

Department of Computer

Science,

University of Ibadan

CSC 235

(Object Oriented

Programming)

S. O. Akinola (PhD)

2

CSC 235: OBJECT ORIENTED PROGRAMMING

Course Contents

Basic Types and Expressions; Assignment Statements; Loops and Conditionals (Simple and Nested);

Handling Simple I/O; Objects and Classes; Methods with and without parameters; Inheritance;

Constructor Methods (and the use of 'new'); Method Overloading; Method Overriding; Arrays and

simple sorting; Basic File Handling; Try and Catch (Simple Exception Handling); Implementing

Simple Graphical User Interfaces; Incorporating Applets in a Web page; Simple builtin Dynamic

Structures - Vectors; Types vs. Classes; Scope of Variables; Code Layout and Documentation.

3

General Introduction to the Course

CSC 235 (Object Oriented Programming) is a course meant to introduce students to the general

principles of Object Oriented Programming (OOP). In this course, you shall be introduced to the

meaning of OOP paradigm, the principles of OOP and general programming styles in OOP.

Java is introduced in order for you to understand the basic principles of Object Oriented programming

in a more concise manner. Various language constructs including variables declaration and usages,

data types, arrays, Objects and Classes are considered in this aspect of the course.

At the end of this course, you should be able to write simple Object Oriented programs in Java.

4

1 Essential Object-Oriented Concepts And

 Terminologies

1.1 Introduction
This chapter introduces you to the essential object-oriented concepts and terminology. We start by

explaining the concepts of “Object” and “Object-oriented programming”. The differences between

procedural-oriented and object-oriented programming paradigms are not left out.

1.2 Objectives
At the end of this lecture, you should be able to:

1. explain the different concepts of object-oriented programming;

2. distinguish between procedural-oriented and object-oriented programming paradigms

1.3 Pre-Test
1. What is a language?

2. How many programming languages have you ever heard of? How many of them have you

written before.

3. Explain the problems you encountered in the language(s) if any.

1.4 Main Content

1.4.1 Programming Paradigms
Object-oriented programming is one of several programming paradigms. Other programming

paradigms include the imperative programming paradigm (as exemplified by languages such as Pascal

or C), the logic programming paradigm (Prolog), and the functional programming paradigm

(exemplified by languages such as ML, Haskell or Lisp). Logic and functional languages are said to

be declarative languages.

We use the word paradigm to mean “any example or model”. This usage of the word was popularised

by the science historian Thomas Kuhn. He used the term to describe a set of theories, standards and

methods that together represent a way of organising knowledge—a way of viewing the world. Thus a

programming paradigm is a way of conceptualising what it means to perform computation and how

tasks to be carried out on a computer should be structured and organised.

We can distinguish between two types of programming languages: Imperative languages and

declarative languages. Imperative knowledge describes “how-to knowledge” while declarative

knowledge is “what-is knowledge”. A program is ”declarative” if it describes what something is like,

rather than how to create it. This is a different approach from traditional imperative programming

languages such as Fortran, and C, which require the programmer to specify an algorithm to be run.

In short, imperative programs make the algorithm explicit and leave the goal implicit, while

declarative programs make the goal explicit and leave the algorithm implicit. Imperative languages

require you to write down a step-by-step recipe specifying how something is to be done. For example

to calculate the factorial function in an imperative language we would write something like:

public int factorial(int n) {

 int ans=1;

for (int i = 2; i <= n; i++){

ans = ans * i;

 }

return ans;

 }

5

Here, we give a procedure (a set of steps) that when followed will produce the answer.

1.4.2 What is Object-oriented Programming?

Object-oriented programming (OOP) is a programming paradigm using "objects", which are data

structures consisting of data fields and methods together with their interactions, to design applications

and computer programs.

It is an approach that provides a way of modularizing programs by creating partitioned memory area

for both data and functions that can be used as templates for creating copies of such modules on

demand.”

Thus, an object is considered to be a partitioned area of computer memory that stores data and set of

operations that can access the data. Since the memory partitions are independent, the objects can be

used in a variety of different programs without modifications.

One of the principal advantages of object-oriented programming techniques over procedural

programming techniques is that they enable programmers to create modules that do not need to be

changed when a new type of object is added. A programmer can simply create a new object that

inherits many of its features from existing objects. This makes object-oriented programs easier to

modify and maintain.

To perform object-oriented programming, one needs an object-oriented programming language

(OOPL). Java, C++ and Smalltalk are three of the more popular languages, and there are also object-

oriented versions of Pascal and FORTRAN.

1.4.3 A Look at Procedure-Oriented Programming

Conventional programming, using high-level languages such as COBOL, FORTRAN and C, is

commonly known as procedure-oriented programming (POP). Simple, POP programs may be one

"long" list of statements (or commands). More complex programs will often group smaller sections of

these statements into functions or subroutines, each of which might perform a particular task. With

designs of this sort, it is common for some of the program's data to be 'global', i.e. accessible from any

part of the program. As programs grow in size, allowing any function to modify any piece of data

means that bugs can have wide-reaching effects. In essence, while we concentrate on the

development of functions, very little attention is given to the data that are being used by various

functions. What happens to the data? How are they affected by the functions that work on them?

In a multi-function program, many important data items are placed as global so that they may be

accessed by all the functions. Each function may have its own local data. Global data are more

vulnerable to an inadvertent change by a function. In a large program it is very difficult to identify

what data is used by which function. In case we need to revise an external data structure, we also need

to revise all functions that access the data. This provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that it does not model real world problems

very well. This is because functions are action-oriented and do not really correspond to the elements

of the problem.

Some characteristics exhibited by procedure-oriented programming are:

 Emphasis is on doing things (algorithms)

 Large programs are divided into smaller programs known as functions.

 Most of the functions share global data.

 Data move openly around the system from function to function.

 Functions transform data from one form to another.

6

 Employs top-down approach in program design.

1.4.4 Object-Oriented Programming Paradigm

The major motivating factor in the invention of object-oriented approach is to remove some of the

flaws encountered in the procedural approach. OOP treats data as a critical element in the program

development and does not allow it to flow freely around the system. It ties data more closely to the

functions that operate on it, and protects it from accidental modification from outside functions. OOP

allows decomposition of a problem into a number of entities called objects and then builds data and

functions around these objects. The organization of data and functions in object-oriented programs is

shown in Figure below. The data of an object can be accessed only by the functions associated with

that object. However, functions of one object can access the functions of other objects.

Some of the striking features of object-oriented programming are:

 Emphasis is on data rather than procedure.

 Programs are divided into what are known as objects.

 Data structures are designed such that they characterize the objects.

 Functions that operate on the data of an object are tied together in the data structure.

 Data is hidden and cannot be accessed by external functions.

 Objects may communicate with each other through functions.

 New data and functions can be easily added whenever necessary.

 Follows bottom-up approach in program design.

1.4.5 Basic Concepts of Object-Oriented Programming

It is necessary to understand some of the concepts used extensively in object-oriented programming.

These include:

1.4.5.1 Objects

An object is a bundle, a clump, a gathering together of items of information that belong together, and

functions that work on those items of information. Software objects are modeled after real-world

objects in that they too have state and behaviour. A software object maintains its state in one or more

variables. A variable is an item of data named by an identifier. A software object implements its

behaviour with methods. A method is a function (or subroutine or procedure) associated with an

object.

Therefore, an object is a software bundle of variables and related methods.

Data

Functions

Object A

Data

Functions

Object B

Communication

7

A Software Object

Everything that the software object knows (state) and can do (behaviour) is expressed by the variables

and the methods within that object.

Consider real life objects, dogs have state (name, colour, breed, hungry) and behaviour (barking,

fetching and wagging tail). Bicycles have state (current gear, current pedal cadence, two wheels,

number of gears) and behaviour (braking, accelerating, slowing down, changing gears).

A bicycle modeled as a software object

A BankAccount object might gather up a customer number, account number, and current balance--

these three pieces of information are required for all bank accounts. Many languages provide a way to

group related information together into structures or records or whatever the language calls the

feature. However, where an object differs from these is in including functions, or behavior, as well as

information. Our BankAccount object will have Deposit(), Withdraw(), and GetBalance() functions,

for example. Program objects should be chosen such that they match closely with the real-world

objects. Objects take up space in the memory and have an associated address like a record in Pascal,

or a structure in C.

