting a Row or a Column in a Matrix

6.2.3 Matrix Operations

Study Session 7: MATLAB Arrays

7.1 Special Arrays in MATLAB

7.2 Multidimensional Arrays

7.3. Array Functions

7.4 Other Square Array/Matrix Functions

Study Session 8: Further Matrix Functions

8.1 How to find the sum of each column of a matrix and store them in a vector

8.2 How to find the sum of each row of a matrix and store them in a vector

8.3 Matrix Indexing

8.4 The Find function

8.5 Adjusting Matrices

8.5.1 Concatenation of Matrices

8.5.2 Vertical concatenation:

8.5.3 Horizontal concatenation:

8.6 Operations on Matrix Diagonals

8.7 Sparse Matrices and Multidimensional Arrays

Study Session 9: Manipulation of Linear Algebra

9.1 MATLAB’s matfun Directory

9.2 Adding and Subtracting Matrices

9.3 Vector Products and Transpose

9.4 Multiplying Matrices

9.5 Identity Matrix

9.6 Factorization – Cholesky Factorization

9.7 Factorization – Lower and Upper Factorization

9.7.1 Lower and Upper Factorization

9.8 Power and Exponential

9.9 Eigenvalues – Eigenvalue Decomposition

9.9.1 Eigenvalue Decomposition

9.9.2 Multiple Eigenvalues

9.10 Schur Decomposition

Study Session 10: Manipulation of Polynomials

10.1 The meaning of Polynomials

10.2 MATLAB Polynomial Representation

10.3 Polynomial Evaluation

10.4 Roots of Polynomial

10.5 Addition and Subtraction of Polynomials

10.6 Multiplication of Polynomials

10.7 Division of Polynomials

10.8 Deriving Polynomial Equations

10.9 Equation of a Matrix

10.10 Polynomial Differentiation

10.11 Polynomial Integration

10.12 Plotting Polynomials

10.13 Polynomial Curve Fitting

10.14 Polynomial Evaluation with Matrix Arguments

10.15 Roots of Scalar Functions

10.15.1 Solving a Nonlinear Equation in One Variable

10.15.2 Setting Options for fzero

10.15.3 Using a Starting Interval

10.15.4 Using a Starting Point

10.16 Partial Fraction Expansions

Study Session 11: Introduction to Charts Plotting

11.1 How Charts are plotted

11.2 What kind of graphics is possible in MATLAB?

Study Session 12: Introduction to Basic Image Processing

12.1 The Image Processing Toolbox

12.2 Images in MATLAB

12.3 Data types in MATLAB

12.4 The following types of images are supported by MATLAB

12.5 Image Import and Export

12.5.1 Reading and writing images in MATLAB

12.6 Images and Matrices

12.6.1 How to build a matrix (or image)?

12.7 Image Display

Study Session 1: Introduction to MATLAB

Expected Duration: 1 week or 2 contact hours

Introduction

In this Session, you will learn about the meaning of MATLAB, the extent of its power in

computations especially in Mathematic, Engineering and other scientific applications. The

features and uses of MATLAB as well as its environment are discussed.

Learning Outcomes
When you have studied this session, you should be able to explain:

1.1 MATLAB's Power of Computational Mathematics

1.2 Features of MATLAB

1.3 Uses of MATLAB

1.4 MATLAB - Environment Setup

1.5 Understanding the MATLAB Environment

1.6 MATLAB Arithmetic Operators

1.7 MATLAB Logical Operators

1.8 Variable Name in MATLAB

1.1 MATLAB's Power of Computational Mathematics

MATLAB (MATrix LABoratory) is a programming language developed by MathWorks. It

started out as a matrix programming language where linear algebra programming was simple. It

can be run both under interactive sessions and as a batch job.

MATLAB is a fourth-generation high-level programming language and interactive environment

for numerical computation, visualization and programming. It allows matrix manipulations;

plotting of functions and data; implementation of algorithms; creation of user interfaces;

interfacing with programs written in other languages, including C, C++, Java, and FORTRAN;

analyze data; develop algorithms; and create models and applications. It has numerous built-in

commands and math functions that help in mathematical calculations, generating plots and

performing numerical methods. In this unit, you will be introduced to MATLAB. MATLAB is

used in every facet of computational mathematics. Following are some commonly used

mathematical calculations where it is used.

a. Dealing with Matrices and Arrays

b. 2-D and 3-D Plotting and graphics

c. Linear Algebra

d. Algebraic Equations

e. Non-linear Functions

f. Statistics

g. Data Analysis

h. Calculus and Differential Equations

i. Numerical Calculations

j. Integration

k. Transforms

l. Curve Fitting

m. Various other special functions

1.2 Features of MATLAB

The following are the basic features of MATLAB:

1. MATLAB is a high-level language for numerical computation, visualization and

application development.

2. It also provides an interactive environment for iterative exploration, design and problem

solving.

3. It provides vast library of mathematical functions for linear algebra, statistics, Fourier

analysis, filtering, optimization, numerical integration and solving ordinary differential

equations.

4. It provides built-in graphics for visualizing data and tools for creating custom plots.

5. MATLAB's programming interface gives development tools for improving code quality

maintainability and maximizing performance.

6. It provides tools for building applications with custom graphical interfaces.

7. It provides functions for integrating MATLAB based algorithms with external

applications and languages such as C, Java, .NET and Microsoft Excel.

1.3 Uses of MATLAB

MATLAB is widely used as a computational tool in science and engineering encompassing the

fields of physics, chemistry, mathematics and all engineering disciplines. It is used in a range of

applications including −

1. Signal Processing and Communications

2. Image and Video Processing

3. Control Systems

4. Test and Measurement

5. Computational Biology / Bioinformatics

6. Image Processing

7. Computer Vision

8. Signal Processing

9. Communications

10. Mathematics

11. Statistics

12. Optimization

13. Control Systems Design and Analysis

14. Computational Finance

15. Computer Graphics and Simulations, etc

1.4 MATLAB - Environment Setup

Setting up MATLAB environment is a matter of few clicks. The installer can be downloaded

from https://www.mathworks.com/downloads/web_downloads. MathWorks provides the

licensed product, a trial version and a student version as well. One needs to log into the site and

https://www.mathworks.com/downloads/web_downloads

wait a little for their approval. After downloading the installer the software can be installed

through few clicks.

Figure 1.1: Downloading and Installing MATLAB

1.5 Understanding the MATLAB Environment

MATLAB development IDE can be launched from the icon created on the desktop. The main

working window in MATLAB is called the desktop. When MATLAB is started, the desktop

appears in its default interface.

Figure 1.2: MATLAB Environment

Figure 1.3: MATLAB Working Environment

The desktop has the following panels –

 Current Folder − This panel allows us to access the project folders and files.

Figure 1.4: MATLAB Current Folder

 Command Window − This is the main area where commands can be entered at the

command line. It is indicated by the command prompt (>>).

Figure 1.5: MATLAB Command Window

 Workspace − The workspace shows all the variables created and/or imported from files.

Figure 1.6: MATLAB Workspace

 Command History − This panel shows or rerun commands that are entered at the

command line.

Figure 1.7: MATLAB Command History

1.6 MATLAB Arithmetic Operators

The following arithmetic operators are allowed in MATLAB

(i) Addition: + E.g. 2 + 3

(ii) Subtraction: - E.g. 2 - 3

(iii)Multiplication:* E.g. 2 * 3

(iv) Division: / E.g. 2 / 3

(v) Exponentiation: ^ E.g. 2 ^ 3 (2
3
)

1.7 MATLAB Logical Operators

Logical operators are used to compare two variables or arithmetic expressions together.

Following are the logical operators supported by MATLAB

(i) Equal: = =

(ii) Less than: <

(iii)Greater than: >

(iv) Not equal: ~ =

(v) Not: ~

1.8 Variable Name in MATLAB

Variable naming rules in MATLAB are

(i) must be unique in the first 63 characters

(ii) must begin with a letter

(iii) may not contain blank spaces or other types of punctuation

(iv) may contain any combination of letters, digits, and underscores

(v) are case-sensitive

(vi) should not use MATLAB keyword

1.9 Pre-defined variable names

o pi for 22/7

SUMMARY

In this unit, you have been introduced to MATLAB with respect to its

(i) Power of Computational Mathematics;

(ii) Features;

(iii) Uses;

(iv) Environment Setup and

(v) Environment

Self Assessment Questions (SAQs)

(i) Explain the features and uses of MATLAB in Scientific Computing.

(ii) State four rules of variable naming in MATLAB

Study Session 2: MATLAB - Basic Syntax

Expected Duration: 1 week or 2 contact hours

Introduction

Syntax has to do with grammatical rules of a language; i.e. how statements are constructed and

terminated in a language. In this Session, we shall be introduced to how commands or

statements are written and executed in a MATLAB environment.

Learning Outcomes

When you have studied this session, you should be able to explain:

2.1 MATLAB’s Command Prompt

2.2 Use of Semicolon (;) in MATLAB

2.3 Adding Comments

2.4 Commonly used Operators and Special Characters

2.5 Special Variables and Constants

2.6 Naming Variables

2.7 Saving Your Work

2.8 MATLAB - Variables

2.9 Multiple Assignments

2.10 Long Assignments

2.11 The format Command

2.12 Creating Vectors

2.13 Creating Matrices

2.14 MATLAB’s Commands

2.1 MATLAB’s Command Prompt

MATLAB environment behaves like a super-complex calculator. We can enter commands at the

>> command prompt. MATLAB is an interpreted environment. In other words, we give a

command and MATLAB executes it right away.

Practice 1

Type any valid expression, such as:

6 + 5

Then press ENTER

On clicking the Execute button, or type Ctrl + E, MATLAB executes it immediately and the

result returned is −

ans = 11

Consider more examples:

3 ^ 2 % 3 raised to the power of 2

On clicking the Execute button, or type Ctrl+E, MATLAB executes it immediately and the

result returned is −

ans = 9

Note that the % symbol written against a statement signifies the statement is a comment.

Another example,

sin(pi /2) % sine of angle 90
o

On clicking the Execute button, or type Ctrl+E, MATLAB executes it immediately and the

result returned is –

ans = 1

Another example,

7/0 % Divide by zero

On clicking the Execute button, or type Ctrl+E, MATLAB executes it immediately and the

result returned is –

ans = Inf

warning: division by zero

Another example,

732 * 20.3

On clicking the Execute button, or type Ctrl+E, MATLAB executes it immediately and the

result returned is –

ans = 1.4860e+04

MATLAB provides some special expressions for some mathematical symbols, like pi for π, Inf

for ∞, i (and j) for √-1 etc. Nan stands for 'not a number'.

2.2 Use of Semicolon (;) in MATLAB

Semicolon (;) indicates end of statement. However, if we want to suppress and hide the

MATLAB output for an expression, add a semicolon after the expression.

For example,

x = 3;

y = x + 5

Result:

y = 8

2.3 Adding Comments

The per cent symbol (%) is used for indicating a comment line. For example,

x = 9 % assign the value 9 to x

We can also write a block of comments using the block comment operators % { and % }.

For example,

%{ This section computes ….

 …………………..

……………………………. %}

The MATLAB editor includes tools and context menu items to help us add, remove, or change

the format of comments.

2.4 Commonly used Operators and Special Characters

MATLAB supports the following commonly used operators and special characters –

Operator Purpose

+ Plus; addition operator. E.g. 2 + 3

- Minus; subtraction operator. E.g. 2 - 3

* Scalar and matrix multiplication operator. E.g. 2 * 3

.* Array multiplication operator.

^ Scalar and matrix exponentiation operator. E.g. 2 ^ 3

.^ Array exponentiation operator.

\ Left-division operator. E.g. 2 \ 3

/ Right-division operator. E.g. 2 / 3

.\ Array left-division operator.

./ Array right-division operator.

: Colon; generates regularly spaced elements and

represents an entire row or column.

() Parentheses; encloses function arguments and array

indices; overrides precedence.

[] Brackets; enclosures array elements.

. Decimal point.

… Ellipsis; line-continuation operator

, Comma; separates statements and elements in a row

; Semicolon; separates columns and suppresses display.

% Percent sign; designates a comment and specifies

formatting.

_ Quote sign and transpose operator.

._ Non-conjugated transpose operator.

= Assignment operator.

2.5 Special Variables and Constants

MATLAB supports the following special variables and constants:

Name Meaning

ans Most recent answer.

eps Accuracy of floating-point precision.

i, j The imaginary unit √-1.

Inf Infinity.

NaN Undefined numerical result (not a number).

pi The number π

2.6 Naming Variables

Variable names consist of a letter followed by any number of letters, digits or underscore.

MATLAB is case-sensitive. Variable names can be of any length, however, MATLAB uses

only first N characters, where N is given by the function namelengthmax.

2.7 Saving Your Work

The save command is used for saving all the variables in the workspace, as a file with .mat

extension, in the current directory.

For example, save myfile

We can reload the file anytime later using the load command.

load myfile

2.8 MATLAB - Variables

In MATLAB environment, every variable is an array or matrix. We can assign variables in a

simple way. For example,

x = 3 % defining x and initializing it with a value

MATLAB will execute the above statement and return the following result –

x = 3

It creates a 1-by-1 matrix named x and stores the value 3 in its element. Let us check another

example,

x = sqrt(16) % defining x and initializing it with an expression

MATLAB will execute the above statement and return the following result –

x = 4

Note that:

 Once a variable is entered into the system, we can refer to it later.

 Variables must have values before they are used.

 When an expression returns a result that is not assigned to any variable, the system

assigns it to a variable named ans, which can be used later. For example,

sqrt(78)

MATLAB will execute the above statement and return the following result –

ans = 8.8318

We can use this variable ans –

sqrt(78);

9876/ans

MATLAB will execute the above statement and return the following result –

ans = 1118.2

Let's look at another example –

x = 7 * 8;

y = x * 7.89

MATLAB will execute the above statement and return the following result –

y = 441.84

2.9 Multiple Assignments

We can have multiple assignments on the same line. For example,

a = 2; b = 7; c = a * b

MATLAB will execute the above statement and return the following result –

c = 14

What of if you have forgotten the Variables!

The ‘who’ command displays all the variable names we have used.

who

MATLAB will execute the above statement and return the following result –

your variables are:

a ans b c

The whos command displays little more about the variables −

 Variables currently in memory

 Type of each variables

 Memory allocated to each variable

 Whether they are complex variables or not

whos

MATLAB will execute the above statement and return the following result:–

Attr Name Size Bytes Class

==== ==== ==== ==== =====

 a 1x1 8 double

 ans 1x70 757 cell

 b 1x1 8 double

 c 1x1 8 double

Total is 73 elements using 781 bytes

The clear command deletes all (or the specified) variable(s) from the memory.

clear x % it will delete x, won't display anything

clear % it will delete all variables in the workspace

 % peacefully and unobtrusively

2.10 Long Assignments

Long assignments can be extended to another line by using an ellipses (...). For example,

initial_velocity = 0;

acceleration = 9.8;

time = 20;

final_velocity = initial_velocity + acceleration * time

MATLAB will execute the above statement and return the following result –

final_velocity = 196

2.11 The format Command

By default, MATLAB displays numbers with four decimal place values. This is known as short

format. However, if we want more precision, we need to use the format command. The format

long command displays 16 digits after decimal.

For example –

format long

x = 7 + 10/3 + 5 ^ 1.2

MATLAB will execute the statement and return the following result−

x = 17.2319816406394

Another example,

format short

x = 7 + 10/3 + 5 ^ 1.2

MATLAB will execute the above statement and return the following result –

x = 17.232

The format bank command rounds numbers to two decimal places. For example,

format bank

daily_wage = 177.45;

weekly_wage = daily_wage * 6

MATLAB will execute the above statement and return the following result –

weekly_wage = 1064.70

MATLAB displays large numbers using exponential notation.

The format short e command allows displaying in exponential form with four decimal places

plus the exponent. For example,

format short e

4.678 * 4.9

MATLAB will execute the above statement and return the following result:

ans = 2.2922e+01

The format long e command allows displaying in exponential form with four decimal places

plus the exponent. For example,

format long e

x = pi

MATLAB will execute the above statement and return the following result:

x = 3.141592653589793e+00

The format rat command gives the closest rational expression resulting from a calculation. For

example,

format rat

4.678 * 4.9

MATLAB will execute the above statement and return the following result:

ans = 34177/1491

2.12 Creating Vectors

A vector is a one-dimensional array of numbers. MATLAB allows creating two types of

vectors:

 Row vectors

 Column vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or

comma to delimit the elements. For example,

r = [7 8 9 10 11]

MATLAB will execute the above statement and return the following result –

r =

 7 8 9 10 11

Another example, corresponding elements are added together in this case

r = [7 8 9 10 11];

t = [2, 3, 4, 5, 6];

res = r + t

MATLAB will execute the above statement and return the following result –

res =

 9 11 13 15 17

Column vectors are created by enclosing the set of elements in square brackets, using

semicolon(;) to delimit the elements.

c = [7; 8; 9; 10; 11]

MATLAB will execute the above statement and return the following result –

c =

 7

 8

 9

 10

 11

2.13 Creating Matrices

A matrix is a two-dimensional array of numbers. In MATLAB, a matrix is created by entering

each row as a sequence of space or comma separated elements, and end of a row is demarcated

by a semicolon. For example, let us create a 3-by-3 matrix as:

m = [1 2 3; 4 5 6; 7 8 9]

MATLAB will execute the above statement and return the following result –

m =

 1 2 3

 4 5 6

 7 8 9

2.14 MATLAB - Commands

MATLAB is an interactive program for numerical computation and data visualization. We can

enter a command by typing it at the MATLAB prompt '>>' on the Command Window. In this

section, we will provide lists of commonly used general MATLAB commands.

2.14.1 Commands for Managing a Session

MATLAB provides various commands for managing a session. The following table provides all

such commands:

Command Purpose

clc Clears command window.

clear Removes variables from memory.

exist Checks for existence of file or variable.

global Declares variables to be global.

help Searches for a help topic.

lookfor Searches help entries for a keyword.

quit Stops MATLAB.

who Lists current variables.

whos Lists current variables (long display).

2.14.2 Commands for Working with the System

MATLAB provides various useful commands for working with the system, like saving the

current work in the workspace as a file and loading the file later. It also provides various

commands for other system-related activities like, displaying date, listing files in the directory,

displaying current directory, etc.

The following table displays some commonly used system-related commands –

Command Purpose

cd Changes current directory.

date Displays current date.

delete Deletes a file.

diary Switches on/off diary file recording.

dir Lists all files in current directory.

load Loads workspace variables from a file.

path Displays search path.

pwd Displays current directory.

save Saves workspace variables in a file.

type Displays contents of a file.

what Lists all MATLAB files in the current directory.

wklread Reads .wk1 spreadsheet file.

2.14.3 Input and Output Commands

MATLAB provides the following input and output related commands:

Command Purpose

disp Displays contents of an array or string.

fscanf Read formatted data from a file.

format Controls screen-display format.

fprintf Performs formatted writes to screen or file.

input Displays prompts and waits for input.

; Suppresses screen printing.

The fscanf and fprintf commands behave like C scanf and printf functions. They support the

following format codes –

Format Code Purpose

%s Format as a string.

%d Format as an integer.

%f Format as a floating point value.

%e Format as a floating point value in scientific notation.

%g Format in the most compact form: %f or %e.

\n Insert a new line in the output string.

\t Insert a tab in the output string.

The format function has the following forms used for numeric display –

Format Function Display up to

format short Four decimal digits (default).

format long 16 decimal digits.

format short e Five digits plus exponent.

format long e 16 digits plus exponents.

format bank Two decimal digits.

format + Positive, negative, or zero.

format rat Rational approximation.

format compact Suppresses some line feeds.

format loose Resets to less compact display mode.

2.14.4 Vector, Matrix and Array Commands

The following table shows various commands used for working with arrays, matrices and

vectors:

Command Purpose

cat Concatenates arrays.

find Finds indices of nonzero elements.

length Computes number of elements.

linspace Creates regularly spaced vector.

logspace Creates logarithmically spaced vector.

max Returns largest element.

min Returns smallest element.

prod Product of each column.

reshape Changes size.

size Computes array size.

sort Sorts each column.

sum Sums each column.

eye Creates an identity matrix.

ones Creates an array of ones.

zeros Creates an array of zeros.

cross Computes matrix cross products.

dot Computes matrix dot products.

det Computes determinant of an array.

inv Computes inverse of a matrix.

pinv Computes pseudoinverse of a matrix.

rank Computes rank of a matrix.

rref Computes reduced row echelon form.

cell Creates cell array.

celldisp Displays cell array.

cellplot Displays graphical representation of cell array.

num2cell Converts numeric array to cell array.

deal Matches input and output lists.

iscell Identifies cell array.

2.14.5 Plotting Commands

MATLAB provides numerous commands for plotting graphs. The following table shows some

of the commonly used commands for plotting –

Command Purpose

axis Sets axis limits.

fplot Intelligent plotting of functions.

grid Displays gridlines.

plot Generates x-y plot.

print Prints plot or saves plot to a file.

title Puts text at top of plot.

xlabel Adds text label to x-axis.

ylabel Adds text label to y-axis.

axes Creates axes objects.

close Closes the current plot.

close all Closes all plots.

figure Opens a new figure window.

gtext Enables label placement by mouse.

hold Freezes current plot.

legend Legend placement by mouse.

refresh Redraws current figure window.

set Specifies properties of objects such as axes.

subplot Creates plots in subwindows.

text Places string in figure.

bar Creates bar chart.

loglog Creates log-log plot.

polar Creates polar plot.

semilogx Creates semilog plot. (logarithmic abscissa).

semilogy Creates semilog plot. (logarithmic ordinate).

stairs Creates stairs plot.

stem Creates stem plot.

Summary

In this Session, you have been introduced to the following MATLAB’s basic syntaxes:

(i) MATLAB’s Command Prompt

(ii) Use of Semicolon (;) in MATLAB

(iii) Adding Comments

(iv) Commonly used Operators and Special Characters

(v) Special Variables and Constants

(vi) Naming Variables

(vii) Saving Your Work

(viii) MATLAB – Variables

(ix) Multiple Assignments

(x) Long Assignments

(xi) The format Command

(xii) Creating Vectors

(xiii) Creating Matrices

(xiv) MATLAB Commands

Self Assessment Questions (SAQs)

Execute the following statements in a MATLAB’s environment.

1. Y = A
m

 – (B x C)
t
 Assign arbitrary values to the variables

2. Write MATLAB statement to create any arbitrary 4 x 4 square matrix

Study Session 3: MATLAB M-Files and Data Types

Expected Duration: 1 week or 2 contact hours

Introduction

So far, we have used MATLAB environment as a calculator. However, MATLAB is also a

powerful programming language, as well as an interactive computational environment. In

previous Units, we have learned how to enter commands from the MATLAB command prompt.

MATLAB also allows us to write series of commands into a file and execute the file as

complete unit, like writing a function and calling it.

MATLAB does not require any type declaration or dimension statements. Whenever MATLAB

encounters a new variable name, it creates the variable and allocates appropriate memory space.

If the variable already exists, then MATLAB replaces the original content with new content and

allocates new storage space, where necessary.

In this Session, we shall study the creation and use of M-Files as well as the data types that exist

in MATLAB.

Learning Outcomes

When you have studied this session, you should be able to explain:

3.1 The M Files

3.2 Creating and Running Script File

3.3 MATLAB - Data Types

3.4 MATLAB – Operators

3.5 MATLAB - Decision Making

3.6 MATLAB - Loop Types

3.7 Loop Control Statements

3.1 The M Files

MATLAB allows writing two kinds of program files –

 Scripts − script files are program files with .m extension. In these files, we write series

of commands, which we want to execute together. Scripts do not accept inputs and do

not return any outputs. They operate on data in the workspace.

 Functions − functions files are also program files with .m extension. Functions can

accept inputs and return outputs. Internal variables are local to the function.

We can use the MATLAB editor or any other text editor to create .m files. In this section, we

will discuss the script files. A script file contains multiple sequential lines of MATLAB

commands and function calls. We can run a script by typing its name at the command line.

3.2 Creating and Running Script File

To create scripts files, we need to use a text editor. We can open the MATLAB editor in two

ways:

 Using the command prompt

 Using the IDE

If we are using the command prompt, type edit in the command prompt. This will open the

editor. We can directly type edit and then the filename (with .m extension)

edit

or

edit <filename>

The above command will create the file in default MATLAB directory. If we want to store all

program files in a specific folder, then we will have to provide the entire path. Let us create a

folder named progs. Type the following commands at the command prompt (>>):

mkdir progs % create directory progs under default directory

chdir progs % changing the current directory to progs

edit prog1.m % creating an m file named prog1.m

If we are creating the file for first time, MATLAB prompts us to confirm it. Click Yes

.

Figure 3.1 Editor Environment

Alternatively, if we are using the IDE, choose NEW -> Script. This also opens the editor and

creates a file named Untitled. We can name and save the file after typing the code.

Type the following code in the editor –

NoOfStudents = 6000;

TeachingStaff = 150;

NonTeachingStaff = 20;

Total = NoOfStudents + TeachingStaff ...

 + NonTeachingStaff;

disp(Total);

After creating and saving the file, we can run it in two ways −

 Clicking the Run button on the editor window or

 Just typing the filename (without extension) in the command prompt: >> prog1

The command window prompt displays the result –

6170

Example: Create a script file, and type the following code –

a = 5; b = 7;

c = a + b

d = c + sin(b)

e = 5 * d

f = exp(-d)

When the above code is compiled and executed, it produces the following result –

c = 12

d = 67120/5303

e = 23099/365

f = 29/9104528

3.3 MATLAB - Data Types

3.3.1 Data Types Available in MATLAB

MATLAB provides 15 fundamental data types. Every data type stores data that is in the form of

a matrix or array. The size of this matrix or array is a minimum of 0-by-0 and this can grow up

to a matrix or array of any size. The following table shows the most commonly used data types

in MATLAB –

Data Type Description

int8 8-bit signed integer

uint8 8-bit unsigned integer

int16 16-bit signed integer

uint16 16-bit unsigned integer

int32 32-bit signed integer

uint32 32-bit unsigned integer

int64 64-bit signed integer

uint64 64-bit unsigned integer

single single precision numerical data

double double precision numerical data

logical logical values of 1 or 0, represent true and false

respectively

char character data (strings are stored as vector of characters)

cell array array of indexed cells, each capable of storing an array

of a different dimension and data type

structure C-like structures, each structure having named fields

capable of storing an array of a different dimension and

data type

function handle pointer to a function

user classes objects constructed from a user-defined class

java classes objects constructed from a Java class

Example: Create a script file with the following code –

str = 'Hello World!'

n = 2345

d = double(n)

un = uint32(789.50)

rn = 5678.92347

c = int32(rn)

When the above code is compiled and executed, it produces the following result –

str = Hello World!

n = 2345

d = 2345

un = 790

rn = 5678.9

c = 5679

3.3.2 Data Type Conversion

MATLAB provides various functions for converting, a value from one data type to another. The

following table shows the data type conversion functions –

Function Purpose

char Convert to character array (string)

int2str Convert integer data to string

mat2str Convert matrix to string

num2str Convert number to string

str2double Convert string to double-precision value

str2num Convert string to number

native2unicode Convert numeric bytes to Unicode characters

unicode2native Convert Unicode characters to numeric bytes

base2dec Convert base N number string to decimal number

bin2dec Convert binary number string to decimal number

dec2base Convert decimal to base N number in string

dec2bin Convert decimal to binary number in string

dec2hex Convert decimal to hexadecimal number in string

hex2dec Convert hexadecimal number string to decimal number

hex2num Convert hexadecimal number string to double-precision number

num2hex Convert singles and doubles to IEEE hexadecimal strings

cell2mat Convert cell array to numeric array

cell2struct Convert cell array to structure array

cellstr Create cell array of strings from character array

mat2cell Convert array to cell array with potentially different sized cells

num2cell Convert array to cell array with consistently sized cells

struct2cell Convert structure to cell array

3.3.3 Determination of Data Types

MATLAB provides various functions for identifying data type of a variable. Following table

provides the functions for determining the data type of a variable:

Function Purpose

is Detect state

isa Determine if input is object of specified class

iscell Determine whether input is cell array

iscellstr Determine whether input is cell array of strings

ischar Determine whether item is character array

isfield Determine whether input is structure array field

isfloat Determine if input is floating-point array

ishghandle True for Handle Graphics object handles

isinteger Determine if input is integer array

isjava Determine if input is Java object

islogical Determine if input is logical array

isnumeric Determine if input is numeric array

isobject Determine if input is MATLAB object

isreal Check if input is real array

isscalar Determine whether input is scalar

isstr Determine whether input is character array

isstruct Determine whether input is structure array

isvector Determine whether input is vector

class Determine class of object

validateattributes Check validity of array

whos List variables in workspace, with sizes and types

Example: Create a script file with the following code –

x = 3

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

x = 23.54

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

x = [1 2 3]

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

x = 'Hello'

isinteger(x)

isfloat(x)

isvector(x)

isscalar(x)

isnumeric(x)

When we run the file, it produces the following result –

x = 3

ans = 0

ans = 1

ans = 1

ans = 1

ans = 1

x = 1177/50

ans = 0

ans = 1

ans = 1

ans = 1

ans = 1

x =

 1 2 3

ans = 0

ans = 1

ans = 1

ans = 0

x = Hello

ans = 0

ans = 0

ans = 1

ans = 0

ans = 0

Summary

In this Unit, you have been introduced to the following concepts:

(i) How to create and use the M Files

(ii) Creating and Running Script File

(iii) MATLAB - Data Types

Self-Assessment Questions (SAQs)

(i) Create an m-file to compute the Interest on Principal, given the rate and Time (I = PRT/100)

(ii) Create an m-file to compute the roots of any quadratic equation using the formula method

Study Session 4: MATLAB Operators

Expected Duration: 1 week or 2 contact hours

Introduction

Operators are symbols used in programming to perform some mathematical or logical

operations. In this Session, you shall be introduced to the different mathematical and logical

operators the MATLAB supports.