When a program is executed, the objects interact by sending messages to one another. For example, if

‘customer’ and ‘account’ are two objects in a program, then the customer object may send a message

to the account object requesting for the bank balance. This information is passed along with the

message as Parameters. Each object contains data, and code to manipulate the data. Objects can

interact without having to know details of each other’s data or code. It is sufficient to know the type

of message accepted, and the type of response returned by the objects

1.4.5. 2 Classes

In the real world, you'll often find many individual objects all of the same kind. There may be

thousands of other bicycles in existence, all of the same make and model. Each bicycle was built from

the same set of blueprints and therefore contains the same components. In object-oriented terms, we

say that your bicycle is an instance of the class of objects known as bicycles. A class is the blueprint

8

from which individual objects are created. In essence, “A class is a blueprint, or prototype, that

defines the variables and the methods common to all objects of a certain kind”.

Objects vs. Classes: you probably noticed that all the illustrations of objects and classes look very

similar. And indeed, the difference between them is often the source of some confusion. In the real

world, it’s obvious that classes are not themselves the objects they describe. A blueprint of a bicycle is

not a bicycle. However, it’s a little more difficult to differentiate classes and objects in software. This

is partially because software objects are merely electronic models of real-world objects or abstract

concepts in the first place. But it’s also because the term “object” is sometimes used to refer to both

classes and instances.

1.4.5.3 Data Abstraction And Encapsulation

The wrapping up of data [variables or state] and functions [methods] into a single unit (called class) is

known as encapsulation. Data encapsulation is the most striking feature of a class. The data is not

accessible to the outside world, and only those functions, which are wrapped in the class, can access

it. These functions provide the interface between the object’s data and the program. This insulation of

the data from the direct access by the program is called data hiding or information hiding.

Encapsulating related variables and methods [functions] into a neat software bundle is a simple yet

powerful idea that provides two primary benefits to software developers:

(1) Modularity: The source code for an object can be written and maintained independently of the

source code for other objects. Also, an object can be easily passed around in the system.

(2) Information hiding: an object has a public interface that other objects can use to communicate

with it. The object can maintain private information and methods/functions that can be changed

at any time without affecting the other objects that depend on it. For instance, you don’t need to

understand the gear mechanism on your bike to use it.

Abstraction refers to the act of representing essential features without including the background

details or explanations. Classes use the concept of abstraction and are defined as a list of abstract

attributes such as size, weight and cost, and functions to operate on these attributes. They encapsulate

all the essential properties of the objects that are to be created. The attributes are sometimes called

data members because they hold information. The functions that operate on these data are sometimes

called methods or member functions.

Since the classes use the concept of data abstraction, they are known as Abstract Data Types (ADT).

1.4.5.4 Inheritance

Inheritance is the process by which objects of one class acquire the properties of another class. It

supports the concept of hierarchical classification. For example, the bird ‘Robin’ is a part of the class

‘flying bird’, which is again a part of the class ‘ bird’. The principle behind this sort of division is that

each derived class shares common characteristics with the class from which it is derived.

In OOP, the concept of inheritance provides the ideal of reusability. This means that we can add

additional features to an existing class without modifying it. This is possible by deriving a new class

from the existing one. The new class will have the combined features of both the classes. The real

appeal and power of the inheritance mechanism is that it allows the programmer to reuse a class that

is almost, but not exactly, what he wants, and to tailor the class in such a way that it does not

introduce any undesirable side-effects into the rest of the classes.

Note that each sub-class defines only these features that are unique to it. Without the use of

classification, each class would have to explicitly include all of its features.

9

1.4.5.5 Polymorphism

Polymorphism is another important OOP concept. Polymorphism, a Greek term, means the ability to

take more than one form. An operation may exhibit different behaviours in different instances. The

behaviour depends upon the types of data used in the operation. For example, consider the operation

of addition (+). For two numbers, the operation will generate a sum. If the operands are strings, then

the operation would produce a third string by concatenation. The process of making an operator to

exhibit different behaviours in different instances is known as operator overloading.

Polymorphism plays an important role in allowing objects having different internal structures to share

the same external interface. This means that a general class of operations may be accessed in the same

manner even though specific actions associated with each operation may differ. Polymorphism is

extensively used in implementing inheritance.

1.4.5.6 Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to the call.

Dynamic binding (also known as late binding) means that the code associated with a given procedure

call is not known until the time of the call at run - time. It is associated with polymorphism and

inheritance. A function call associated a polymorphic reference depends on the dynamic type of that

reference.

1.4.5.7 Message Passing

An object-oriented program consists of a set of objects that communicate with each other. The process

of programming in an object-oriented language, therefore, involves the following basic steps:

1. Creating classes that define objects and their behaviour,

2. Creating objects from class definitions, and

3. Establishing communication among objects.

The concept of message passing makes it easier to talk about building systems that directly model or

simulate their real-world counterparts. Message passing involves specifying the name of the object,

the name of the function /method and the information to be sent. E.g. employee.salary(name);

Bundling code into individual software objects provides a number of benefits, including:

 Modularity: The source code for an object can be written and maintained independently of the

source code for other objects. Once created, an object can be easily passed around inside the

system.

 Information-hiding: By interacting only with an object's methods, the details of its internal

implementation remain hidden from the outside world.

 Code re-use: If an object already exists (perhaps written by another software developer), you can

use that object in your program. This allows specialists to implement/test/debug complex, task-

specific objects, which you can then trust to run in your own code.

 Pluggability and debugging ease: If a particular object turns out to be problematic, you can simply

remove it from your application and plug in a different object as its replacement. This is

analogous to fixing mechanical problems in the real world. If a bolt breaks, you replace it, not the

entire machine.

 Message passing techniques for communication between objects makes the interface descriptions

with external systems much simpler.

 Software complexity can be easily managed.

The promising areas for OOP application include Real-time systems, Simulation and Modelling,

Object-oriented Databases, Hypertext, Hypermedia, AI, Expert Systems, Neural Networks, Decision

support systems CAM and CAD systems.

10

Post-Test

1. Attempt to mention some common programming languages you are familiar with and put

them into suitable language categories.

2. Differentiate between imperative and declarative programming languages.

3. Explain the concepts of object, class, inheritance and polymorphism.

4. What are the major advantages of OOP paradigm?

Summary

This chapter briefly introduced you to the basic principles of Object Oriented Programming

paradigms. The two main programming paradigms – Imperative and Declarative were discussed.

You have also being introduced to the basic concepts of OOP.

In summary, the five basic concepts of object-oriented design are the implementation level

features that are built into the programming language. These features are often referred to by

these common names:

 Object/Class: A tight coupling or association of data structures with the methods or

functions that act on the data. This is called a class, or object (an object is created based on a

class). Each object serves a separate function. It is defined by its properties, what it is and

what it can do. An object can be part of a class, which is a set of objects that are similar.

 Information hiding: The ability to protect some components of the object from external

entities. This is realized by language keywords to enable a variable to be declared as private

or protected to the owning class.

 Inheritance: The ability for a class to extend or override functionality of another class. The

so-called subclass has a whole section that is derived (inherited) from the superclass and

then it has its own set of functions and data.

 Interface: The ability to defer the implementation of a method. The ability to define the

functions or methods signatures without implementing them.

 Polymorphism: The ability to replace an object with its subobjects. The ability of an object-

variable to contain, not only that object, but also all of its subobjects.

11

2 Java Programming Basics

2.1 Introduction

In this chapter, the basic principles of writing and executing program codes in Java language are

discussed. We begin introducing you to writing codes in the language

Java is an Object Oriented programming language with a relatively simple grammar. Java omits rarely

used, poorly understood, confusing features of C++ such as header files, pointer arithmetic, structures,

unions, operator overloading, and templates. Java also adds new features like automatic garbage

collection. All methods, fields and constructors are local to classes—that is, there is no global data.

Java supports static methods and fields, exception handling, inheritance, and control structures such as

while loops, for loops and if/else statements.

2.2 Objective
At the end of this lecture, you should be able to:

1. write simple java programs;

2. understand the different variable types, operators and expressions in Java.

3. understand how to format outputs from your program

2.3 Pre-Test

1. In which language(s) have you programmed before?

2. Write a simple program to compute the sum of any two numbers.

2.4 Main Content

2.4.1 The Java Language

The following are the fundamental features of Java programming language:

1. Simplicity: the designers of the language were trying to develop a language that a

programmer could learn quickly. They eliminated some constructs in C and C++ that are

complex such as pointers.

2. Object Oriented: Everything is an object in java. The focus is on the data and the

methods that operate on the data in the application. Java does not concentrate on

procedures only.

3. Platform independent: Java has the ability to move from one computer to the other or

from one operating system to another without any difficulty.

4. Robust: Java is strictly a strongly-typed language. It requires explicit declaration. Java

has exception handling features, the programmer does not need to worry about memory

allocation, and it does not have pointer and pointer arithmetic.

5. Security: Java is totally secured. It provides a controlled environment for the execution

of the program. It never assumes that the code is safe for execution. It provides several

layers of security control.

6. Distributed: Java can be used to develop applications that are portable across multiple

platforms, operating systems and graphical user interfaces (GUI). Java is designed to

support network applications.

7. Multi-threaded: Java programs use a process called multithreading to perform many

tasks simultaneously.

In the Java programming language, all source code is first written in plain text files ending with the

.java extension. Those source files are then compiled into .class files by the javac compiler. A .class

12

file does not contain code that is native to your processor; it instead contains bytecodes — the

machine language of the Java Virtual Machine (Java VM). The java launcher tool then runs your

application with an instance of the Java Virtual Machine.

Because the Java VM is available on many different operating systems, the same .class files are

capable of running on Microsoft Windows, the Solaris™ Operating System (Solaris OS), Linux, or

Mac OS. Some virtual machines, such as the Java HotSpot virtual machine, perform additional steps

at runtime to give your application a performance boost. This includes various tasks such as finding

performance bottlenecks and recompiling (to native code) frequently used sections of code.

2.4.1.1 The Java Platform

A platform is the hardware or software environment in which a program runs. We've already

mentioned some of the most popular platforms like Microsoft Windows, Linux, Solaris OS, and Mac

OS. Most platforms can be described as a combination of the operating system and underlying

hardware. The Java platform differs from most other platforms in that it's a software - only platform

that runs on top of other hardware-based platforms.

The Java platform has two components:

 The Java Virtual Machine

 The Java Application Programming Interface (API)

You've already been introduced to the Java Virtual Machine; it's the base for the Java platform and is

ported onto various hardware-based platforms. The API is a large collection of ready-made software

components that provide many useful capabilities. It is grouped into libraries of related classes and

interfaces; these libraries are known as packages.

Through the Java VM, the same application is capable of running on multiple platforms.

13

The API and Java Virtual Machine insulate the program from the underlying hardware.

As a platform-independent environment, the Java platform can be a bit slower than native code.

However, advances in compiler and virtual machine technologies are bringing performance close to

that of native code without threatening portability. The terms "Java Virtual Machine" and "JVM"

mean a Virtual Machine for the Java platform.

2.4.2 Creating and Running a Java Program.

Nowadays, we have some integrated packages for editing and running java programs. For example,

we have Java Net Beans, JCreator, JBuilder, Oracle JDeveloper, and many more. They are windows-

like, just like Visual C++. Some of them contain both the editor and compiler together for editing and

running java applications (e.g. Net Beans). Many of them are downloadable free from the Internet.

However, the use of JCreator is recommended. First, the Java toolkit is downloaded and installed on

the computer. You can download Java 1.6 and above free from the Internet. Just type Java 1.6, 1.7 etc

on Google. JCreator is also free on the Net. Download the JCreator Pro and install it. Note that you

need to link the JCreator with the Java toolkit after installation. This would be asked from you by the

installer.

Follow the steps below to run programs with JCreator Pro.

1. Open the JCreator via the start menu or double click its icon on the desktop.

2. Click on File, New, then File.

3. Click Java Classes, then Main Class in the File wizard window provided.

4. Type the name of your file, e.g. demo.java, in the name box of file path box. Then click on

finish. Note that the name you will give to your class in the program must be the name

given to your file, with the extension .java. for instance, the header of your program must

read class demo, if you are saving your file with demo.java

5. Key in your code in the code editor window, just below the public static void main() , where it

is written // TODO code application logic here

6. Save the file by pressing Ctrl + S

7. To compile, click Build then Build File.

8. To execute the program, click Run, then Run File

JCreator Pro interface looks like the one below:

14

2.4.3 Writing your first program

A simple Java code looks like this:

 public class Welcome {

 public static void main(String[] args) {

 System.out.println(“Welcome to Java world”) ;

 } //End main method

 } // End class Welcome

Note: Java is case–sensitive. Capital letters must be capitals e.g. String, System.

Let’s try to analyze the above simple java program.

(a) The first line declares a class named Welcome.

 public class Welcome {

This line could be regarded as the header of the program. Java sees a program as a class and the name

of the class must be the same as the name of the file, i.e., the name you use to save the file. In this

case we save the file as Welcome.java. Any nonempty string of letters and digits can be used for the

class name as long as it begins with a letter and contains no blanks.

(b) The second line begins with the left brace character; just like BEGIN in Pascal. There must be a

corresponding right brace at the last line of the program, i.e. representing END as in Pascal. The

two braces form the program block, which encloses the program’s body.

 public static void main(String[] args) {

15

Every class must have a method or function that will be used to manipulate the data in the class. the

default name given to that method is main. The method main has some descriptors associated with it –

public, static, and void discussed below. A method or function could have zero or more list of

arguments, enclosed in open and close brackets after the function’s name. The default argument for

method main is args, which is an array of strings.

 public means that the contents of the following block (the function/method) are accessible

from all other classes.

 static means that the method being defined applies to the class itself rather than to objects of

the class

 void means that the method being defined has no return value.

 main means this is the name of the method being defined, just as Welcome is the name of the

class being defined. The parenthesized string following main forms the parameter list for the

main method, which are local variables used to transmit information to the method from the

outside world; (String[] args). It states that this method has one parameter, its name is args

and it is an array of string objects.

(c) The third line contains the single executable statement.

System.out.println(“Welcome to Java world”) ;

The message put in quotes would be printed out as they are written. The word println is the

name of the method that tells the system how to do the printing, which means, after the

message is printed, the cursor should move to the next line. Note the parenthesis and the semi

colon usage. The semi colon is a terminator for each executable line.

(d) The two closing braces, } mark the end of the program. The first closes the main method and

the other closes the class.

2.4.4 print() and println() methods

Both print() and println() are standard output functions that print data to the monitor screen. The

statement:

System.out. print (a, b, c)

will print the values of the data items a, b and c on a single line and the cursor will remain at the end

of the printing.

However, if we had used System.out.println(a, b, c), the values of the data items would also be

printed on a single line but after all the printings, the cursor will move to the next line for other

printing commands. The two work like WRITE() and WRITELN() in PASCAL programming

language. For example, given the following data and the subsequent code segment:

a = 2;

b = 4;

c = 6;

d= 8;

System.out.print(a, b); // Line 1

System.out.print(c); // Line 2

System.out.println(); // Line 3

System.out.println(d); // Line 4

The code will produce the following outputs:

16

For Line 1, 2 and 4 will be printed on a single line and the blinking cursor will remain at the end of

that line, waiting for another printing action. In Line 2, 6 will be printed after 4 on the same line with

the previous printing. In Line 3, the cursor moves to next line without printing any value, since no

data was given. In Line 4, 8 would be printed in the second line where the cursor was before in Line 3

and after the printing, it moves to next line. Println() is a post-active function. The final output will

look like below:

2 4 6

8

2.4.5 Inserting Comments into Your Program

Comments are very good in programs. They enhances easy comprehension/readability of the codes,

section by section and the are veritable tool for future program maintenance. Anybody can pick the

code in the future and with the help of the comment lines, modify, upgrade or correct the program for

some errors. Java embraces both C and C++ styles of comments.

The C comment style is a multi-line style. It is used when we have several lines of comments to be

inserted into our programs. Take for example,

 /* Program written by …..

 Matric No…. Version 1.0 Date ……

 */

One major problem of the C comment style is that we must ensure that the closing sysmbol (*/) is

inserted at the end of the entire comment lines; else the compiler will assume that all other lines below

the opening symbol (/*) are all comments!

The C++ Style comment could be used as an in-line comment, inserted at the end of an executable

statement like:

X = X – 4 // subtracting 4 from X

Or as a free-standing comment like:

// Program written by ……..

But, the comment style is only meant for one line. If there is need to extend comments to another line,

we have to put another comment symbol (//) against that line.

Note: Adding comments to your programs is called documenting your code and comments are

normally ignored during compilation. Comments promote readability, understand-ability and

maintainability of programs.

2.4.6 Inputting Data into Java Programs

2.4.6.1 Using the Standard Input / Output (Keyboard and Monitor) on Command Line

This can be achieved by the use of Scanner facility provided by Java. The following example

code computes the average of any three numbers. Note the reading of each of the data types – float,

int, double and string in the code.