Learning Outcomes

When you have studied this session, you should be able to explain and use the following

operators:

4.1 MATLAB – Operators

4.2 Arithmetic Operators

4.2 Relational Operators

4.3 Logical Operators

4.4 Bitwise Operations

4.5 Set Operations

4.1 MATLAB – Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. MATLAB is designed to operate primarily on whole matrices and arrays.

Therefore, operators in MATLAB work both on scalar and non-scalar data. MATLAB allows

the following types of elementary operations –

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operations

 Set Operations

4.2 Arithmetic Operators

MATLAB allows two different types of arithmetic operations:

 Matrix arithmetic operations

 Array arithmetic operations

Matrix arithmetic operations are same as defined in linear algebra. Array operations are

executed element by element, both on one-dimensional and multidimensional array. The matrix

operators and array operators are differentiated by the period (.) symbol. However, as the

addition and subtraction operation is same for matrices and arrays, the operator is same for both

cases. The following table gives brief description of the operators:

Operator Description

+ Addition or unary plus. A+B adds the values stored in variables A and B. A

and B must have the same size, unless one is a scalar. A scalar can be added

to a matrix of any size.

- Subtraction or unary minus. A-B subtracts the value of B from A. A and B

must have the same size, unless one is a scalar. A scalar can be subtracted

from a matrix of any size.

* Matrix multiplication. C = A*B is the linear algebraic product of the

matrices A and B. More precisely,

For non-scalar A and B, the number of columns of A must be equal to the

number of rows of B. A scalar can multiply a matrix of any size.

.* Array multiplication. A.*B is the element-by-element product of the arrays A

and B. A and B must have the same size, unless one of them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as B*inv(A). More

precisely, B/A = (A'\B')'.

./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A and B

must have the same size, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is roughly the

same as inv(A)*B, except it is computed in a different way. If A is an n-by-n

matrix and B is a column vector with n components, or a matrix with several

such columns, then X = A\B is the solution to the equation AX = B. A

warning message is displayed if A is badly scaled or nearly singular.

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A and B

must have the same size, unless one of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer, the

power is computed by repeated squaring. If the integer is negative, X is

inverted first. For other values of p, the calculation involves eigenvalues and

eigenvectors, such that if [V,D] = eig(X), then X^p = V*D.^p/V.

.^ Array power. A.^B is the matrix with elements A(i,j) to the B(i,j) power. A

and B must have the same size, unless one of them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For complex

matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex matrices, this

does not involve conjugation.

4.2 Relational Operators

Relational operators can also work on both scalar and non-scalar data. Relational operators for

arrays perform element-by-element comparisons between two arrays and return a logical array

of the same size, with elements set to logical 1 (true) where the relation is true and elements set

to logical 0 (false) where it is not. The following table shows the relational operators available

in MATLAB:

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

4.3 Logical Operators

MATLAB offers two types of logical operators and functions:

 Element-wise − These operators operate on corresponding elements of logical arrays.

 Short-circuit − These operators operate on scalar and, logical expressions.

Element-wise logical operators operate element-by-element on logical arrays. The symbols &, |,

and ~ are the logical array operators AND, OR, and NOT. Short-circuit logical operators allow

short-circuiting on logical operations. The symbols && and || are the logical short-circuit

operators AND and OR.

4.4 Bitwise Operations

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &, |, and ^

are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; Now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

MATLAB provides various functions for bit-wise operations like 'bitwise and', 'bitwise or' and

'bitwise not' operations, shift operation, etc. The following table shows the commonly used

bitwise operations:

Function Purpose

bitand(a, b) Bit-wise AND of integers a and b

bitcmp(a) Bit-wise complement of a

bitget(a,pos) Get bit at specified position pos, in the integer array a

bitor(a, b) Bit-wise OR of integers a and b

bitset(a, pos) Set bit at specific location pos of a

bitshift(a, k) Returns a shifted to the left by k bits, equivalent to multiplying by

2
k
. Negative values of k correspond to shifting bits right or dividing

by 2
|k|

 and rounding to the nearest integer towards negative infinite.

Any overflow bits are truncated.

bitxor(a, b) Bit-wise XOR of integers a and b

swapbytes Swap byte ordering

4.5 Set Operations

MATLAB provides various functions for set operations, like union, intersection and testing for

set membership, etc. The following table shows some commonly used set operations –

Function Description

intersect(A,B) Set intersection of two arrays; returns the values common to both

A and B. The values returned are in sorted order.

intersect(A,B,'rows') Treats each row of A and each row of B as single entities and

returns the rows common to both A and B. The rows of the

returned matrix are in sorted order.

ismember(A,B) Returns an array the same size as A, containing 1 (true) where

the elements of A are found in B. Elsewhere, it returns 0 (false).

ismember(A,B,'rows') Treats each row of A and each row of B as single entities and

returns a vector containing 1 (true) where the rows of matrix A

are also rows of B. Elsewhere, it returns 0 (false).

issorted(A) Returns logical 1 (true) if the elements of A are in sorted order

and logical 0 (false) otherwise. Input A can be a vector or an N-

by-1 or 1-by-N cell array of strings. A is considered to be

sorted if A and the output of sort(A) are equal.

issorted(A, 'rows') Returns logical 1 (true) if the rows of two-dimensional matrix A

is in sorted order, and logical 0 (false) otherwise.Matrix A is

considered to be sorted if A and the output of sortrows(A) are

equal.

setdiff(A,B) Sets difference of two arrays; returns the values in A that are not

in B. The values in the returned array are in sorted order.

setdiff(A,B,'rows') Treats each row of A and each row of B as single entities and

returns the rows from A that are not in B. The rows of the

returned matrix are in sorted order.

The 'rows' option does not support cell arrays.

setxor Sets exclusive OR of two arrays

union Sets union of two arrays

unique Unique values in array

Summary

In this Session, you have been introduced to the different operators that can be used for computations in

MATLAB, such as

• Arithmetic operators

• Relational operators

• Logical operators

• Bitwise operators and

• Set Operations

Self-Assessment Questions (SAQs)

Open your MATLAB environment to practice all the operators as explained in this Session using your own

supplied data

Study Session 5: Decision Making and Loop Controls

Expected Duration: 1 week or 2 contact hours

Introduction

Sometimes you may need to make some decisions in your program, like if the value of A is less

than B, then C should be computed. In another way, you want to repeat a section of your code

based on certain conditions or for some number of times. The means to achieve these your goals

is explained in this Session

Learning Outcomes

When you have studied this session, you should be use the following controls in MATLAB:

5.1 MATLAB - Decision Making

5.2 MATLAB - Loop Types

5.3 Loop Control Statements

5.1 MATLAB - Decision Making

Decision making structures require that the programmer should specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be executed if

the condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages –

Figure 5.1: Decision-making Structure

MATLAB provides following types of decision making statements.

Statement Description

if … end

statement

An if ... end statement consists of a boolean expression followed by one or

more statements.

if … else … end

statement

An if statement can be followed by an optional else statement, which

executes when the boolean expression is false.

if … elseif …

else…. end

statement

An if statement can be followed by one (or more) optional elseif... and

an else statement, which is very useful to test various conditions.

Nested if

statement

We can use one if or elseif statement inside another if or elseif statement(s).

switch statement A switch statement allows a variable to be tested for equality against a list of

values.

Nested switch

statement

We can use one switch statement inside another switch statement(s).

5.1.1 Explanations and Illustrations

(i) Simple decisions

If statements:

The general form of the IF statement is

IF expression

 statements

ELSEIF expression

statements

ELSE

statements

END

IF … END (as in Example 1 below)

Example 1:

n = input(‘Enter the upper limit: ‘);

if n < 1

 disp (‘Your answer is meaningless!’)

end

x = 1:n;

term = sqrt(x);

y = sum(term)

Complex Decisions

Use IF … ELSEIF … ELSE ... END

Example 2:

if (x == 3)

 disp(‘The value of x is 3.’);

 elseif (x == 5)

 disp(‘The value of x is 5.’);

 else

 disp(‘The value of x is not 3 or 5.’);

 end;

Example 3:

Roots of ax
2
+bx+c=0

The roots are set by the discriminant

If Δ < 0 (no real roots)

If Δ = 0 (one real root)

If Δ > 0 (two real roots)

MATLAB needs to make decisions (based on Δ).

A possible M-file (explained in Session 3) will look like:

Read in values of a, b, c

Calculate Δ

IF Δ < 0

 Print message ‘ No real roots’→ Go END

ELSEIF Δ = 0

 Print message ‘One real root’→ Go END

ELSE

 Print message ‘Two real roots’

END

a

acbb
x

2

42

acb 42

 OurMFile Code:

%==

% Demonstration of an m-file

% Calculate the real roots of a quadratic equation

%==

clear all; % clear all variables

clc; % clear screen

coeffts = input('Enter values for a,b,c (as a vector): '); % Read in equation coefficients

a = coeffts(1);

b = coeffts(2);

c = coeffts(3);

delta = b^2 - 4*a*c; % Calculate discriminant

% Calculate number (and value) of real roots

if delta < 0

 fprintf('\nEquation has no real roots:\n\n')

 disp(['discriminant = ', num2str(delta)])

elseif delta == 0

 fprintf('\nEquation has one real root:\n')

 xone = -b/(2*a)

else

 fprintf('\nEquation has two real roots:\n')

 x(1) = (-b + sqrt(delta))/(2*a);

 x(2) = (-b – sqrt(delta))/(2*a);

 fprintf('\n First root = %10.2e\n\t Second root = %10.2f', x(1),x(2))

end

Switch statement

SWITCH – Switch among several cases based on expression. The general form of SWITCH

statement is:

SWITCH switch_expr

CASE case_expr,

statement, …, statement

CASE {case_expr1, case_expr2, case_expr3, …}

statement, …, statement

…

OTHERWISE

statement, …, statement

END

Note:

(i) Only the statements between the matching CASE and the next CASE, OTHERWISE, or

END are executed

(ii) Unlike C, the SWITCH statement does not fall through (so BREAKs are unnecessary)

Example:

switch face

 case {1}

 disp(‘Rolled a 1’);

 case {2}

 disp(‘Rolled a 2’);

 otherwise

 disp(‘Rolled a number >= 3’);

 end

5.2 MATLAB - Loop Types

There may be a situation when you need to execute a block of code several number of times. In

general, statements are executed sequentially. The first statement in a function is executed first,

followed by the second, and so on. Programming languages provide various control structures

that allow for more complicated execution paths. A loop statement allows us to execute a

statement or group of statements multiple times and following is the general form of a loop

statement in most of the programming languages:

Figure 5.2: Loop Control

MATLAB provides following types of loops to handle looping requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the

loop body.

for loop Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

Nested loops We can use one or more loops inside any another loop.

5.2.1 Examples and illustrations

For loops

FOR repeats statements a specific number of times. The general form of a FOR statement is:

FOR variable=expr

statements

END

>> x = 0;
 for i=1:2:5 % start at 1, increment by 2

 x = x+i; % end with 5.

 end

 This computes x = 0+1+3+5=9.

While loops

WHILE repeats statements an indefinite number of times. The general form of a WHILE

statement is:

WHILE expression

 statements

END

x=7;

 while (x > = 0)

 x = x-2;

 end;

 This computes x = 7-2-2-2-2 = -1

5.3 Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed. MATLAB supports

the following control statements.

Control Statement Description

break statement Terminates the loop statement and transfers execution to the

statement immediately following the loop.

break terminates execution of for and while loops. For nested

loops, it exits the innermost loop only

continue statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

Example:

x=7;

 while (x > = 0)

 x = x-2;

 if x == 5 continue;

 end;

Guess what the solution will be.

x=7;

 while (x > = 0)

 x = x-2;

 if x == 5 break;

 end;

Again guess what the solution will be.

Summary

In this Session, you have been introduced to the different control structures that MATLAB supports. These are

Decision, Loops and Loop Control structures

Self-Assessment Questions (SAQ)

(1) Computing the area of a triangle using Heron’s formula

Problem Statement

Given a triangle with side lengths a, b and c, its area can be computed using the Heron's formula:

where s is the half of the perimeter length:

Write a program to read in the coefficients a, b and c, and compute the area of the triangle.

However, not any three numbers can make a triangle. There are two conditions. First, all side

lengths must be positive:

and second the sum of any two side lengths must be greater than the third side length:

In the program, these two conditions must be checked before computing the triangle area;

otherwise, square root computation will be in trouble.

(2) A seller agrees to give the following discounts to his customers based on the number of items

bought by them.

 Quantity Discount

 1 – 5 2%

 6 – 10 5%

 11 – 20 10%

 >=21 15%

Assuming that the seller deals with only one product at a unit price P, write a program that will

compute the initial pay before discount, the discount amount and the final payable amount after

discount for the seller.

Study Session 6: MATLAB Vectors and Matrices Manipulations

Expected Duration: 1 week or 2 contact hours

Introduction

A vector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors

− Row vectors and Column vectors. A matrix is a two-dimensional array of numbers. In

MATLAB, We create a matrix by entering elements in each row as comma or space delimited

numbers and using semicolons to mark the end of each row. We shall look at these two

concepts in this Session.

Learning Outcomes

When you have studied this session, you should be able to explain:

6.1 Types of MATLAB - Vectors

6.1.1 Row Vectors

6.1.2 Column Vectors

6.1.3 Referencing the Elements of a Vector

6.1.4 Vector Operations

6.2 MATLAB - Matrix

6.2.1 Referencing the Elements of a Matrix

6.2.2 Deleting a Row or a Column in a Matrix

6.2.3 Matrix Operations

6.1 Types of MATLAB - Vectors

6.1.1 Row Vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or

comma to delimit the elements.

r = [7 8 9 10 11]

MATLAB will execute the above statement and return the following result –

r =

 7 8 9 10 11

6.1.2 Column Vectors

Column vectors are created by enclosing the set of elements in square brackets, using

semicolon to delimit the elements.

c = [7; 8; 9; 10; 11]

MATLAB will execute the above statement and return the following result:

c =

 7

 8

 9

 10

 11

6.1.3 Referencing the Elements of a Vector

We can reference one or more of the elements of a vector in several ways. The i
th

 component of

a vector v is referred as v(i). For example –

v = [1; 2; 3; 4; 5; 6]; % creating a column vector of 6 elements

v(3)

MATLAB will execute the above statement and return the following result –

ans = 3

When we reference a vector with a colon, such as v(:), all the components of the vector are

listed.

v = [1; 2; 3; 4; 5; 6]; % creating a column vector of 6 elements

v(:)

MATLAB will execute the above statement and return the following result:

ans =

 1

 2

 3

 4

 5

 6

MATLAB allows us to select a range of elements from a vector. For example, let us create a

row vector rv of 9 elements, then we will reference the elements 3 to 7 by writing rv(3:7) and

create a new vector named sub_rv.

rv = [1 2 3 4 5 6 7 8 9];

sub_rv = rv(3:7)

MATLAB will execute the above statement and return the following result:

sub_rv =

 3 4 5 6 7

6.1.4 Vector Operations

6.1.4.1 MATLAB - Addition & Subtraction of Vectors

We can add or subtract two vectors. Both the operand vectors must be of same type and have

same number of elements.