17

1. //program to compute average of any three numbers

2. import java.util.Scanner;

3. class add {

4. public static void main(String[] args) {

5. Scanner input = new Scanner(System.in);

6. // Reading in the input data a, b and c

7. System.out.println("Enter the value of a");

8. float a = input.nextFloat(); //nextInt for int data

9. System.out.println("Enter the value of b");

10. float b = input.nextFloat();

11. System.out.println("Enter the value of c");

12. double c = input.nextDouble(); // for double data

13. System.out.println("What is your name");

14. String n = input.next(); // Reading a string data

15. double sum = a + b + c;

16. double avg = sum/3.0;

17. System.out.print("Hello! " + n + " \n The Average of your

18. data is: " + avg + "\nBye....");

19. System.exit(0);

20. }

21. }

Sample Output

--------------------Configuration: <Default>--------------------

Enter the value of a

2

Enter the value of b

3

Enter the value of c

5

What is your name

Akinola

Hello! Akinola

 The Average of your data is: 3.3333333333333335

Bye....

Process completed.

Note:

1. The Scanner has to be imported into your program, similar to #include in C or C++ language.

This is done in Line 2.

2. In line 5, an object of the Scanner class (input) is created. The variable/object input is user-

defined. You can give any other meaningful identifier name for this object. This will serve as

the anchor for receiving data from the keyboard buffer as you are entering data via the

keyboard.

3. Each data type has its own format for receiving it in the program. For int data, we use

input.nextInt(), for long data, use input.Long(), for float use input.nextFloat(), for double,

use input.nextDouble() and for string data, use input.next(). The input.next() is only for one

string at a time.

Using the Swing Facility

As another example, the program below illustrates the use of swings facility in java, a form of

windows-based programming. Key in and run this program and report your observations:

18

1. import javax.swing.*;

2. // program to add two numbers together

3. public class Addition {

4. public static void main(String args[]) {

5. // Declaring your variables …

6. String firstNumber, secondNumber;

7. int number1, number2, sum;

8. firstNumber = JOptionPane.showInputDialog("Enter first

9. Number");

10. secondNumber = JOptionPane.showInputDialog("Enter

11. second Number");

12. number1= Integer.parseInt(firstNumber);

13. number2= Integer.parseInt(secondNumber);

14. sum = number1 + number2;

15. JOptionPane.showMessageDialog(null,"The sum is"+

16. sum, "Result", JOptionPane.PLAIN_MESSAGE);

17. System.exit(0);

18. } //end main method

19. } //end class Addition

Output:

Explanations:

(i) The JOptionPane is a subclass of the swing class and has some methods or functions associated

with it. One of which is the showInputDialog used above. The purpose of this method is to draw

an input textbox, in which the user will type in his / her data. What is typed in double quote as

an argument in the method will serve as a prompt for the user to know what he is to do with the

textbox when it comes onto the screen. However, any data captured by the showInputDialog()

method is a string, even if you had entered a number! Any numeric data entered into the textbox

has to be converted (parsed) to the proper numeric type. The next explanation gives this detail.

(ii) Lines 12 - 13
 number1= Integer.parseInt(firstNumber);

 number2= Integer.parseInt(secondNumber);

are the lines of code that converts (parse) the numeric data captured by the showInputDialog()

into numeric data, either float, double or int or long. However, both the lines 6-11 for

declarations and showInputDialog() and the parsing (Lines 12 – 13) can be combined into only

one line to minimize space and time. Thus the lines:

19

String firstNumber;

Int number 1;

firstNumber = JOptionPane.showInputDialog("Enter first Number");

 number1= Integer.parseInt(firstNumber);

can be written as follows:

int number1 = Integer.parseInt(JOptionPane.showInputDialog("Enter first Number"));

As java is highly case sensitive, note that int against number1 to declare it is with small i, while

all the I’s on right hand side of the assignment statement are all capitals. Other variations are

float a = Float.parseFloat(JOptionPane.showInputDialog(“ ”));

double b = Double.parseDouble(JOptionPane.showInputDialog(“ ”));

long c = Long.parseLong(JOptionPane.showInputDialog(“ ”));

(iii) The showMessageDialog method has four parameters to be passed into it: null, user’s output,

title of the message dialog and the type of icon to be attached to the message box whether error,

information or any other. Each of these parameters is separated by commas. Check this with the

example above. We are particular about the last three. All the output that the user wants the

message box to print out including prompting messages are specified in the user’s output

parameter. The prompting messages are doubly quoted along with the variable values to be

printed out. The title given to the message box as the third parameter must be typed in double

quotes and should be relevant to the output to be brought out. The last parameter is the icon to

be attached to the message box. This time, we used the JOptionPane.PLAIN_MESSAGE,

meaning that no icon will show. We can also use JOptionPane.INFORMATION_MESSAGE or

JOptionPane.ERROR_MESSAGE. Note the use of the underscore.

Example Codes:

E1: This code requests for your age now and the current year. It then computes the year you were born and

reports back to you when you were born.

1. //Computing your Year of Birth

2. import java.util.Scanner;

3. public class yearOfBirth {

4. public static void main(String[] args) {

5. Scanner input = new Scanner(System.in);

6. System.out.println("Enter your age: ");

7. int age = input.nextInt();

8. System.out.println("Enter this year’s value e.g. 2013: ");

9. int currentYr = input.nextInt();

10. int year = currentYr - age;

11. System.out.println("You are " + age + " years old now");

12. System.out.println(" So you were probably born in " +

13. year);

14. }

15. }

Output:

--------------------Configuration: <Default>--------------------

Enter your age:

45

Enter this year’s value e.g. 2013:

2013

You are 45 years old now

 So you were probably born in 1968

20

E2: Computing the Area of a circle

1. //Computing the area and perimeter of a circle

2. import javax.swing.JOptionPane;

3. public class add {

4. public static void main(String[] args) {

5. float r = Float.parseFloat(JOptionPane.showInputDialog("Enter

6. the radius of the circle"));

7. double area = Math.PI * r * r;

8. double peri = 2.0 * Math.PI * r;

9. JOptionPane.showMessageDialog(null, "The area of the Circle is

10. " + area + "\n Perimeter is "+ peri);

11. } // end main

12. } // end class

Post-Test

1. Write a program to compute the area and perimeter of a rectangular object

2. Write a program to calculate simple interest on a sum of money invested for some number

of years at certain rate percent.

Summary

This chapter briefly introduced you to Java programming basics. You have been introduced to

 Java Virtual Machine (JVM)

 Java Toolkit

 How to edit your code in Java

 How Java execute a program

 The different ways of running your programs in Java

21

3 Java Variables and Objects

3.1 Introduction

A variable, as you may already know, is simply something that stores a value. Imagine that each

variable is a box. Each box is labelled with a name and a category; its category is what type of item it

stores, and its name is what that specific variable is called. Boxes can store many things, but only if

they fit in that box. This is the same with variables. They all have types, names, and sizes, which

govern what can and can’t be stored inside them. An object on the other hand, is an instance of a

class and may contain many variables You shall be introduced to variables and objects in this chapter.

3.2 Objective

At the end of this lecture, you should be able to:

1. identify the various variable types in Java language;

2. understand how variables are formed

3. understand the scope of a variable

4. identify the differences between variables and objects

3.3 Pre-Test

1. How many types of variables are you familiar with?

2. Give four of them

3.4 Main Content

3.4.1 What are Java Variables and Objects

These hold data in Java. A variable has a type and hold a single value. An object is an instance of a

class and may contain many variables, the composite of whose values is called the “state” of the

object. Whereas every variable has a unique name, on being declared, objects have references instead

of names, and they need not be unique. An object is created by using the “new” operator to invoke a

“Constructor” and it dies when it has no references. E.g. in the Circle program above, r and area are

the 2 variables while reader, input, text, x and System.out are the five objects in the program. These

objects are instances of the classes inputStreamReader, BufferedReader, String, Double and

PrintStream respectively. In the Java programming language, the following must hold true for a

simple name:

1. It must be a legal identifier. An identifier is an unlimited series of Unicode characters

that begins with a letter.

2. It must not be a keyboard, a boolean literal (true or false), or the reserved word null.

3. It must be unique within its scope. A variable may have the same name as a variable

whose declaration appears in a different scope. In some situations, a variable may

share the same name as another variable if it is declared within a nested block of

code. (We will cover this in the next section, Scope.)

4. It must not be a java reserved identifier such as swing, String, int, short etc. Reserved

words are pre-defined in java, and so, cannot be re-defined.

By Convention: Variable names begin with a lowercase letter, and class names begin with an

uppercase letter. If a variable name consists of more than one word, the words are joined together,

and each word after the first begins with an uppercase letter, like this: isVisible. The underscore

character (_) is acceptable anywhere in a name, but by convention is used only to separate words in

constants (because constants are all caps by convention and thus cannot be case-delimited).

22

3.4.2 Scope of Variables

A variable's scope is the region of a program within which the variable can be referred to by its simple

name. Secondarily, scope also determines when the system creates and destroys memory for the

variable. Scope is distinct from visibility, which applies only to member variables and determines

whether the variable can be used from outside of the class within which it is declared. Visibility is set

with an access modifier.

The location of the variable declaration within your program establishes its scope and places it into

one of these four categories:

 member variable

 local variable

 method parameter

 exception-handler parameter

A member variable (or global variable) is a member of a class or an object. It is declared within a

class but outside of any method or constructor. A member variable's scope is the entire declaration of

the class. However, the declaration of a member needs to appear before it is used when the use is in a

member initialization expression.

You declare local variables within a block of code. In general, the scope of a local variable extends

from its declaration to the end of the code block in which it was declared.

Parameters are formal arguments to methods or constructors and are used to pass values into

methods and constructors. The scope of a parameter is the entire method or constructor for which it is

a parameter.

Exception-handler parameters are similar to parameters but are arguments to an exception handler

rather than to a method or a constructor. The scope of an exception-handler parameter is the code

block between { and } that follow a catch statement. We shall deal with this topic later.

Consider the following code sample:
if (...) {

 int i = 17;

 ...

javascript:var%20meth=openWin;%20meth('member');
javascript:var%20meth=openWin;%20meth('local%20variable');

23

}

System.out.println("The value of i = " + i); // error

The final line won't compile because the local variable i is out of scope. The scope of i is the block of

code between the { and }. The i variable does not exist anymore after the closing }. Either the variable

declaration needs to be moved outside of the if statement block, or the println method call needs to be

moved into the if statement block.

3.4.3 Variable Initialization

Local variables and member variables can be initialized with an assignment statement when they're

declared. The data type of the variable must match the data type of the value assigned to it.

Parameters and exception-handler parameters cannot be initialized in this way. The value for a

parameter is set by the caller.

3.4.4 Final Variables / Java Constants

You can declare a variable in any scope to be final. The value of a final variable cannot change after

it has been initialized. Such variables are similar to constants in other programming languages. To

declare a final variable, use the final keyword in the variable declaration before the type:

final int aFinalVar = 0;

The previous statement declares a final variable and initializes it, all at once. Subsequent attempts to

assign a value to aFinalVar result in a compiler error. You may, if necessary, defer initialization of a

final local variable. Simply declare the local variable and initialize it later, like this: final int

blankfinal;
 . . .

 blankfinal = 0;

A final local variable that has been declared but not yet initialized is called a blank final. Again, once

a final local variable has been initialized, it cannot be set, and any later attempt to assign a value to

blankfinal is an error.

3.4.5 Data Types

Every variable must have a data type. A variable’s data type determines the values that the variable

can contain and the operations that can be performed on it. For example, declaring a variable to be int

var means that var is an integer data type. Integers can contain only integral (whole numbers) values

(both positive and negative) and we can perform arithmetic operations, such as addition, on integer

variables.

Java programming has two categories of data types: primitive and reference. A variable of primitive

type contains a single value of the appropriate size and format for its type: a number, a character, or a

Boolean value. The table below lists all of the primitive data types along with their sizes and

formats:

Keyword Description Size/Format

(Integers: numbers without decimal places, eg. 45, 456)

24

Byte Byte-length integer
8-bit two's

complement

Short Short integer
16-bit two's

complement

Int Integer
32-bit two's

complement

Long Long integer
64-bit two's

complement

(Real numbers: numbers with decimal places, e.g. 3.21)

Float
Single-precision

floating point
32-bit IEEE 754

Double
Double-precision

floating point
64-bit IEEE 754

(other types)

Char A single character
16-bit Unicode

character

Boolean
A boolean value

(true or false)
true or false

NB: In other languages, the format and size of primitive data types may depend on the platform on

which a program is running. In contrast, the java programming language specifies the size and format

of its primitive data types. Hence, we don’t have to worry about system-dependencies.

We can put a literal primitive value directly in our codes. For example, if we need to assign the literal

integer value 4 to an integer variable we can write this:

 int anInt = 4;

int are integers in the range of 1 to a few thousands. However, if a variable is going to run into

millions, we’d better declare it as long. For instance, when we are writing a factorial program, the

factorial of big numbers like 20 may run into large values. short and byte are usually used in systems

programming dealing with registers and memory addresses.

float is designed for real data whose number of decimal places may run not more than 5 places, e.g.

245.234. But double is used if we have a recurring decimal running up to say 10 decimals places like

pi (). For instance, Java insists that whenever we are carrying out division, the variable to assign

the result to must be declared as double, so as to avoid loss of precision.

Other examples of literal values are:
178 int

456L Long

34.876 double

23.786D double

25

56.89F float

‘s’ char

true Boolean

Arrays, classes and interfaces are reference data types. The value of a reference type variable, in

contrast to that of primitive type, is a reference to (an address of) the value or set of values represented

by the variable. A reference is called a pointer, or a memory address in other languages. The java

programming does not support the explicit use of addresses like other languages do. We use the

variable’s name instead.

 objectName

Post-Test

1. Assuming you want to compute the standard deviation of some numbers, identify the

input and out variables you will need and their types.

2. Write a program to compute the standard deviation of any 4 numbers

reference

An object

or an

array

Summary

 In this chapter you were introduced to the different types of variables that are suppoted

by Java. We have 8 primitive types – int, short, byte, long, float, double, char and

Boolean. Objects contain different variables.

26

4 Java Operators

4.1 Introduction

An operator performs a function on one, two, or three operands. We have different types of operators

in Java. Some are for arithmetic operations while others are for comparisons. In this chapter, you shall

be introduced to the different operators supported by Java language.

4.2 Objective

At the end of this lecture, you should be able to:

3. identify the various operators in Java language;

4. understand how the operators are used

4.3 Pre-Test

1. How many types of operators are you familiar with?

2. Give four of them

4.4 Main Content

4.4.1 Java Operators

An operator performs a function on one, two, or three operands. An operator that requires one operand

(Op) is called a unary operator. For example, ++ is a unary operator that increments the value of its

operand by 1. An operator that requires two operands is a binary operator. For example, = is a binary

operator that assigns the value from its right hand operand to its left-hand operand. And finally, a

ternary operator is one that requires three operands. The java programming language has one ternary

operator, ?:, which is a short-hand if – else statement. In addition to performing the operation, an

operator returns a value. The return value and its type depend on the operator and the type of its

operand. For example, the arithmetic operators, which perform basic arithmetic operations such as

addition and subtraction, return numbers – the result of the arithmetic operation. The data type

returned by an arithmetic operator depends on the type of its operands: if we add two integers, we get

an integer back. An operation is said to evaluate to its result. Below are the java-supported operators.

4.4.2 Arithmetic Operators

These operators are used in arithmetic computations in java programming environment. These are:

Operator Use Description

++
Op++
e.g

i++;

Increments op by 1; evaluates to the

value of op before it was incremented

++
++op
e.g

++i;

Increments op by 1; evaluates to the

value of op after it was incremented

--
Op—
e.g i--;

Decrements op by 1; evaluates to the

value of op before it was decremented

-- --Op Decrements op by 1; evaluates to the

27

e.g –i; value of op after it was decremented

+ a + b Add a and b together

- a – b Subtract b from a

/ a / b Divides a into b

* a * b Product of a and b

% a % b Remainder when a is divided by b

What happens when we have combinations of different data types in one single expression? It needs

be noted that when an integer and a floating-point number are used as operands to a single arithmetic

operation, the result is floating point. The integer is implicitly converted to a floating-point number

before the operation takes place. This is called data coercion. For instance, if we have the following

statement:

int y, x;

float b;

double a, c;

a = c + b + y + x;

The next table summarizes how java handles these situations. The data type returned by the arithmetic

operators is based on the data type of the operands. The necessary conversions take place before the

operation is performed.

Data

Type of

Result
Data Type of Operands

long
Neither operand is a float or a double (integer

arithmetic); at least one operand is a long.

int
Neither operand is a float or a double (integer

arithmetic); neither operand is a long.

double At least one operand is a double.

float
At least one operand is a float; neither operand is a

double.