Example:

Create a script file with the following code:

A = [7, 11, 15, 23, 9];

B = [2, 5, 13, 16, 20];

C = A + B;

D = A - B;

disp(C);

disp(D);

When we run the file, it displays the following result:

9 16 28 39 29

5 6 2 7 -11

6.1.4.2 MATLAB - Scalar Multiplication of Vectors

When we multiply a vector by a number, this is called the scalar multiplication. Scalar

multiplication produces a new vector of same type with each element of the original vector

multiplied by the number. Example:

Create a script file with the following code –

v = [12 34 10 8];

m = 5 * v

When we run the file, it displays the following result –

m =

 60 170 50 40

Please note that we can perform all scalar operations on vectors. For example, we can add,

subtract and divide a vector with a scalar quantity.

6.1.4.3 MATLAB - Transpose of a Vector

The transpose operation changes a column vector into a row vector and vice versa. The

transpose operation is represented by a single quote ('). Example:

Create a script file with the following code –

r = [1 2 3 4];

tr = r';

v = [1;2;3;4];

tv = v';

disp(tr); disp(tv);

When we run the file, it displays the following result –

 1

 2

 3

 4

 1 2 3 4

6.1.4.4 MATLAB - Appending Vectors

MATLAB allows us to append vectors together to create new vectors. If we have two row

vectors r1 and r2 with n and m number of elements, to create a row vector r of n plus m

elements, by appending these vectors, we write –

r = [r1, r2]

We can also create a matrix r by appending these two vectors, the vector r2, will be the second

row of the matrix –

r = [r1; r2]

However, to do this, both the vectors should have same number of elements.

Similarly, we can append two column vectors c1 and c2 with n and m number of elements. To

create a column vector c of n plus m elements, by appending these vectors, we write –

c = [c1; c2]

We can also create a matrix c by appending these two vectors; the vector c2 will be the second

column of the matrix –

c = [c1, c2]

However, to do this, both the vectors should have same number of elements.

Example:

Create a script file with the following code:

r1 = [1 2 3 4];

r2 = [5 6 7 8];

r = [r1,r2]

rMat = [r1;r2]

c1 = [1; 2; 3; 4];

c2 = [5; 6; 7; 8];

c = [c1; c2]

cMat = [c1,c2]

When we run the file, it displays the following result:

r =

 Columns 1 through 7:

 1 2 3 4 5 6 7

 Column 8:

 8

rMat =

 1 2 3 4

 5 6 7 8

c =

 1

 2

 3

 4

 5

 6

 7

 8

cMat =

 1 5

 2 6

 3 7

 4 8

6.1.4.5 MATLAB - Magnitude of a Vector

Magnitude of a vector v with elements v1, v2, v3, …, vn, is given by the equation:

|v| = √(v1
2
 + v2

2
 + v3

2
 + … + vn

2
)

We need to take the following steps to calculate the magnitude of a vector:

 Take the product of the vector with itself, using array multiplication (.*). This produces

a vector sv, whose elements are squares of the elements of vector v.

sv = v.*v;

 Use the sum function to get the sum of squares of elements of vector v. This is also

called the dot product of vector v.

dp= sum(sv);

 Use the sqrt function to get the square root of the sum which is also the magnitude of the

vector v.

mag = sqrt(s);

Example:

Create a script file with the following code –

v = [1: 2: 20];

sv = v.* v; %the vector with elements

 % as square of v's elements

dp = sum(sv); % sum of squares -- the dot product

mag = sqrt(dp); % magnitude

disp('Magnitude:'); disp(mag);

When we run the file, it displays the following result –

Magnitude:

76877/2108

6.1.4.6 MATLAB - Vector Dot Product

Dot product of two vectors a = (a1, a2, …, an) and b = (b1, b2, …, bn) is given by:

a.b = ∑(ai.bi)

Dot product of two vectors a and b is calculated using the dot function.

dot(a, b);

Example

Create a script file with the following code:

v1 = [2 3 4];

v2 = [1 2 3];

dp = dot(v1, v2);

disp('Dot Product:'); disp(dp);

When we run the file, it displays the following result:

Dot Product:

 20

6.1.4.7 Vectors with Uniformly Spaced Elements

MATLAB allows us to create a vector with uniformly spaced elements. To create a vector v

with the first element f, last element l, and the difference between elements is any real number

n, we write:

v = [f : n : l]

Example: Create a script file with the following code –

v = [1: 2: 20];

sqv = v.^2;

disp(v);disp(sqv);

When we run the file, it displays the following result –

Columns 1 through 7:

 1 3 5 7 9 11 13

 Columns 8 through 10:

 15 17 19

 Columns 1 through 7:

 1 9 25 49 81 121 169

 Columns 8 through 10:

 225 289 361

6.2 MATLAB - Matrix

A matrix is a two-dimensional array of numbers. In MATLAB, We create a matrix by entering

elements in each row as comma or space delimited numbers and using semicolons to mark the

end of each row. For example, let us create a 4-by-5 matrix a:

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8]

MATLAB will execute the above statement and return the following result –

a =

 1 2 3 4 5

 2 3 4 5 6

 3 4 5 6 7

 4 5 6 7 8

6.2.1 Referencing the Elements of a Matrix

To reference an element in the m
th

 row and n
th

 column, of a matrix mx, we write:

mx(m, n);

For example, to refer to the element in the 2
nd

 row and 5
th

 column, of the matrix a, as created in

the last section, we type –

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(2,5)

MATLAB will execute the above statement and return the following result –

ans = 6

To reference all the elements in the m
th

 column we type A(:,m). Let us create a column vector v,

from the elements of the 4
th

 row of the matrix a:

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

v = a(:,4)

MATLAB will execute the above statement and return the following result:

v =

 4

 5

 6

 7

We can also select the elements in the m
th

 through n
th

 columns, for this we write:

a(:,m:n)

Let us create a smaller matrix taking the elements from the second and third columns:

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(:, 2:3)

MATLAB will execute the above statement and return the following result:

ans =

 2 3

 3 4

 4 5

 5 6

In the same way, we can create a sub-matrix taking a sub-part of a matrix.

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(:, 2:3)

MATLAB will execute the above statement and return the following result −

ans =

 2 3

 3 4

 4 5

 5 6

In the same way, we can create a sub-matrix taking a sub-part of a matrix. For example, let us

create a sub-matrix sa taking the inner subpart of a:

3 4 5

4 5 6

To do this, write:

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

sa = a(2:3,2:4)

MATLAB will execute the above statement and return the following result –

sa =

 3 4 5

 4 5 6

6.2.2 Deleting a Row or a Column in a Matrix

We can delete an entire row or column of a matrix by assigning an empty set of square braces [

] to that row or column. Basically, [] denotes an empty array.

For example, let us delete the fourth row of a:

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(4 , :) = []

MATLAB will execute the above statement and return the following result –

a =

 1 2 3 4 5

 2 3 4 5 6

 3 4 5 6 7

Next, let us delete the fifth column of a:

a = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8];

a(: , 5)=[]

MATLAB will execute the above statement and return the following result –

a =

 1 2 3 4

 2 3 4 5

 3 4 5 6

 4 5 6 7

In this example, let us create a 3-by-3 matrix m, then we will copy the second and third rows of

this matrix twice to create a 4-by-3 matrix.

Create a script file with the following code:

a = [1 2 3 ; 4 5 6; 7 8 9];

new_mat = a([2,3,2,3],:)

When we run the file, it displays the following result:

new_mat =

 4 5 6

 7 8 9

 4 5 6

 7 8 9

6.2.3 Matrix Operations

6.2.3.1 MATLAB - Addition & Subtraction of Matrices

We can add or subtract matrices. Both the operand matrices must have the same number of rows

and columns. Create a script file with the following code –

a = [1 2 3 ; 4 5 6; 7 8 9];

b = [7 5 6 ; 2 0 8; 5 7 1];

c = a + b

d = a - b

When we run the file, it displays the following result –

c =

 8 7 9

 6 5 14

 12 15 10

d =

 -6 -3 -3

 2 5 -2

 2 1 8

6.2.3.2 MATLAB - Matrix Multiplication and Division

Consider two matrices A and B. If A is an m x n matrix and B is an n x p matrix, they could be

multiplied together to produce an m x n matrix C. Matrix multiplication is possible only if the

number of columns n in A is equal to the number of rows n in B.

In matrix multiplication, the elements of the rows in the first matrix are multiplied with

corresponding columns in the second matrix. Each element in the (i, j)
th

 position, in the

resulting matrix C, is the summation of the products of elements in i
th

 row of first matrix with

the corresponding element in the j
th

 column of the second matrix. Matrix multiplication in

MATLAB is performed by using the * operator.

Example:

Create a script file with the following code:

a = [1 2 3; 2 3 4; 1 2 5]

b = [2 1 3 ; 5 0 -2; 2 3 -1]

prod = a * b

When we run the file, it displays the following result –

a =

 1 2 3

 2 3 4

 1 2 5

b =

 2 1 3

 5 0 -2

 2 3 -1

prod =

 18 10 -4

 27 14 -4

 22 16 -6

We can divide two matrices using left (\) or right (/) division operators. Both the operand

matrices must have the same number of rows and columns. Example:

Create a script file with the following code –

a = [1 2 3 ; 4 5 6; 7 8 9];

b = [7 5 6 ; 2 0 8; 5 7 1];

c = a / b

d = a \ b

When we run the file, it displays the following result –

c =

 -0.52542 0.68644 0.66102

 -0.42373 0.94068 1.01695

 -0.32203 1.19492 1.37288

d =

 -3.27778 -1.05556 -4.86111

 -0.11111 0.11111 -0.27778

 3.05556 1.27778 4.30556

6.2.3.3 MATLAB - Transpose of a Matrix

The transpose operation switches the rows and columns in a matrix. It is represented by a single

quote ('). Example:

Create a script file with the following code –

a = [10 12 23 ; 14 8 6; 27 8 9]

b = a'

When we run the file, it displays the following result –

a =

 10 12 23

 14 8 6

 27 8 9

b =

 10 14 27

 12 8 8

 23 6 9

6.2.3.4 MATLAB - Concatenating Matrices

We can concatenate two matrices to create a larger matrix. The pair of square brackets '[]' is the

concatenation operator. MATLAB allows two types of concatenations −

 Horizontal concatenation

 Vertical concatenation

When we concatenate two matrices by separating those using commas, they are just appended

horizontally. It is called horizontal concatenation. Alternatively, if We concatenate two matrices

by separating those using semicolons, they are appended vertically. It is called vertical

concatenation. Example:

Create a script file with the following code –

a = [10 12 23 ; 14 8 6; 27 8 9]

b = [12 31 45 ; 8 0 -9; 45 2 11]

c = [a, b]

d = [a; b]

When we run the file, it displays the following result:

a =

 10 12 23

 14 8 6

 27 8 9

b =

 12 31 45

 8 0 -9

 45 2 11

c =

 10 12 23 12 31 45

 14 8 6 8 0 -9

 27 8 9 45 2 11

d =

 10 12 23

 14 8 6

 27 8 9

 12 31 45

 8 0 -9

 45 2 11

6.2.3.4 MATLAB - Determinant of a Matrix

Determinant of a matrix is calculated using the det function of MATLAB. Determinant of a

matrix A is given by det(A). Example:

Create a script file with the following code:

a = [1 2 3; 2 3 4; 1 2 5]

det(a)

When we run the file, it displays the following result:

a =

 1 2 3

 2 3 4

 1 2 5

ans = -2

6.2.3.5 MATLAB - Inverse of a Matrix

The inverse of a matrix A is denoted by A
−1

 such that the following relationship holds –

AA
−1

 = A
−1

A = 1

The inverse of a matrix does not always exist. If the determinant of the matrix is zero, then the

inverse does not exist and the matrix is singular.

Inverse of a matrix in MATLAB is calculated using the inv function. Inverse of a matrix A is

given by inv(A). Example:

Create a script file and type the following code –

a = [1 2 3; 2 3 4; 1 2 5]

inv(a)

When we run the file, it displays the following result:

a =

 1 2 3

 2 3 4

 1 2 5

ans =

 -3.5000 2.0000 0.5000

 3.0000 -1.0000 -1.0000

 -0.5000 0 0.5000

Summary

Self-Assessment Questions

Study Session 7: MATLAB Arrays

Expected Duration: 1 week or 2 contact hours

Introduction

All variables of all data types in MATLAB are multidimensional arrays. A vector is a one-

dimensional array and a matrix is a two-dimensional array. We have already discussed vectors

and matrices. In this section, we will discuss multidimensional arrays. However, before that, let

us discuss some special types of arrays

Learning Outcomes

When you have studied this session, you should be able to understand and explain:

7.1 Special Arrays in MATLAB

7.2 Multidimensional Arrays

7.3. Array Functions

7.4 Other Square Array/Matrix Functions

7.1 Special Arrays in MATLAB

Below are the special arrays that can be created and used in MATLAB:

Function Description

accumarray Distribute elements of an input matrix to specified locations in

an output matrix, also allowing for accumulation.

diag Create a diagonal matrix from a vector.

eye Create a matrix with ones on the diagonal and zeros elsewhere.

magic Create a square matrix with rows, columns, and diagonals that

add up to the same number.

ones Create a matrix or array of all ones.

rand Create a matrix or array of uniformly distributed random

numbers.

randn Create a matrix or array of normally distributed random

numbers and arrays.

randperm Create a vector (1-by-n matrix) containing a random

permutation of the specified integers.

zeros Create a matrix or array of all zeros.

accumarray Distribute elements of an input matrix to specified locations in

an output matrix, also allowing for accumulation.

diag Create a diagonal matrix from a vector.

eye Create a matrix with ones on the diagonal and zeros elsewhere.

magic Create a square matrix with rows, columns, and diagonals that

add up to the same number.

Now, let us discuss some functions that create some special arrays. For all these functions, a

single argument creates a square array, double arguments create rectangular array.

7.1.1 zeros()

The zeros() function creates an array of all zeros − For example –

zeros(5)

MATLAB will execute the above statement and return the following result:

ans =

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

7.1.2 ones ()

The ones() function creates an array of all ones. For example,

ones(4,3)

ans =

 1 1 1

 1 1 1

 1 1 1

 1 1 1

7.1.3 Eye()

The eye() function creates an identity matrix. For example,

 >> a = eye(4) % This creates a 4 by 4 matrix with 1 in its leading/left diagonal

 % and zero elsewhere

ones Create a matrix or array of all ones.

rand Create a matrix or array of uniformly distributed random

numbers.

randn Create a matrix or array of normally distributed random

numbers and arrays.

randperm Create a vector (1-by-n matrix) containing a random

permutation of the specified integers.

zeros Create a matrix or array of all zeros.

a =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

 >> b = eye(3,4) % Explain what this function will do

b =

 1 0 0 0

0 1 0 0

 0 0 1 0

7.1.4 Rand():

The rand() function creates an array of uniformly distributed random numbers on (0,1). Using

this function many times, even with the same input, generates a different set of numbers

For example,

rand(3, 5)

MATLAB will execute the above statement and return the following result –

ans =

 0.8147 0.9134 0.2785 0.9649 0.9572

 0.9058 0.6324 0.5469 0.1576 0.4854

 0.1270 0.0975 0.9575 0.9706 0.8003

Exercises: Try the following functions and report your observation

(i) a = rand(4)

(ii) b = rand(4,3)

7.1.6 randn() and randperm()

The randn function behaves exactly like the rand function, but distributes its random numbers

normally. randperm gives a random permutation of integers.

To get full details about each function, type the function name on the command window

followed by its opening brace and wait a few seconds, the help information about the function

will be displayed and you can open it up to get more details.

>> a = randperm(3)

a =

 3 2 1

>> b = randperm(3, 2)

7.1.7 A Magic Square

A magic square is a square that produces the same sum, when its elements are added row-wise,

column-wise or diagonally. The magic() function creates a magic square array. It takes a

singular argument that gives the size of the square. The argument must be a scalar greater than

or equal to 3.

magic(4)

MATLAB will execute the above statement and return the following result:

ans =

 16 2 3 13

 5 11 10 8

 4 14 15 1

>> a = magic(3)

 a =

 8 1 6

 3 5 7

 4 9 2

(i) In this special matrix. Every row, column and diagonal add up to the same value

(ii) The sum of row 1 is 15, row 2 is 15 and row 3 is 15

(iii) The sum of column 1 is 15, column 2 is 15 and column 3 is 15

(iv) The sum of the left diagonal is 15 and the right diagonal is 15 also

7.2 Multidimensional Arrays

An array having more than two dimensions is called a multidimensional array in MATLAB.

Multidimensional arrays in MATLAB are an extension of the normal two-dimensional matrix.

Generally to generate a multidimensional array, we first create a two-dimensional array and

extend it. For example, let's create a two-dimensional array a.

a = [7 9 5; 6 1 9; 4 3 2]

MATLAB will execute the above statement and return the following result –

a =

 7 9 5

 6 1 9

 4 3 2

The array a is a 3-by-3 array; we can add a third dimension to a, by providing the values like:

a(:, :, 2)= [1 2 3; 4 5 6; 7 8 9]

MATLAB will execute the above statement and return the following result –

a(:,:,1) =

 7 9 5

 6 1 9

 4 3 2

a(:,:,2) =

 1 2 3

 4 5 6

 7 8 9

We can also create multidimensional arrays using the ones(), zeros() or the rand() functions.

For example,

b = rand(4,3,2)

MATLAB will execute the above statement and return the following result –

b(:,:,1) =

 0.0344 0.7952 0.6463

 0.4387 0.1869 0.7094

 0.3816 0.4898 0.7547

 0.7655 0.4456 0.2760

b(:,:,2) =

 0.6797 0.4984 0.2238

 0.6551 0.9597 0.7513

 0.1626 0.3404 0.2551

 0.1190 0.5853 0.5060

We can also use the cat() function to build multidimensional arrays. It concatenates a list of

arrays along a specified dimension: Syntax for the cat() function is –

B = cat(dim, A1, A2...)

Where,

 B is the new array created

 A1, A2, ... are the arrays to be concatenated

 dim is the dimension along which to concatenate the arrays

Example: Create a script file and type the following code into it –

a = [9 8 7; 6 5 4; 3 2 1];

b = [1 2 3; 4 5 6; 7 8 9];

c = cat(3, a, b, [2 3 1; 4 7 8; 3 9 0])

When we run the file, it displays:

c(:,:,1) =

 9 8 7

 6 5 4

 3 2 1

c(:,:,2) =

 1 2 3

 4 5 6

 7 8 9

c(:,:,3) =

 2 3 1

 4 7 8

 3 9 0

7.3. Array Functions

MATLAB provides the following functions to sort, rotate, permute, reshape, or shift array

contents.

Function Purpose

length Length of vector or largest array dimension

ndims Number of array dimensions

numel Number of array elements

size Array dimensions

iscolumn Determines whether input is column vector

isempty Determines whether array is empty

ismatrix Determines whether input is matrix

isrow Determines whether input is row vector

isscalar Determines whether input is scalar

isvector Determines whether input is vector

blkdiag Constructs block diagonal matrix from input arguments

circshift Shifts array circularly

ctranspose Complex conjugate transpose

diag Diagonal matrices and diagonals of matrix

flipdim Flips array along specified dimension

fliplr Flips matrix from left to right

flipud Flips matrix up to down

ipermute Inverses permute dimensions of N-D array

permute Rearranges dimensions of N-D array

repmat Replicates and tile array

reshape Reshapes array

rot90 Rotates matrix 90 degrees

shiftdim Shifts dimensions

issorted Determines whether set elements are in sorted order

sort Sorts array elements in ascending or descending order

sortrows Sorts rows in ascending order

squeeze Removes singleton dimensions

transpose Transpose

vectorize Vectorizes expression

The following examples illustrate some of the functions mentioned above.

7.3.1 Length, Dimension and Number of elements:

Create a script file and type the following code into it –

x = [7.1, 3.4, 7.2, 28/4, 3.6, 17, 9.4, 8.9];

length(x) % length of x vector

y = rand(3, 4, 5, 2);

ndims(y) % no of dimensions in array y

s = ['Zakariyau', 'Nureni', 'Samuel', 'Rauf', 'Chimezie'];

numel(s) % no of elements in s

When we run the file, it displays the following result –

ans = 8

ans = 4

ans = 23

7.3.2 Circular Shifting of the Array Elements

Create a script file and type the following code into it –

a = [1 2 3; 4 5 6; 7 8 9] % the original array a

b = circshift(a,1) % circular shift first dimension values down by 1.

c = circshift(a,[1 -1]) % circular shift first dimension values % down by 1

 % and second dimension values to the left % by 1.

When we run the file, it displays the following result –

a =

 1 2 3

 4 5 6

 7 8 9

b =

 7 8 9

 1 2 3

 4 5 6

c =

 8 9 7

 2 3 1

 5 6 4

7.3.3 Sorting Arrays

Create a script file and type the following code into it.

v = [23 45 12 9 5 0 19 17] % horizontal vector

sort(v) % sorting v

m = [2 6 4; 5 3 9; 2 0 1] % two dimensional array

sort(m, 1) % sorting m along the row

sort(m, 2) % sorting m along the column

When we run the file, it displays the following result:

v =

 23 45 12 9 5 0 19 17

ans =

 0 5 9 12 17 19 23 45

m =

 2 6 4

 5 3 9

 2 0 1

ans =

 2 0 1

 2 3 4

 5 6 9

ans =

 2 4 6

 3 5 9

 0 1 2

7.3.4 Cell Array

Cell arrays are arrays of indexed cells where each cell can store an array of a different

dimensions and data types. The cell function is used for creating a cell array. Syntax for the cell

function is –

C = cell(dim)

C = cell(dim1,...,dimN)

D = cell(obj)

Where,

 C is the cell array;

 dim is a scalar integer or vector of integers that specifies the dimensions of cell array C;

 dim1, ... , dimN are scalar integers that specify the dimensions of C;

 obj is one of the following:

o Java array or object

o .NET array of type System.String or System.Object

Example:

Create a script file and type the following code into it –

c = cell(2, 5);

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5}

When we run the file, it displays the following result:

c =

{

 [1,1] = Red

 [2,1] = 1

 [1,2] = Blue

 [2,2] = 2

 [1,3] = Green

 [2,3] = 3

 [1,4] = Yellow

 [2,4] = 4

 [1,5] = White

 [2,5] = 5

}

7.3.5 Accessing Data in Cell Arrays

There are two ways to refer to the elements of a cell array:

 Enclosing the indices in first bracket (), to refer to sets of cells

 Enclosing the indices in braces {}, to refer to the data within individual cells

When we enclose the indices in first bracket, it refers to the set of cells. Cell array indices in

smooth parentheses refer to sets of cells.

For example:

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};

c(1:2,1:2)

MATLAB will execute the above statement and return the following result –

ans =

{

 [1,1] = Red

 [2,1] = 1

 [1,2] = Blue

 [2,2] = 2

}

We can also access the contents of cells by indexing with curly braces.

For example,

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};

c{1, 2:4}

MATLAB will execute the above statement and return the following result:

ans = Blue

ans = Green

ans = Yellow

7.3.6 MATLAB - Colon Notation

The colon(:) is one of the most useful operator in MATLAB. It is used to create vectors,

subscript arrays, and specify for iterations. The colon (:) operator is used to indicate range

within a matrix or an array.

It could be in the format: A(first:last) or A (first:step:last)

The variable, step, in the second format, indicates the value by which the range should

increment or decrement.

If we want to create a row vector, containing integers from 1 to 10, we write 1:10

MATLAB executes the statement and returns a row vector containing the integers from 1 to 10

ans =

 1 2 3 4 5 6 7 8 9 10

If we want to specify an increment value other than one, for example –

100: -5: 50

MATLAB executes the statement and returns the following result –

ans =

 100 95 90 85 80 75 70 65 60 55 50

To generate the odd numbers from 1 to 20, type the following:

 >> B = 1:2:20

 B =

 1 3 5 7 9 11 13 15 17 19

If you do not specify a step value as in (example 1), MATLAB uses a default step of 1.

Exercise:

How would you generate all the multiples of 4 between 1 and 100?

It’s quite simple in MATLAB… Just type

>> mult_3 = 4:4:100

 Why did we start the series from 4?

Let us take another example –

0:pi/8:pi

MATLAB executes the statement and returns the following result –

ans =

 Columns 1 through 7

 0 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562

 Columns 8 through 9

 2.7489 3.1416

We can use the colon operator to create a vector of indices to select rows, columns or elements

of arrays.

The following table describes its use for this purpose (let us have a matrix A) –

Format Purpose

A(:,j) is the jth column of A.

A(i,:) is the ith row of A.

A(:,:) is the equivalent two-dimensional array. For matrices this is the same as A.

A(j:k) is A(j), A(j+1),...,A(k).

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k).

A(:,:,k) is the k
th

 page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes A(i,j,k,1),

A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On the left side of an

assignment statement, A(:) fills A, preserving its shape from before. In this

case, the right side must contain the same number of elements as A.

Example: Create a script file and type the following code in it:

A = [1 2 3 4; 4 5 6 7; 7 8 9 10]

A(:,2) % second column of A

A(:,2:3) % second and third column of A

A(2:3,2:3) % second and third rows and second and third columns

When we run the file, it displays the following result –

A =

 1 2 3 4

 4 5 6 7

 7 8 9 10

ans =

 2

 5

 8

ans =

 2 3

 5 6

 8 9

ans =

 5 6

 8 9

7.4 Other Square Array/Matrix Functions

(i) To find the sums along the columns and rows respectively, type

 Try

>> sum(A,1)

 and

 >> sum(A,2).

(ii) To get the sum of the left (main) diagonal, type

 Type trace(A) OR >> sum(diag(A))

(iii) To find the differences between the elements of a matrix, type

 >> d = diff(A) OR >> d = diff(A, 1, 1)

 d =

 -11 9 7 -5

 4 -4 -4 4

 -5 7 9 -11

(a) The above gives the differences between the rows i.e (row i+1) – (row i). To find the

difference between columns, type >> d = diff(A, 1, 1)

(b) The second argument specifies that the difference should be carried out just once, while the

third argument specifies the dimension along which to perform the differencing

(iv) To find the product between the columns and rows of a matrix respectively, type

 >> p = prod(A) OR >> p = prod(A, 1)

 p =

 2880 2156 2700 1248

 >> p = prod(A, 2)

 p =

 1248

 4400

 4536

 840

Summary

In this Session, you have been introduced to the following MATLAB array concepts:

1 Special Arrays in MATLAB

2 Multidimensional Arrays

3. Array Functions

4 Other Square Array/Matrix Functions

Self Assessment Questions (SAQs)

Create two 4 x 4 matrices and compute the sum, difference and product of the two matrices.

Study Session 8: Further Matrix Functions

Expected Duration: 1 week or 2 contact hours

Introduction

In this Session, further operations that can be performed on Matrices are discussed.

Learning Outcomes

When you have studied this session, you should be able to understand and explain:

8.1 How to find the sum of each column of a matrix and store them in a vector

8.2 How to find the sum of each row of a matrix and store them in a vector

8.3 Matrix Indexing

8.4 The Find function

8.5 Adjusting Matrices

8.5.1 Concatenation of Matrices

8.5.2 Vertical concatenation:

8.5.3 Horizontal concatenation:

8.6 Operations on Matrix Diagonals

8.7 Sparse Matrices and Multidimensional Arrays

8.1 To find the sum of each column of a matrix and store them in a vector

Try the following code:

>> col_sum = sum(magic(5))

 col_sum =

 65 65 65 65 65

8.2 To find the sum of each row of a matrix and store them in a vector

Try the following code:

>> col_sum = sum(magic(3), 2)

 col_sum =

 15

 15

 15

8.3 Matrix Indexing

As in conventional programming languages, MATLAB uses row and column indices to access

matrix elements. Therefore in the matrix A, below

Example:

>> A = [1 2 3; 4 5 6; 7 8 9]

 A =

 1 2 3

 4 5 6

 7 8 9

the element on the second row, first column (i.e. 4) can be accessed by writing A(2,1). Note that

the row index is written first and then the column index.

It is important to note that MATLAB stores matrices in a column-wise manner, i.e. matrix A

above is stored in memory as

 1 4 7 2 5 8 3 6 9

By virtue of MATLAB’s linear mode of string its arrays, we can access multidimensional arrays

as if they were linear. This is called Linear Indexing

Therefore, we could also access A(2,1) as A(2)

You can sub2ind() to obtain the linear index equivalent of a subscripted index and ind2sub() to

do vice versa. Still using the matrix A above, we illustrate the two functions as follows:

Example:

 >> linearindex = sub2ind(size(A), 3, 2)

 linearindex =

 6

>> [row col] = ind2sub(size(A), 6)

 row =

 3

 col =

 2

The colon (:) operator (discussed in the previous section) can also be used to specify that

MATLAB should read every element in a column or row of a matrix.

Example: Using the same matrix A, in example 4

>> row1 = A(1, :)

row1 =

 16 2 3 13

>> c3 = A(:, 3)

c3 =

 3

 10

 6

 15

MATLAB provides a keyword for the last row or column of a matrix.

Example: To display all the elements on the last row and last column of a matrix respectively,

use the end keyword as follows

>> last_row = A(end, :)

last)_row =

 4 14 15 1

>> last_col = A(:, end)

last_col =

 13

 8

 12

 1

MATLAB also provides logical indexing.

A logical array index designates the elements of an array, A based on their position in the

indexing array, B, and not based on their value. In this type of operation, every true element in

the indexing array is treated as a positional index into the array being accessed. In the following

example, B is a matrix of logical ones and zeros. The position of these elements in B determines

which elements of A are designated by the expression A(B) as shown below:

Example:
>> A = [1 2 3; 4 5 6; 7 8 9]

 A =

 1 2 3

 4 5 6

 7 8 9

>> B = logical([0 0 1; 1 0 1; 0 0 1])

 B =

 0 0 1

 1 0 1

 0 0 1

>> A(B)

ans =

4

3

6

9

Observe that the returned matrix, ans, is a column vector created using the linear indices of the

elements in A with respect to the ones (1) in B.