In addition to the binary forms of + and -, each of these operators has unary versions that perform the

following operations:

Operator Use Description

+ +op
Promotes op to int if it is a byte, short or a

char.

- -op Arithmetically negates op.

28

4.4.3 Assignment Operators

We use the basic assignment operator, =, to assign one value to another. In ordinary arithmetic, we are

permitted to write a + b = c – d, but this is not allowed in programming. The expression at the left

hand side (a + b) is regarded as a memory location to which we are assigning the result computed at

the right hand side to. Java also provides several short-cut assignment operators that allow us to

perform arithmetic, shift, or bitwise operation and an assignment operation, all with one operator. The

table below gives the major assignment operators in java.

Oper-

ator
Use Equivalent to

Example

+= Op1 += op2 op1 = op1 + op2 a = a + b a += b

-= Op1 -= op2 op1 = op1 - op2 a = a + b a += b

*= Op1 *= op2 op1 = op1 * op2 a = a * b a *= b

/= Op1 /= op2 op1 = op1 / op2 a = a / b a /= b

%= Op1 %= op2 op1 = op1 % op2 a = a % b a %= b

&= Op1 &= op2 op1 = op1 & op2

We shall study

these operators

in the latter

 sections

|= Op1 |= op2 op1 = op1 | op2

^= Op1 ^= op2 op1 = op1 ^ op2

<<= Op1 <<= op2 op1 = op1 << op2

>>= Op1 >>= op2 op1 = op1 >> op2

>>>=
Op1 >>>=

op2
op1 = op1 >>>

op2

Examples: Arithmetic and Assignment Operators

A = x; // Assignment operator

n += 22; // n = n + 22

++n; // Increment Operator i.e. n = n + 1

n / a // Quotient (Division) operator

int y = n % b ; // Remainder Operator, divides n by b and

//assign the remainder to y

Note that +=, ++ and others are to be written together without any space in between them.

4.4.4 Relational and Conditional Operators:

A relational operator compares two values and determines the relationship between them. For

example, != returns true if the two operands are unequal.

The table overleaf gives the examples of relational operators.

29

Operator Use Returns true if

> op1 > op2 op1 is greater than op2 e.g. if (a > b)

>= op1 >= op2 op1 is greater than or equal to op2

< op1 < op2 op1 is less than op2 e.g. if (a < b)

<= op1 <= op2 op1 is less than or equal to op2

== op1 == op2 op1 and op2 are equal e.g. if (a == b)

!= op1 != op2 op1 and op2 are not equal

Relational operators often are used with conditional / logical operators to construct more complex

decision-making expressions.

Java supports six conditional/logical operators – five binary and one unary – as shown in the

following table:

Operator Use Returns true if

&& op1 && op2
op1 AND op2 are both true, conditionally evaluates op2. E.g.
if ((a < b) && (c > a)

|| op1 || op2
either op1 OR op2 is true, conditionally evaluates op2. E.g
if ((a < b) || (c > a)

! ! op op is false . E.g. if !(a < b)

& op1 & op2 op1 and op2 are both true, always evaluates op1 and op2

| op1 | op2 either op1 or op2 is true, always evaluates op1 and op2

^ op1 ^ op2
if op1 and op2 are different - that is, if one or the other of the

operands is true but not both

This program makes use of the different comparison operators

1. import javax.swing.JOptionPane;

2. // program for comparing values

3. public class comparison1 {

4. public static void main(String args[]) {

5. // read first number from user as a string

6. int number1 = Integer.parseInt(JOptionPane.showInput

7. Dialog("Enter the first integer");

8. // read second number from user as a string

9. int number2 = Integer.parseInt(JOptionPane.showInput

10. Dialog("Enter the second integer");

11.

12. String result="";

13.

14. if (number1 == number2)

15. result = result + number1 + "==" + number2;

30

16. if (number1 != number2)

17. result = result + number1 + "!=" + number2;

18. if (number1 < number2)

19. result = result + "\n"+ number1 + "<" + number2;

20. if (number1 > number2)

21. result = result + "\n" + number1 + ">"+ number2;

22. if (number1 <= number2)

23. result = result + "\n" + number1 + "<=" + number2;

24. if (number1 >= number2)

25. result = result + "\n" + number1 +"<=" + number2;

26.

27. // Display results

28. JOptionPane.showInputDialog(null, result, "Comparison

29. Result", JOptionPane.INFORMATION_MESSAGE);

30. System.exit(0); //terminate application

31. }

32. }

Output:

4.4.5 The Math Class

The math class provides an extensive set of mathematical methods in the form of a static class library

for manipulating the different mathematical expressions such as e, , sin, cos, etc. Note that the

trigonometric ratios, sin, cos and tan are implemented in radian measure and not in degree in Java.

You need to write your own code to convert the angles given in degrees to radians. Also, note that -

rad = 180
0

/***This program prints the constants e and , absolute of –1234, cos(/4), sin(/2), tan(/4), ln(1), e

 and

five random double numbers between 0.0 and 1.1 **/

public class MathApp {

 public static void main(String args []) {

31

 System.out.println("Math.E = " + Math.E);

 System.out.println("Math.PI = "+Math.PI);

 System.out.println("Math.abs(-1234) = "+Math.abs(- 1234));

System.out.println("Math.cos(Math.PI/4) = +Math.cos(Math.PI/4));

System.out.println("Math.sin(Math.PI/2) = " Math.sin(Math.PI/2));

System.out.println("Math.tan(Math.PI/4) = +Math.tan(Math.PI/4));

 System.out.println("Math.log(1) = "+Math.log(1));

System.out.println("Math.exp(Math.PI) = "+Math.exp(Math.PI));

System.out.println("The first five Random numbers from 1 to 100 are ");

// To generate random numbers …

 for (int i=0;i<5;++i)

 System.out.println(Math.floor(Math.random()*100) + " ");

 System.out.println();

 }

 }

Output:
Math.E = 2.718281828459045

Math.PI = 3.141592653589793

Math.abs(-1234) = 1234

Math.cos(Math.PI/4) = 0.7071067811865476

Math.sin(Math.PI/2) = 1.0

Math.tan(Math.PI/4) = 0.9999999999999999

Math.log(1) = 0.0

Math.exp(Math.PI) = 23.140692632779267

The first five Random numbers from 1 to 100 are

35.0

13.0

4.0

35.0

79.0

Program to illustrate different arithmetic operators
public class Arith

{ public static void main(String[] args)

 { int m =25;

 int n = 7;

 System.out.println(“m = “ + m);

 System.out.println(“n = “ + n);

 int sum = m + n;

 System.out.println(“m + n = “ + sum);

 int difference = m-n;

 System.out.println(“m - n= “ + difference);

 int product = m*n;

 System.out.println(“m * n = “ + product);

 int quotient = m/n;

 System.out.println(“m/n = “ + quotient);

 int remainder = m%n;

 System.out.println(“m%n = “ + remainder);

 }

32

}

Output:

C:\j2sdk1.4.2_04\bin>java Arith

m = 25

n = 7

m + n = 32

m - n= 18

m * n = 175

m/n = 3

m%n = 4

4.4.6 Shift and Logical operators

A shift operator performs bit manipulation on data by shifting the bits of its first operand right or left.

The table overleaf summarizes the shift operators available in Java programming.

Operator Use Operation

>> Op1 >> op2 Shifts bits of op1 right by distance op2

<< Op1 << op2 Shifts bits op1 left by distance op2

>>> Op1>>>op2 Shifts bits of op1 right by distance op2 (unsigned)

Each operator shifts the bits of the left-hand operand over by the number of positions by the right-

hand operand. The shift occurs in the direction indicated by the operator itself. For example, The

following statement shifts the bits of the integer 13 to the right by one position:

 13 >> 1;

The binary representation of the number 13 is 1101. The result of the shift operation is 1101 shifted

by one position –110, or 6 in decimal. The left-hand bits are filled with 0s as needed.

The following table shows the four operators the java programming language provides to perform

bitwise functions on their operands:

Operator Use Operation

& Op1 & op2 Bitwise AND

| Op1 | op2 Bitwise OR

^ Op1 ^ op2 Bitwise XOR

~ ~op2 Bitwise Complement

When its operands are numbers, the & operation performs the bitwise AND function on each parallel

pair of bits in each operand.

The AND function sets the resulting bit to 1 if the corresponding bit in both operands is 1, as shown

below:

Op1 Op2 Result

33

For instance, suppose that you were to AND the values 13 and 12, like this: 13 & 12. The result of

this operation is 12 because the binary representation of 12 is 1100 and that of 13 is 1101.