8.4 The Find function

The find function is another powerful MATLAB function for array indexing. It is quite useful

with logical arrays as it returns the linear indices of nonzero elements in B, and thus helps

interpret A(B) as shown in the previous example

Example: The find function in action

>> find(B)

 ans =

 2

 7

 8

 9

Observe that find gives the linear indices of non-zero elements in B

Another interesting manipulation that can be done on matrices is to convert them to a vector

using the colon operator as follows (using the matrix, A from example 11 above above):

Example:

>> A(:)

ans =

 1

 4

 7

 2

 5

 8

 3

 6

 9

8.5 Adjusting Matrices

MATLAB matrices can also be adjusted by concatenating, reshaping, rotating, transposing etc.

8.5.1 Concatenation of Matrices

Matrices can be concatenated either vertically (row-wise) or horizontally (column-wise).

Concatenation means merging two matrices

Example: Given two matrices A and B as follows:

 >>A = [1 2 3; 4 5 6; 7 8 9];

 >>B = [10 12 14; 20 24 28; 40 48 56];

8.5.2 Vertical concatenation:

 >>C = [A; B]

C =

 1 2 3

 4 5 6

 7 8 9

 10 12 14

 20 24 28

 40 48 56

8.5.3 Horizontal concatenation:

>>D = [A B]

D =

1 2 3 10 12 14

4 5 6 20 24 28

7 8 9 40 48 56

There are also specialized functions for concatenating matrices along different

directions/dimensions.

(i) cat(d, A, B): Concatenate matrices A and B along the specified dimension, d

(ii) horzcat(A, B): Concatenate matrices A and B along the horizontal dimension. The same

as [A, B]

(iii) vertcat(A, B): Concatenate matrices A and B along the vertical dimension. The same as

[A; B]

(iv) repmat(A, v, h): Produces a new matrix which replicates matrix A, v times vertically

and h times horizontally.

(v) blkdiag(A, B, C,...): This takes in a variable number of matrices as arguments and puts

each on the right diagonal of the new matrix created with every other element of the

matrix being zero.

Type the following on your MATLAB command window

>> M = magic(3); N = [-5 -6 -9; -4 -4 -2]; ...

E = eye(2) * 8; D = blkdiag(M, N, E)

Your output should look like this:

D =

 8 1 6 0 0 0 0 0

 3 5 7 0 0 0 0 0

 4 9 2 0 0 0 0 0

 0 0 0 -5 -6 -9 0 0

 0 0 0 -4 -4 -2 0 0

 0 0 0 0 0 0 8 0

 0 0 0 0 0 0 0 8

The ... (ellipses) symbol is used to indicate to MATLAB that there are still more lines of code on

the next line (useful when code is too long to be written on a line).

8.6 Operations on Matrix Diagonals

MATLAB provides many powerful functions for performing operations on the diagonal of

matrices.

(i) blkdiag() constructs a block diagonal matrix.

(ii) diag() returns the diagonals of a matrix and could also return a diagonal matrix

depending on the usage as we will see.

(iii)trace() function compute the sum of the main diagonal of a matrix

(iv) tril() and triu() return the lower and upper triangular part of a matrix, zeroing out all

other elements of the matrix that are not within the triangle

The diag() function gives the major diagonal of a matrix when used with a single argument as

shown in Example below.

>> A = [1 2 3; 4 5 6; 7 8 9];

>> diag(A)

 ans =

 1

 5

 9

You can also construct a diagonal matrix using the diag() function as shown in example 17B.

>> A = diag([8:8:32])

A=

 8 0 0 0

 0 16 0 0

 0 0 24 0

 0 0 0 32

Interprete what triu() function is doing using the following result:

>> A = [1 2 3; 4 5 6; 7 8 9];

 >> triu(A)

 ans =

 1 2 3

 0 5 6

 0 0 9

Guess what tril() function is doing using the following result:

>> tril(A)

ans =

 1 0 0

 4 5 0

 7 8 9

8.7 Sparse Matrices and Multidimensional Arrays

Some matrices can contain a large number of zeros which are actually stored in memory – using

up space in memory. You can convert such matrices into a sparse matrix. Such a matrix no

longer has the shape of a matrix, but does save the appropriate index of each element. Sparse

matrices can also be reconverted into full ones.

Example 1

>> A = [magic(2) zeros(2)];

>> sp_mat= sparse(A)

 sp_mat=

 (1,1) 1

 (2,1) 4

 (1,2) 3

 (2,2) 2

Example 2

>> full_mat = full(sp_mat)

full_mat =

 1 3 0 0

 4 2 0 0

Summary

In this study session, you have learned that:

1. blkdiag constructs a block diagonal matrix.

2. diag returns the diagonals of a matrix.

3. trace computes the sum of the elements on the main diagonal.

4. tril returns the lower triangular part of a matrix.

5. triu returns the upper triangular part of a matrix

Self-Assessment Questions with Answers

1. How can you create a 3-by-3 matrix with 3 perfect squares on its diagonals?

>> A = diag([4, 9, 16])

2. How can you get all the elements on the last row of a matrix?

 Using the end keyword

3. How can I create a 4-by-4 identity matrix?

>> I = blkdiag([1, 1, 1, 1]) OR >> I = eye(4)

4. How do you obtain the indexes of non-zero values from a matrix?

Using the find function

5. Given that A = ones(4), what will be the output of sum(A(:))?

>> sum(A(:))

 ans =

 16

The colon operator makes the sum function add all elements of A

6. How do you sum the diagonals of a matrix, M?

>> sum(diag(M)); or >> trace(M)

7. How do you obtain the upper and lower triangles of a matrix?

Using the triu and tril functions respectively

Study Session 9: Manipulation of Linear Algebra

Expected Duration: 1 week or 2 contact hours

Introduction

In this Session, we will study how linear algebra is handled in MATLAB.

Learning Outcomes

When you have studied this session, you should be able to understand and explain:

9.1 MATLAB’s matfun Directory

9.2 Adding and Subtracting Matrices

9.3 Vector Products and Transpose

9.4 Multiplying Matrices

9.5 Identity Matrix

9.6 Factorization – Cholesky Factorization

9.7 Factorization – Lower and Upper Factorization

9.7.1 Lower and Upper Factorization

9.8 Power and Exponential

9.9 Eigenvalues – Eigenvalue Decomposition

9.9.1 Eigenvalue Decomposition

9.9.2 Multiple Eigenvalues

9.10 Schur Decomposition

9.1 MATLAB’s matfun Directory

MATLAB’s list of Linear Algebra functions is provided in its matfun directory and can be

viewed by typing on the command window

 >> help matfun

We will use some of MATLAB’s matrix generating functions to explain the Linear Algebra

operations and functions.

pascal(n) generates symmetric matrices

magic(n) generates asymmetric matrices

Symmetric special matrix function

 >> A = pascal(4)

 A =

 1 1 1 1

 1 2 3 4

 1 3 6 10

 1 4 10 20

>> A’

 ans =

 1 1 1 1

 1 2 3 4

 1 3 6 10

 1 4 10 20

Asymmetric special matrix function

>> B = magic(4)

B =

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

>> B’

ans =

 16 5 9 4

 2 11 7 14

 3 10 6 15

 13 8 12 1

9.2 Adding and Subtracting Matrices

Addition and subtraction of matrices is defined just as it is for arrays, element by element.

Adding A to B, and then subtracting A from the result recovers B:

A = pascal(3);

B = magic(3);

X = A + B

X =

9 2 7

4 7 10

5 12 8

Y = X - A

Y =

8 1 6

3 5 7

4 9 2

Note that addition and subtraction require both matrices to have the same dimension, or one of

them be a scalar. If the dimensions are incompatible, an error results:

C = fix(10*rand(3,2))

X = A + C

Error using plus

Matrix dimensions must agree.

w = v + s

w =

9 7 6

9.3 Vector Products and Transpose

A row vector and a column vector of the same length can be multiplied in either order. The result

is either a scalar, the inner product, or a matrix, the outer product:

u = [3; 1; 4];

v = [2 0 -1];

x = v*u

x =

2

X = u * v

X =

6 0 -3

2 0 -1

8 0 -4

For real matrices, the transpose operation interchanges aij and aji. MATLAB uses the

apostrophe operator (') to perform a complex conjugate transpose, and uses the dot-apostrophe

operator (.') to transpose without conjugation.

For matrices containing all real elements, the two operators return the same result. The example

matrix A is symmetric, so A' is equal to A. But, B is not symmetric:

B = magic(3);

X = B'

X =

8 3 4

1 5 9

6 7 2

Transposition turns a row vector into a column vector:

x = v'

x =

2

0

 -1

If x and y are both real column vectors, the product x*y is not defined, but the two products

x' * y and

y' * x

are the same scalar. This quantity is used so frequently, it has three different names: inner

product, scalar product, or dot product.

For a complex vector or matrix, z, the quantity z' not only transposes the vector or matrix, but

also converts each complex element to its complex conjugate. That is, the sign of the imaginary

part of each complex element changes. So if

z = [1+2i 7-3i 3+4i; 6-2i 9i 4+7i]

z =

1.0000 + 2.0000i 7.0000 - 3.0000i 3.0000 + 4.0000i

6.0000 - 2.0000i 0 + 9.0000i 4.0000 + 7.0000i

then

z'

ans =

1.0000 - 2.0000i 6.0000 + 2.0000i

7.0000 + 3.0000i 0 - 9.0000i

3.0000 - 4.0000i 4.0000 - 7.0000i

The unconjugated complex transpose, where the complex part of each element retains its sign, is

denoted by z.':

z.'

ans =

1.0000 + 2.0000i 6.0000 - 2.0000i

7.0000 - 3.0000i 0 + 9.0000i

3.0000 + 4.0000i 4.0000 + 7.0000i

For complex vectors, the two scalar products x' * y and y' * x are complex conjugates of each

other, and the scalar product x' * x of a complex vector with itself is real.

9.4 Multiplying Matrices

Multiplication of matrices is defined in a way that reflects composition of the underlying linear

transformations and allows compact representation of defined when the column dimension of A

is equal to the row dimension of B, or when one of them is a scalar. If A is m-by-p and B is p-by-

n, their product C is m-by-n. The product can actually be defined using MATLAB for loops,

colon notation, and vector dot products:

A = pascal(3);

B = magic(3);

m = 3; n = 3;

for i = 1:m

for j = 1:n

C(i,j) = A(i,:)*B(:,j);

end

end

MATLAB uses a single asterisk to denote matrix multiplication. The next two examples

illustrate the fact that matrix multiplication is not commutative; AB is usually not equal to BA:

X = A*B

X =

15 15 15

26 38 26

41 70 39

Y = B*A

Y =

15 28 47

15 34 60

15 28 43

A matrix can be multiplied on the right by a column vector and on the left by a row vector:

u = [3; 1; 4];

x = A * u

x =

8

17

30

v = [2 0 -1];

y = v * B

y =

12 -7 10

Rectangular matrix multiplications must satisfy the dimension compatibility conditions:

C = fix(10*rand(3,2));

X = A*C

X =

17 19

31 41

51 70

Y = C*A

Error using mtimes

Inner matrix dimensions must agree.

Anything can be multiplied by a scalar:

s = 7;

w = s * v

w =

14 0 -7

9.5 Identity Matrix

Generally accepted mathematical notation uses the capital letter I to denote identity matrices,

matrices of various sizes with ones on the main diagonal and zeros elsewhere. These matrices

have the property that AI = A and IA = A whenever the dimensions are compatible. The original

version of MATLAB could not use I for this purpose because it did not distinguish between

uppercase and lowercase letters and i already served as a subscript and as the complex unit. So

an English language pun was introduced.

The function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n square identity matrix.

9.6 Factorization – Cholesky Factorization

The Cholesky factorization expresses a symmetric matrix as the product of a triangular matrix

and its transpose. Below is the default

A = R′ * R Where R is an upper triangular matrix.

It should be noted however that, not all symmetric matrices can be factored in this way.

Consequently, all matrices that have such a factorization are termed to be positive definite.

Example 1

>> A = pascal(6)

A =

 1 1 1 1 1 1

 1 2 3 4 5 6

 1 3 6 10 15 21

 1 4 10 20 35 56

 1 5 15 35 70 126

 1 6 21 56 126 252

Example 2

>> R = chol(A)

R =

 1 1 1 1 1 1

 0 1 2 3 4 5

 0 0 1 3 6 10

 0 0 0 1 4 10

 0 0 0 0 1 5

 0 0 0 0 0 1

Observe that the elements of both matrices in examples are binomial coefficients. The fact is that

R‘ * R = A demonstrates an identity involving sums of products of binomial coefficients.

1. The Cholesky factorization also applies to complex matrices. Any complex matrix that

has a Cholesky factorization satisfies A′ = A and is said to be Hermitian positive definite.

2. The Cholesky factorization allows the linear system A * x = b to be replaced by R′ * R *

x = b.

3. This is because the backslash operator recognizes triangular systems, and this has a

solution in the MATLAB environment via x = R\(R'\b)

9.7 Factorization – Lower and Upper Factorization

LU factorization, or Gaussian elimination, expresses any square matrix A as the product of a

permutation of a lower triangular matrix and an upper triangular matrix

A = L * U

where L is a permutation of a lower triangular matrix with ones on its diagonal and U is an

upper triangular matrix.

Observe that the matrix

cannot be expressed as the product of triangular matrices without interchanging its two rows.

However, the matrix

can be expressed as the product of triangular matrices, when ε is small, the elements in the

factors are large and magnify errors, so even though the permutations are not strictly necessary,

they are desirable.

Partial pivoting ensures that the elements of L are bounded by one in magnitude and that the

elements of U are not much larger than those of A.

Example:

[L,U] = lu(B)

 L =

 1.0000 0 0

 0.3750 0.5441 1.0000

 0.5000 1.0000 0

 U =

 8.0000 1.0000 6.0000

 0 8.5000 -1.0000

0 0 5.2941

The LU factorization of A allows the linear system A * x = b to be solved quickly with x =

U\(L\b)

9.7.1 Lower and Upper Factorization

Determinants and inverses are computed from the LU factorization using

 det(A) = det(L) * det(U)

 and

 inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)), though the signs of the

determinants might be reversed.

9.8 Power and Exponential

If A is a square matrix and p is a positive integer, A^p effectively multiplies A by itself p-1

times.

Example:

>> A = [1 1 1; 1 2 3; 1 3 6]

A =

 1 1 1

 1 2 3

 1 3 6

>> X = A^2

X =

 3 6 10

 6 14 25

 10 25 46

If A is square and nonsingular, A^(-p) effectively multiplies inv(A) by itself p-1 times:

Example:

 >> Y = A^(-3)

Y =

 145.0000 -207.0000 81.0000

 -207.0000 298.0000 -117.0000

 81.0000 -117.0000 46.0000

Fractional powers, like A^(2/3), are also permitted; the results depend upon the distribution of

the eigenvalues of the matrix.

The .^ operator produces element-by-element powers. So that each element of the matrix is raise

to the specified power independent of every other element

The MATLAB function given as sqrtm(A) computes A ^ (1/2) more accurately than sqrt(A),

which computes A .^ (1/2), (i.e. element by element exponentiation)

Example:

X = [3 6 10; 6 14 25; 10 25 46]

X =

 3 6 10

 6 14 25

 10 25 46

>> sqrt(X)

 ans =

 1.7321 2.4495 3.1623

 2.4495 3.7417 5.0000

 3.1623 5.0000 6.7823

sqrtm(X)

ans =

1.0000 1.0000 1.0000

1.0000 2.0000 3.0000

1.0000 3.0000 6.0000

9.9 Eigenvalues – Eigenvalue Decomposition

We define the eigenvalue and eigenvector of a square matrix A respectively as, a scalar λ and a

nonzero vector υ satisfying the notation below

Aυ = λυ.

Suppose we represent the eigenvalues on the diagonal of a diagonal matrix as Λ and the

corresponding eigenvectors that constitutes the columns of a matrix V, then we have the

following

AV = VΛ.

If V is nonsingular, then the resulting expression becomes the eigenvalue decomposition

A = VΛV–1.

Example:

>> A = [0 -6 -1; 6 2 -16; -5 20 -10]

A =

 0 -6 -1

 6 2 -16

 -5 20 -10

>> EigenValueB = eig(A)

EigenValueB =

 -3.0710 + 0.0000i

 -2.4645 +17.6008i

 -2.4645 -17.6008i

The example above produces a column vector containing the eigenvalues. In this case, the matrix

produces eigenvalues that are complex. The real part of each of the eigenvalues is negative, so e
λt

approaches zero as t increases. The nonzero imaginary part of two of the eigenvalues, ±ω,

contributes the oscillatory component, sin(ωt), to the solution of the differential equation.

9.9.1 Eigenvalue Decomposition

With two output arguments, eig computes the eigenvectors and stores the eigenvalues in a

diagonal matrix:

Example:

>> [V, D] = eig(A)

V =

 -0.8326 + 0.0000i 0.2003 - 0.1394i 0.2003 + 0.1394i

 -0.3553 + 0.0000i -0.2110 - 0.6447i -0.2110 + 0.6447i

 -0.4248 + 0.0000i -0.6930 + 0.0000i -0.6930 + 0.0000i

D =

 -3.0710 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

 0.0000 + 0.0000i -2.4645 +17.6008i 0.0000 + 0.0000i

 0.0000 + 0.0000i 0.0000 + 0.0000i -2.4645 -17.6008i

Observe that the first eigenvector is real while the other two vectors are complex conjugates of

each other. All three vectors are normalized to have Euclidean length, norm(v,2), equal to one.

9.9.2 Multiple Eigenvalues

Some matrices do not have an eigenvector decomposition. These matrices are not diagonalizable.

Example

>> A = [6 12 19; -9 -20 -33; 4 9 15]

A =

 6 12 19

 -9 -20 -33

 4 9 15

>> [V, D] = eig(A)

V =

 -0.4741 -0.4082 0.4082

 0.8127 0.8165 -0.8165

 -0.3386 -0.4082 0.4082

D =

 -1.0000 0 0

 0 1.0000 0

 0 0 1.0000

There is a double eigenvalue at λ = 1. The second and third columns of V are the same. For this

matrix, a full set of linearly independent eigenvectors does not exist.

9.10 Schur Decomposition

Advanced matrix computations in MATLAB do not require eigenvalue decompositions. Instead,

they are based on the Schur decomposition

A = USU′.

U is an orthogonal matrix, S is a block upper triangular matrix with 1-by-1 and 2-by-2 blocks on

the diagonal.

The eigenvalues are revealed by the diagonal elements and blocks of S, while the columns of U

provide a basis with much better numerical properties than a set of eigenvectors.

What has been described above is a defective example and the Schur decomposition of such is

given by

>> [U, S] = schur(A)

U =

 -0.4741 0.6648 0.5774

 0.8127 0.0782 0.5774

 -0.3386 -0.7430 0.5774

S =

 -1.0000 20.7846 -44.6948

 0 1.0000 -0.6096

 0 0 1.0000

The double eigenvalue is contained in the lower 2-by-2 block of S.

Study Session 10: Manipulation of Polynomials

Expected Duration: 1 week or 2 contact hours

Introduction

In this Session you will be introduced to how polynomials such as ax
3
 + bx

2
 + cx + d are

handled with MATLAB

Learning Outcomes

When you have studied this session, you should be able to understand and explain:

10.1 The meaning of Polynomials

10.2 MATLAB Polynomial Representation

10.3 Polynomial Evaluation

10.4 Roots of Polynomial

10.5 Addition and Subtraction of Polynomials

10.6 Multiplication of Polynomials

10.7 Division of Polynomials

10.8 Deriving Polynomial Equations

10.9 Equation of a Matrix

10.10 Polynomial Differentiation

10.11 Polynomial Integration

10.12 Plotting Polynomials

10.13 Polynomial Curve Fitting

10.14 Polynomial Evaluation with Matrix Arguments

10.15 Roots of Scalar Functions

10.15.1 Solving a Nonlinear Equation in One Variable

10.15.2 Setting Options for fzero

10.15.3 Using a Starting Interval

10.15.4 Using a Starting Point

10.16 Partial Fraction Expansions

10.1 What are Polynomials?

A polynomial is an expression consisting of a sum of finite number of terms, each being the

product of a constant coefficient and one or more variables raised to a non-negative integer

power.

 + … +

is a polynomial of order n, n being the highest power of the variable, x. Observe that an is the

constant term of the polynomial – it has no variable term.

Example:

1. x
3
 – 3x + 8 is a polynomial of order 3

2. x
6
 + x – 6 is a polynomial of order 6

3. x is a polynomial of order 1

Operations permissible on polynomial were those mentioned earlier but also include evaluation

of roots, differentiation, and integration amongst others. These operations are made possible via

the inbuilt function polyfun located in the MATLAB directory.

10.2 MATLAB Polynomial Representation

Within the MATLAB, a polynomial is usually handled by a row vector. Using only the

coefficients of the polynomial, the resultant row vector terms gives a term more than the total

number of terms.

Given the following polynomial p(s) = + - – 2s + 9

Generating a row vector from the above, we have:

p = [1 3 -15 -2 9] or p = [1, 3, -15, -2, 9]

Note that the number of terms is one more than the original polynomial terms. This follows from

the fact that MATLAB can interpret vector length of n + 1 as an n
th

 order of the polynomial.

Suppose we have y = s
4
 + 1, the resultant vector is

y = [1 0 0 0 1] or y = [1, 0, 0, 0, 1]

But where comes the stream of zeros?

We have to insert ‘zeros’ at the powers between s
4

and s
1
 to make up for the vector.

10.3 Polynomial Evaluation

Given a value for a variable in s, a polynomial can be evaluated using the MATLAB function

polyval. The syntax is polyval (c, s)

c is a vector having its elements as the coefficients of polynomial in the descending order of

power, s represents the value at which the polynomial is to be evaluated.

Example:

Evaluate the value of the polynomial y = 4s
2
 + 3s + 3 at s = 1, - 3.

Solution: we shall execute for the two variables of s = 1 and -3, thus

 >> y = [4 3 3];

 >> s = 1;

 >> value = polyval(y, 1)

 value =

 10

 >> s = -3;

 >> polyval(y, -3)

 ans =

 30

10.4 Roots of Polynomial

MATLAB also provides function for determining the root of polynomials. The syntax is

roots(p).

In the function, p stands for a row vector representing the coefficients of a polynomial. P will

return a column vector r whose elements are the roots of polynomial.

Example:

Find the root of the polynomial s3 + 3s2 + 2s + 2 = 0. The solution of the polynomial is

>> p = [1 3 2 2]

>> p = [1 3 2 2];

>> r = roots(p)

 r =

-2.5214 + 0.0000i

-0.2393 + 0.8579i

-0.2393 - 0.8579i

10.5 Addition and Subtraction of Polynomials

Polynomials can be added or subtracted using the conventional symbols for these operations

Example:

Add the two polynomials y = (s
3
 + 2s + 7) and x = (s

2
 + 3s + 2)

>> y = [1 0 2 7];

>> x = [0 1 3 2];

>> z = y + x

 z =

 1 1 5 9

Intuitively, polynomial x has been padded to make up for the degree of y. Thus, the resultant

polynomial is z = s
3
 + s

2
 + 5s + 9

Example:

Subtract the polynomial x = (4s
4
 + 2s + 2) from y = (s

2
 + 6).

Hint: don’t forget to add the zeros to make up for the power of s.

Solution

 >> x = [4 0 0 2 2];

 >> y = [0 0 1 0 6];

 >> z = y – x

 z = [-4 0 1 -2 4]

We see that the resultant polynomial is z = -4s
4
 +s

2
 – 2s +4

Once again, observe how the vectors x and y, was padded with zeros to make up for the missing

terms.

10.6 Multiplication of Polynomials

Polynomial multiplication is achieved with the conv (convolution) function.

Example:

Evaluate the product of two polynomials (s + 3) and (s
3
 + 6s + 7)

>> x = [1 3];

>> y = [1 6 7];

>> z = conv(x, y)

 z =

 1 9 25 21

The resultant products of the two polynomial z = s
3
 + 9s

2
 + 25s + 21

Quiz 1: Why is padding with zeros not seen here?

Quiz 2: What happens if there are more than two polynomials to be multiplied, say z = w * x * y?

Quite simple! Use the function to multiply the first two and the result to multiply the other one…

conv(w, conv(x, y));

This first multiplies x and y and uses the result to multiply w.

10.7 Division of Polynomials

Polynomial division can be viewed as the inverse of multiplication. The function deconv

(deconvolution) is used for polynomial division.

[x, r] = deconv(u, v)

Where u is the dividend vector, v is the divisor vector, x is the vector quotients and r is the vector

of the resulting remainder

Example:

Divide the polynomial u by v given that u = s3 + 8s2 + 12s + 16 and v = s2 + 2s + 8

>> u = [1 8 12 16];

>> v = [1, 2 8];

>> [x, r] = deconv(u, v)

 x =

 1 6

 r =

 0 0 -8 -32

The quotient from the above is x = [1 6],

i.e. the polynomial (s + 6), and the remainder is r = [0 0 -8 -32]

10.8 Deriving Polynomial Equations

We sometimes need to derive a polynomial equation from its roots. The MATLAB function

poly() does this.

x = poly(r)

Where r represents the column vector bearing the roots of the polynomial and x is a row vector

of the coefficients of the polynomial.

Example:

Derive the polynomial whose roots are – 1, - 3

>> r = [-1; - 3];

>> y = poly(r)

 y =

 1 4 3

From the above, the resultant polynomial equation is given as s
2
 + 4s + 3 = 0.

Note that the roots of the equation could also be complex.

10.9 Equation of a Matrix

Every matrix has an equation (often referred to as the characteristic polynomial of a matrix) from

which it has been derived.

This equation can be derived by the MATLAB function p = poly(A)

Where A is the matrix whose equation is to be derived and p is the row vector containing the

coefficients of the matrix equation in descending order of power of the variable terms.

Example:

Given the matrix A =

This can be represented in MATLAB as A = [1 3 5; 2 4 2; 7 6 5]

>> p = poly(A)

 p =

 1.0000 -10.0000 -24.0000 60.0000

Thus the vector p = [1 -10 -24 60] represents the constituents of the equation of matrix A

which is given as s3 – 10s2 – 24s + 60 = 0.

10.10 Polynomial Differentiation

MATLAB provides for polynomial differentiation through the function polyder as follows

 dydx = polyder(y)

Where y is the vector of the coefficients of the polynomial to be differentiated and dydx is the

vector of the coefficient of the derived polynomial

Example :

Evaluate the derivatives of the polynomial y = s
4
 + 6s

3
 + 8s

2
 + 12

>> y = [1 6 8 0 12];

 >> dydx = polyder(y);

 dydx =

 4 18 16 0

 i.e.

 = 4s

3
 + 18s

2
 + 16s

10.11 Polynomial Integration

MATLAB also provides for polynomial integration through the function polyint

x = polyint(y, k)

Where y is the vector of the coefficients of the polynomial to integrate and k is an optional scalar

constant of integration, while x contains the result.

Example: Integrate the polynomial y = 4s
3
 + 8s

2
 – 12s + 3, taking k = 3.

Generate a row vector from the expression to have: y = [4 8 -12 3]

>> y = [4 8 -12 3];

>> u = polyint(y, 3)

 u =

 1.0000 2.6667 -6.0000 3.0000 3.0000

From the above, u is the coefficient of the polynomial which represents the integral of

polynomial y.

Thus we can have u = = [1 2.7 -6 3 3]

u = s
4
 + 2.7s

3
 – 6s

2
 + 3s + 3

10.12 Plotting Polynomials

Example:

>> s = linspace (-5, 5, 100);

>> coeff = [1 3 3 1];

>> A = polyval (coeff, s);

>> plot (s, A),

>> xlabel ('s')

>> ylabel ('A(s)')

Figure 10.1: Plotting polynomial

10.13 Polynomial Curve Fitting

There are occasions in which there is need to know/derive other values to understand the

interaction between different participating values. For example, the interaction between demand,

supply and resultant price. When such multiple values are given say, x and y vectors, we can

always derive a polynomial that fits the vectors or points with the MATLAB function polyfit as

follows:

v = polyfit(x, y, k)

As earlier mentioned, x and y are the vectors of the points for the curve fitting, k is the order of

the desired polynomial and v is evaluated to be the coefficients of k
th

 order polynomial which fits

the data in descending power of x, in a least-square sense.

polyfit finds the coefficients of a polynomial that fits a set of data in a least-squares sense:

p = polyfit(x, y, n)

x and y are vectors containing the x and y data to be fitted, and n is the degree of the polynomial

to return. For example, consider the x – y test data

x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4];

A third degree polynomial that approximately fits the data is:

p = polyfit(x, y, 3)

p =

 -0.1917 31.5821 -60.3262 35.3400

Compute the values of the polyfit estimate over a finer range, and plot the estimate over the real

data values for comparison:

x2 = 1: .1 : 5;

y2 = polyval(p, x2);

plot(x, y, 'o', x2, y2)

grid on

Figure 10.2: Polynomial Curve Fitting

Example: An engineer, in an experiment, had the following result values as given in the table

below. Use the values to find the polynomial of degree 2 that fits the values.

Current 13 15 21 25 31

Voltage 120 145 170 204 245

We can generate polynomials for current and voltage from the values given above as follows

 >> cur = [13 15 21 25 31];

 >> vol = [143 165 231 275 341];

From the simple knowledge of physics, we know if we have the voltage and the current, then we

can actually derive the resistance. Therefore, we shall assume that the resultant polynomial will

be stored in the resistance value. The polynomial of degree 2 is what we want to derive, thus:

 >> res = polyfit(cur, vol, 1);

The result for res is

res =

 11.0000 0.0000

The result shows that the value of the voltage is about ten times that of current

10.14 Polynomial Evaluation with Matrix Arguments

All our earlier operations on polynomials have been limited to column or row vectors. In this

section, we shall look at how we can also evaluate polynomials given a matrix argument.

Suppose we have a square matrix S, the polynomial p(s) = s
3
 + 5s + 9 will become p(S) = S

3
 +

5S + 9I, where I is the identity matrix and S is the square matrix.