1101 // 13

 & 1100 // 12

 1100 // 12

For the inclusive OR operation, if either of the two bits is 1, the result is 1. The following table shows

the results of this operation:

Op1 Op2 Result

0 0 0

0 1 1

1 0 1

1 1 1

Exclusive OR means that if the two operand bits are different, the result is 1, otherwise the result is 1.

0 0 0

0 1 0

1 0 0

1 1 1

34

Check the table below:

Op1 Op2 Result

0 0 0

0 1 1

1 0 1

1 1 0

Finally, the complement operator inverts the value of each bit of the operand bits is 1, the result is 0

and if the operand bit is 0, the result is 1.

4.4.7 Other Operators

4.4.7.1 The ternary operator / Shortcut for if - else

 statement ?:

op1 ? op2 : op3

The ?: operator returns op2 if op1 is true or returns op3 if op1 is false.

4.4.7.2 The [] Operator

We use square brackets to declare arrays, to create arrays and to access a particular element in an

array. For example, to declare an array that can hold ten floating point numbers, we write:

 float [] floatArray = new float [10];

To access the 7th element of the array, we write

 floatArray[6];

Note that array indices begin at 0 in java.

4.4.7.3 The . (Dot) Operator

The dot (.) operator accesses instance members of an object or class members of a class. We shall

more of this under the topic classes and inheritance.

4.4.7.4 The () Operator

When declaring or calling a method, we list the method’s arguments between (and). We can also

specify an empty argument list by using () with nothing between them.

4.4.7.5 The (type) Operator

Casts (or “converts”) a value to the specified type. Example:

 double sum = (double) (num/a);

35

The statements converts the value evaluated from (num/a) to a double value.

4.4.7.6 The ‘new’ Operator

We use the operator to create a new object or a new array.

4.4.7.7 The ‘instanceOf’ Operator

The InstanceOf operator tests whether its first operand is an instance of its second.

 Op1 instanceOf op2

Op1 must be the name of an object and op2 must be the name of a class. Ann object is considered to

be an instance of a class if that object directly or indirectly descends from that class.

Examples

A. Given the following code snippet:

 int i = 10;

 int n = i ++ %5;

Q1: What are the values of i and n after the code is executed?

Answer: i = 11, n = 0

Q2: What are the final values of i and n if instead of using postfix increment operator (i++), we use

the prefix version (++i)?

Answer: i = 11, n = 1

Can you give reasons for these answers? Check relevant tables up.

B. What is the value of i after the following snippet executes?

 int i = 8;

 i >>= 2;
Answer: i = 2

c. What is the value of i after the following snippet

 executes?

 int i = 17;

 i >> = 1;

Answer: i = 8

4.4.8 Expressions

Variables and operators are the basic building blocks of programs. We combine literals, variables and

operators to form expressions – segment of code that perform computations and return values. Certain

expressions can be made into statements – complete units of execution. By grouping statements

together with curly braces { and }, we create blocks of code.

Among other things, expressions are used to compute and to assign values to variables and to help

control the execution flow of a program. The job of an expression is two-fold: to perform the

36

computation indicated by the elements of the expression and to return a value that is the result of the

computation.

Therefore, an expression is a series of variables, operators and method calls (constructed according to

the syntax of the language) that evaluates to a single value. An expression can be arithmetic or logical.

We have to specify how we want an arithmetic expression to be evaluated by using balanced

parentheses (and). For example,

 x + y / 100 is ambiguous but

 (x + y) / 100 is unambiguous and recommended.

If we don’t explicitly indicate the order in which we want the operations in a compound expression to

be performed, the order is determined by the precedence assigned to the operators in use within the

expression. Operators with a higher precedence get evaluated first. For example, the division operator

has a higher precedence than does the addition operator. Thus, the two following statements are

equivalent:

 x + y / 100

 x + (y / 100) // Unambiguous, recommended

4.4.9 Operators’ Order of Precedence

The following table shows the precedence assigned to the operators in Java. The operators in this table

are listed in precedence order: the higher in the table an operator appears, the higher its precedence.

Operators with higher precedence are evaluated before operators with a relatively lower precedence.

Operators on the same line have equal precedence.

Postfix operators [], ., (params), expr++, expr--

Unary operators ++expr, --expr, +expr, -expr, ~, !

Creation or cast new, (type)expr

Multiplicative *, ?, %

Additive +, -

Shift <<, >>, >>>

Relational <, >, <=, >=, instanceOf

Equality ==, !=

Bitwise AND &

Bitwise exclusive OR ^

Bitwise inclusive OR |

Logical AND &&

Logical OR ||

Conditional ?:

Assignment =, +=, -=, *=, /=, %=, ^=, |=, <<=, >>=, >>>=

37

All binary operators except for the assignment operators are evaluated in left-to-right order.

Assignment operators are evaluated right to left.

4.4.10 Statements

Statements are roughly equivalent to sentences in natural languages. A statement forms a complete

unit of execution. The following types of expressions can be made into a statement by terminating the

expression with a semicolon (;):

 Assignment expressions

 Any use of ++ or --

 Method calls

 Object creation expressions

These kinds of statements are called expression statements. Here are some examples of expression

statements:

 aValue = 23.89; // assignment statement

 aValue++; // increment statement

 System.out.println(aValue);// method call statement

 integer valueArray = new integer(4); // object creation

In addition to these kinds of expression statements, there are two kinds of statements. A declaration

statement declares a variable. For example,

double aValue = 34.9; // declaration statement

A control flow statement regulates the order in which statements get executed. The for loop and if

statement are examples.

4.4.11 Blocks

A block is a group of zero or more statements between balanced braces and can be used anywhere a

single statement is allowed. The following program snippet shows two blocks each containing a single

statement;

 if (Character.isUpperCase(aChar)) {

 System.out.println (“The character “ + aChar + “ is

 upper case”);

 } else {

 System.out.println(“The character “ + aChar + “ is

 Lower case”);

 }

4.4.12 Formatting Your Outputs

Sometimes we may want to format our outputs either to some number of decimal places or to display

the output in a particular base value. Java borrows the C – Language way of formatting outputs.

Method printf formats and outputs data to the standard output stream, System.out. Class Formatter

formats and outputs data to a specified destination, such as a string or a file output stream

Every call to printf supplies as the first argument a format string that describes the output format.

The format string may consist of fixed text and format specifiers. Fixed text is output by printf just as

it would be output by System.out methods print or println. Each format specifier is a placeholder for a

value and specifies the type of data to output. Format specifiers also may include optional formatting

information.

38

4.4.12.1 Integers

An integer is a whole number, such as 776, 0 or 52, that contains no decimal point. Integer values are

displayed in one of several formats. The table below describes the integral conversion characters.

Integer conversion characters.

Conversion

character Description

D Display a decimal (base 10) integer.

O Display an octal (base 8) integer.

x or X Display a hexadecimal (base 16) integer. X causes the digits 09 and the letters AF

to be displayed and x causes the digits 09 and af to be displayed.

The printf method has the form
 printf(format-string, argument-list);

where format-string describes the output format, and argument-list contains the values that correspond

to each format specifier in format-string. There can be many format specifiers in one format string.

Examine the code snippets below:

System.out.printf(“%d\n”, 26);

System.out.printf(“%d\n”, +26);

System.out.printf(“%d\n”, -26);

System.out.printf(“%o\n”, 26);

System.out.printf(“%x\n”, 26);

System.out.printf(“%X\n”, 26);

The Outputs below would be produced:

26

26

-26

32

1a

1A

4.4.12.2 Floating-Point Numbers

A floating-point value contains a decimal point, as in 33.5, 0.0 or -657.983. Floating-point values are

displayed in one of several formats. Table below describes the floating-point conversions. The

conversion character e and E displays floating-point values in computerized scientific notation (also

called exponential notation). Exponential notation is the computer equivalent of the scientific

notation used in mathematics. For example, the value 150.4582 is represented in scientific notation in

mathematics as 1.504582 x 10
2

39

Floating-point Conversion Characters.

Conversion

character Description

e or E Display a floating-point value in exponential notation. When conversion character E

is used, the output is displayed in uppercase letters.

f Display a floating-point value in decimal format.

g or G Display a floating-point value in either the floating-point format f or the exponential

format e based on the magnitude of the value. If the magnitude is less than 10
3
, or

greater than or equal to 10
7
, the floating-point value is printed with e (or E).

Otherwise, the value is printed in format f. When conversion character G is used, the

output is displayed in uppercase letters.

a or A Display a floating-point number in hexadecimal format. When conversion character

A is used, the output is displayed in uppercase letters.