The MATLAB function for evaluating this is

 v = polyvalm(a, S)

Where a is the resulting row vector of the polynomial to be evaluated (i.e. the coefficients)

Example:

Given a matrix polynomial 4s
2
 + 3s + 5 and the square matrix s as [1 -5 2; 7 2 5; 3 8 2]

As usual, we derive the vectors as follows

 >> a = [4 3 5];

 >> s = [1 -5 2; 7 2 5; 3 8 2];

 >> v = polyvalm(A, s)

The result is a matrix

v =

 -104 -11 -70

 165 47 151

 269 92 211

10.15 Roots of Scalar Functions

10.15.1 Solving a Nonlinear Equation in One Variable

The fzero function attempts to find a root of one equation with one variable. You can call this

function with either a one-element starting point or a two-element vector that designates a

starting interval. If you give fzero a starting point x0, fzero first searches for an interval around

this point where the function changes sign. If the interval is found, fzero returns a value near

where the function changes sign. If no such interval is found, fzero returns NaN. Alternatively, if

you know two points where the function value differs in sign, you can specify this starting

interval using a two-element vector; fzero is guaranteed to narrow down the interval and return a

value near a sign change.

The following sections contain two examples that illustrate how to find a zero of a function using

a starting interval and a starting point. The examples use the function humps.m, which is

provided with MATLAB. The following figure shows the graph of humps.

Figure 10.3: Nonlinear equation curve

10.15.2 Setting Options for fzero

You can control several aspects of the fzero function by setting options. You

set options using optimset. Options include:

 Choosing the amount of display fzero generates

 Choosing various tolerances that control how fzero determines it is at a root

 Choosing a plot function for observing the progress of fzero towards a root

 Using a custom-programmed output function for observing the progress of fzero towards

a root

10.15.3 Using a Starting Interval

The graph of humps indicates that the function is negative at x = -1 and positive at x = 1. You

can confirm this by calculating humps at these two points.

>> humps(1)

ans =

16

humps(-1)

ans =

-5.1378

Consequently, you can use [-1 1] as a starting interval for fzero. The iterative algorithm for

fzero finds smaller and smaller subintervals of [-1 1]. For each subinterval, the sign of humps

differs at the two endpoints. As the endpoints of the subintervals get closer and closer, they

converge to zero for humps.

To show the progress of fzero at each iteration, set the Display option to iter using the optimset

function.

>>options = optimset('Display','iter');

Then call fzero as follows:

>>a = fzero(@humps,[-1 1],options)

This returns the following iterative output:

a = fzero(@humps,[-1 1],options)

Func-count x f(x) Procedure

2 -1 -5.13779 initial

3 -0.513876 -4.02235 interpolation

4 -0.513876 -4.02235 bisection

5 -0.473635 -3.83767 interpolation

6 -0.115287 0.414441 bisection

7 -0.115287 0.414441 interpolation

8 -0.132562 -0.0226907 interpolation

9 -0.131666 -0.0011492 interpolation

10 -0.131618 1.88371e-007 interpolation

11 -0.131618 -2.7935e-011 interpolation

12 -0.131618 8.88178e-016 interpolation

13 -0.131618 8.88178e-016 interpolation

Zero found in the interval [-1, 1]

a =

-0.1316

Each value x represents the best endpoint so far. The Procedure column tells you whether each

step of the algorithm uses bisection or interpolation. You can verify that the function value at a is

close to zero by entering:

humps(a)

ans =

8.8818e-016

10.15.4 Using a Starting Point

Suppose you do not know two points at which the function values of humps differ in sign. In that

case, you can choose a scalar x0 as the starting point for fzero. fzero first searches for an interval

around this point on which the function changes sign. If fzero finds such an interval, it proceeds

with the algorithm described in the previous section. If no such interval is found, fzero returns

NaN.

For example, set the starting point to -0.2, the Display option to Iter, and call fzero:

options = optimset('Display','iter');

a = fzero(@humps,-0.2,options)

fzero returns the following output:

Search for an interval around -0.2 containing a sign change:

Func-count a f(a) b f(b) Procedure

1 -0.2 -1.35385 -0.2 -1.35385 initial interval

3 -0.194343 -1.26077 -0.205657 -1.44411 search

5 -0.192 -1.22137 -0.208 -1.4807 search

7 -0.188686 -1.16477 -0.211314 -1.53167 search

9 -0.184 -1.08293 -0.216 -1.60224 search

11 -0.177373 -0.963455 -0.222627 -1.69911 search

13 -0.168 -0.786636 -0.232 -1.83055 search

15 -0.154745 -0.51962 -0.245255 -2.00602 search

17 -0.136 -0.104165 -0.264 -2.23521 search

18 -0.10949 0.572246 -0.264 -2.23521 search

Search for a zero in the interval [-0.10949, -0.264]:

Func-count x f(x) Procedure

18 -0.10949 0.572246 initial

19 -0.140984 -0.219277 interpolation

20 -0.132259 -0.0154224 interpolation

21 -0.131617 3.40729e-005 interpolation

22 -0.131618 -6.79505e-008 interpolation

23 -0.131618 -2.98428e-013 interpolation

24 -0.131618 8.88178e-016 interpolation

25 -0.131618 8.88178e-016 interpolation

Zero found in the interval [-0.10949, -0.264]

a =

-0.1316

The endpoints of the current subinterval at each iteration are listed under the headings a and b,

while the corresponding values of humps at the endpoints are listed under f(a) and f(b),

respectively.

Note: The endpoints a and b are not listed in any specific order: a can be greater than b or less

than b.

For the first nine steps, the sign of humps is negative at both endpoints of the current subinterval,

which is shown in the output. At the tenth step, the sign of humps is positive at the endpoint, -

0.10949, but negative at the endpoint, -0.264. From this point on, the algorithm continues to

narrow down the interval [-0.10949 -0.264], as described in the previous section, until it reaches

the value -0.1316.

10.16 Partial Fraction Expansions

residue finds the partial fraction expansion of the ratio of two polynomials. This is particularly

useful for applications that represent systems in transfer function form. For polynomials b and a,

if there are no multiple roots,

where r is a column vector of residues, p is a column vector of pole locations, and k is a row

vector of direct terms. Consider the transfer function

b = [-4 8];

a = [1 6 8];

[r,p,k] = residue(b,a)

r =

-12

 8

p =

-4

-2

k =

[]

Given three input arguments (r, p, and k), residue converts back to polynomial form:

[b2, a2] = residue(r,p,k)

b2 =

-4 8

a2 =

1 6 8

Summary

The following table lists the MATLAB polynomial functions.

S/N Function Description

1 conv Multiply polynomials

2 deconv Divide polynomials

3 fzero Find root of continuous function of one variable

4 poly Polynomial with specified roots

5 polyder Polynomial derivative

6 polyfit Polynomial curve fitting

7 polyval Polynomial evaluation

8 polyvalm Matrix polynomial evaluation

9 residue Partial-fraction expansion (residues)

10 roots Find polynomial roots

Self-Assessment Questions

Formulate some quadratic equations, use MATLAB to find the roots of those equations.

Study Session 11: Introduction to Charts Plotting

Expected Duration: 1 week or 2 contact hours

Introduction

In this Session you will be introduced to the different types of charts that can be plotted in

MATLAB and how to do the plotting.

Learning Outcomes

When you have studied this session, you should be able to understand and explain:

11.1 How Charts are plotted

11.2 What kind of graphics is possible in MATLAB?

11.1 Plotting of Charts

The plot command produces a two-dimensional plot and is the workhorse of MATLAB graphics.

It creates a plot that represents graphically the relationship between two vectors (either 1-by-N or

N-by-1 arrays).

The plot command has the general form:

plot(<vector of x-values>,<vector of y-values>,<style-option string>)

The vectors must be of the same length and are interpreted as forming a series of (x, y) pairs to

be plotted. By this we simply mean that the values in the first vector will be plotted on the

horizontal axis and the values in the second vector will be plotted on the vertical axis. This is

very important in understanding how the plot command works. The plot command simply draws

markers at (x, y) points and/or connects the points with straight line segments. The command

itself is in no way concerned with functional relationships; it is just connecting points.

11.2 What kind of graphics is possible in Matlab?

1. Polar plot:

t=0:.01:2*pi;

polar(t,abs(sin(2*t).*cos(2*t)));

2. Line plot:

x=0:0.05:5;,y=sin(x.^2);,plot(x,y);

3. Stem plot:

 x = 0:0.1:4;, y = sin(x.^2).*exp(-x); stem(x,y)

4. Mesh plot:

z=peaks(25);, mesh(z);

5. Surface plot:

 z=peaks(25);, surf(z);, colormap(jet);

6. Quiver plot:

7. Contour plot:

 z=peaks(25);,contour(z,16);

Summary

There are seven types of charts that can be plotted in MATLAB. They are:

1. Polar plot

2. Line plot

3. Stem plot

4. Mesh plot

5. Surface plot

6. Quiver plot

7. Contour plot

Self Assessment Questions

Try the following plots and write down your observations

(1) Visualization of vector data is available

>> x=-pi:0.1:pi; y=sin(x);

>> plot(x,y)

>> plot(x,y,’s-’)

>> xlabel(’x’); ylabel(’y=sin(x)’);

(2) We can change plot properties in Figure menu, or via ”handle”

>> h=plot(x,y); set(h, ’LineWidth’, 4);

(3) Many other plot functions available

Try: >> v=1:4; pie(v)

(4) Three-dimensional graphics

>> A = zeros(32);

>> A(14:16,14:16) = ones(3);

>> F=abs(fft2(A));

>> mesh(F)

>> rotate3d on

>> surfl(F)

(5) We can change lightning and material properties

>> cameramenu

>> material metal

(6) Bitmap images can also be visualized

>> load mandrill

>> image(X); colormap(map)

>> axis image off

Try also the following:

(7)
v1=[1, 3, 4, 6, 5, 2];

v2=[1, 2, 2, 3, 4, 2];

plot(v1,v2,'-o');

axis([0 7 0 5]);

(8) If the style-option string is 'ko', then a black circle is plotted at each of the points.

>> v1=[1, 3, 4, 6, 5, 2];

>> v2=[1, 2, 2, 3, 4, 2];

>> plot(v1, v2, 'ko') % circles at (1,1) (3,2) (4,2)

% (6,3) (5,4) and (2,2)

>> axis([0 7 0 5])

Alternately, we could plot the v2 values on the horizontal axis and the v1 values on the vertical

axis

>> v1=[1, 3, 4, 6, 5, 2];

>> v2=[1, 2, 2, 3, 4, 2];

>> plot(v2, v1, 'ko') % circles at (1,1) (2,3) (2,4)

% (3,6) (5,4) and (2,2)

>> axis([0 5 0 7])

A style-option string of '-o' produces lines connecting circles,

v1=[1, 3, 4, 6, 5, 2];

v2=[1, 2, 2, 3, 4, 2];

plot(v1,v2,'-o');

axis([0 7 0 5]);

If the style-option is omitted, the default is '-', which produces a solid line connecting points.

Study Session 12: Introduction to Basic Image Processing

Expected Duration: 1 week or 2 contact hours

Introduction

In this Session you will be briefly introduced to how images are processed in MATLAB.

Learning Outcomes

When you have studied this session, you should be able to understand and explain:

12.1 The Image Processing Toolbox

12.2 Images in MATLAB

12.3 Data types in MATLAB

12.4 The following types of images are supported by MATLAB

12.5 Image Import and Export

12.5.1 Reading and writing images in MATLAB

12.6 Images and Matrices

12.6.1 How to build a matrix (or image)?

12.7 Image Display

12.1 What is the Image Processing Toolbox?

The Image Processing Toolbox is a collection of functions that extend the capabilities of the

MATLAB’s numeric computing environment. The toolbox supports a wide range of image

processing operations, including:

 Geometric operations

 Neighborhood and block operations

 Linear filtering and filter design

 Transforms

 Image analysis and enhancement

 Binary image operations

 Region of interest operations

12.2 Images in MATLAB

MATLAB can import/export several image formats:

 BMP (Microsoft Windows Bitmap)

 GIF (Graphics Interchange Files)

 HDF (Hierarchical Data Format)

 JPEG (Joint Photographic Experts Group)

 PCX (Paintbrush)

 PNG (Portable Network Graphics)

 TIFF (Tagged Image File Format)

 XWD (X Window Dump)

 raw-data and other types of image data

Typically switch images to double to perform any processing and convert back to unsigned

integer

12.3 Data types in MATLAB

 Double (64-bit double-precision floating point)

 Single (32-bit single-precision floating point)

 Int32 (32-bit signed integer)

 Int16 (16-bit signed integer)

 Int8 (8-bit signed integer)

 Uint32 (32-bit unsigned integer)

 Uint16 (16-bit unsigned integer)

 Uint8 (8-bit unsigned integer)

12.4 Types of Images Supported by MATLAB

The following types of images are supported by MATLAB

(i) Binary images : {0,1}

(ii) Intensity images : [0,1] or uint8, double etc.

(iii)RGB images : m × n × 3

(iv) Multidimensional images: m × n × p (p is the number of layers)

12.5 Image Import and Export

12.5.1 Reading and writing images in MATLAB

img = imread('apple.jpg');

dim = size(img);

figure;

imshow(img);

imwrite(img, 'output.bmp', 'bmp');

Alternatives to imshow

 imagesc(I)

 imtool(I)

 image(I)

12.6 Images and Matrices

12.6.1 How to build a matrix (or image)?

 (i) Intensity Image:

row = 256;

col = 256;

img = zeros(row, col);

img(100:105, :) = 0.5;

img(:, 100:105) = 1;

figure;

imshow(img);

Column 1 to 256

R
o
w

 1
 to

 2
5
6

[0, 0]

[256, 256]

(ii) Binary Image:
row = 256;

col = 256;

img = rand(row, col);

img = round(img);

figure;

imshow(img);

size(im)

12.7 Image Display

Use the following functions

• image - create and display image object

• imagesc - scale and display as image

• imshow - display image

References

Craig S. Lent (2013). Learning To Program With Matlab, Building GUI Tools, John Wiley &

Sons

Learn MATLAB, Simply easy learning (2015). http://www.tutorialspoint.com/matlab/

MATLAB® Mathematics The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098,

March 2013, Revised for MATLAB 8.1 (Release 2013a)

Matthias Hein (2008). Matlab Tutorial

Muhamad Zahim Sujod. An Introductory on MATLAB and Simulink

Onifade, O. F. W. (2015). Tutorial PowerPoint on MATLAB, Computer Science Department,

University of Ibadan, Ibadan, Nigeria.

http://docplayer.net/15715694-Introduction-to-matlab-basics-reference-from-azernikov-sergei-

mesergei-tx-technion-ac-il.html

http://www.cs.ucf.edu/~czou/CDA6530-15/ppt/matlab.ppt

http://www.mathworks.com/support/tech-notes/1100/1109.html

http://www.science.smith.edu/~jcardell/Courses/EGR326/MatlabSimulinkTutorial.ppt

https://www.slideshare.net/Muhammad_Rizwan/matlab-basic-tutorial

http://www.tutorialspoint.com/matlab/
http://www.math.iupui.edu/~mtc/Chaos/matlab.htm
http://www.math.iupui.edu/~mtc/Chaos/matlab.htm
http://www.cs.ucf.edu/~czou/CDA6530-15/ppt/matlab.ppt
http://www.mathworks.com/support/tech-notes/1100/1109.html
http://www.science.smith.edu/~jcardell/Courses/EGR326/MatlabSimulinkTutorial.ppt
https://www.slideshare.net/Muhammad_Rizwan/matlab-basic-tutorial