Values printed with the conversion characters e, E and f are output with six digits of precision to the

right of the decimal point by default (e.g., 1.045921). Other precisions must be specified explicitly.

For values printed with the conversion character g, the precision represents the total number of digits

displayed, excluding the exponent. The default is six digits (e.g., 12345678.9 is displayed as

1.23457e+07). Conversion character f always prints at least one digit to the left of the decimal point.

Conversion character e and E print lowercase e and uppercase E preceding the exponent and always

print exactly one digit to the left of the decimal point. Rounding occurs if the value being formatted

has more significant digits than the precision.

Conversion character g (or G) prints in either e (E) or f format, depending on the floating-point

value. For example, the values 0.0000875, 87500000.0, 8.75, 87.50 and 875.0 are printed as

8.750000e-05, 8.750000e+07, 8.750000, 87.500000 and 875.000000 with the conversion character g.

The value 0.0000875 uses e notation because the magnitude is less than 10
-3

. The value 87500000.0

uses e notation because the magnitude is greater than 107. Code snippets below illustrate the use of

these conversion characters.

System.out.printf(“%e\n”, 12345678.9);

System.out.printf(“%e\n”, +12345678.9);

System.out.printf(“%e\n”, -12345678.9);

System.out.printf(“%E\n”,12345678.9);

System.out.printf(“%f\n”, 12345678.9);

System.out.printf(“%g\n”, 12345678.9);

System.out.printf(“G\n”, 12345678.9);

Outputs
1.234568e+07

1.234568e+07

-1.234568e+07

1.234568E+07

12345678.900000

1.23457e+07

1.23457E+07

4.4.12.4 Printing Dates and Times

40

With the conversion character t or T, we can print dates and times in various formats. Conversion

character t or T is always followed by a conversion suffix character that specifies the date and/or time

format. When conversion character T is used, the output is displayed in uppercase letters. The table

below lists the common conversion suffix characters for formatting date and time compositions that

display both the date and the time. Next table 2 lists the common conversion suffix characters for

formatting dates. Table 3 lists the common conversion suffix characters for formatting times. To view

the complete list of conversion suffix characters, visit the Web site

java.sun.com/j2se/5.0/docs/api/java/util/Formatter.html.

1. Date and time composition conversion suffix characters.

Conversion

suffix

character Description

c Display date and time formatted as

day month date hour:minute:second time-zone year

with three characters for day and month, two digits for date, hour, minute and second

and four digits for yearfor example, Wed Mar 03 16:30:25 GMT-05:00 2004. The 24-

hour clock is used. In this example, GMT-05:00 is the time zone.

F Display date formatted as year-month-date with four digits for the year and two digits

each for the month and the date (e.g., 2004-05-04).

D Display date formatted as month/day/year with two digits each for the month, day and

year (e.g., 03/03/04).

r Display time formatted as hour:minute:second AM|PM with two digits each for the

hour, minute and second (e.g., 04:30:25 PM). The 12-hour clock is used.

R Display time formatted as hour:minute with two digits each for the hour and minute

(e.g., 16:30). The 24-hour clock is used.

T Display time formatted as hour:minute:second with two digits for the hour, minute

and second (e.g., 16:30:25). The 24-hour clock is used.

2. Date formatting conversion suffix characters.

Conversion

suffix

character Description

A Display full name of the day of the week (e.g., Wednesday).

a Display the three-character short name of the day of the week (e.g., Wed).

B Display full name of the month (e.g., March).

b Display the three-character short name of the month (e.g., Mar).

d Display the day of the month with two digits, padding with leading zeros as

necessary (e.g., 03).

m Display the month with two digits, padding with leading zeros as necessary

(e.g., 07).

e Display the day of month without leading zeros (e.g., 3).

http://java.sun.com/j2se/5.0/docs/api/java/util/Formatter.html

41

Conversion

suffix

character Description

Y Display the year with four digits (e.g., 2004).

y Display the last two digits of the year with leading zeros as necessary (e.g.,

04).

j Display the day of the year with three digits, padding with leading zeros as

necessary (e.g., 016).

3. Time formatting conversion suffix characters.

Conversion

suffix

character Description

H Display hour in 24-hour clock with a leading zero as necessary (e.g., 16).

I Display hour in 12-hour clock with a leading zero as necessary (e.g., 04).

k Display hour in 24-hour clock without leading zeros (e.g., 16).

l Display hour in 12-hour clock without leading zeros (e.g., 4).

M Display minute with a leading zero as necessary (e.g., 06).

S Display second with a leading zero as necessary (e.g., 05).

Z Display the abbreviation for the time zone (e.g., GMT-05:00, stands for

Eastern Standard Time, which is 5 hours behind Greenwich Mean Time).

P Display morning or afternoon marker in lower case (e.g., pm).

p Display morning or afternoon marker in upper case (e.g., PM).

Conversion character t requires the corresponding argument to be of type long, Long, Calendar or

Date (both in package java.util) objects of each of these classes can represent dates and times. Class

Calendar is the preferred class for this purpose because some constructors and methods in class Date

are replaced by those in class Calendar. From the code below, Line 10 invokes static method

getInstance of Calendar to obtain a calendar with the current date and time. Lines 13-17, 20-22 and

25-26 use this Calendar object in printf statements as the value to be formatted with conversion

character t. Note that lines 20-22 and 25-26 use the optional argument index ("1$") to indicate that all

format specifiers in the format string use the first argument after the format string in the argument list.

Using the argument index eliminates the need to repeatedly list the same argument.

Example Code

1. import java.util.*;

2. class cal {

3. public static void main(String[] args) {

4. Calendar dateTime = Calendar.getInstance();

5. System.out.printf("%tc\n", dateTime);

6. System.out.printf("%tF\n", dateTime);

42

7. System.out.printf("%tD\n", dateTime);

8. System.out.printf("%tr\n", dateTime);

9. System.out.printf("%tT\n", dateTime);

10. // printing with conversion characters for date

11. System.out.printf("%1$tA, %1$tB%1$td, %1$tY\n",

12. dateTime);

13. System.out.printf("%1$TA, %1$TB%1$Td, %1$TY\n",

14. dateTime);

15. System.out.printf("%1$ta, %1$tb%1$te, %1$ty\n",

16. dateTime);

17. // printing with conversion characters for time

18. System.out.printf("%1$tH:%1$tM:%1$tS\n", dateTime);

19. }

20. }

Outputs
Fri Mar 16 15:39:07 CET 2012

2012-03-16

03/16/12

03:39:07 PM

15:39:07

Friday, March16, 2012

FRIDAY, MARCH16, 2012

Fri, Mar16, 12

15:39:07

Post Test
2. Write Java equivalent expressions for the following arithmetic

 expressions.

 (i) 2(L + b) + e
-h

 K
2

(ii) r
n
 – Log(/2)

(iii) Sin
2
h – Cos

2
h

 m
xn

2. Write a program to compute the area and perimeter of any plane shape and format your

outputs to only two decimal places.

Summary
In this chapter you have been introduced to the different operators that Java supports:

Arithmetic, relational and logical. The formatting styles for your outputs were also

introduced

43

5 Java Control Structures

5.1 Introduction

When you write a program, you type statements into a file. Without control flow statements, the

interpreter executes these statements in the order they appear in the file from left to right, top to

bottom. Basically, there are three types of control structures in a programming language. The

following table gives a summary of these structures.

Type of Control Meaning Control Structures

Sequential control The program runs from line one

to the last line without branching

or testing for any condition

All the programs we have been writing

before now are examples of this

structure

Selection/Branching One or more Conditions are

tested. Statements are executed

upon fulfilment of the conditions.

Simple if, If – else, else if, goto, nested

if, arithmetic if, Switch, break and

continue structures.

Looping/Repetition/Iteration Statements are repeatedly

executed either on fulfilling a

condition or for some number of

times.

For, while and do-while loops

You can use control flow statements in your programs to conditionally execute statements, to

repeatedly execute a block of statements, and to otherwise change the normal, sequential flow of

control. For example, in the following code snippet, the if statement conditionally executes the

System.out.println statement within the braces, based on the return value of isUpperCase ().

Character.isUpperCase(aChar):

char c;

...

if (Character.isUpperCase(aChar)) {

 System.out.println("The character " + aChar + "

 is upper case.");

}

The Java programming language provides several control flow statements, which are listed in the

following table.

Statement Type Keyword

Looping / repetition while, do-while , for

Decision making / selection if-else, switch-case

Exception handling try-catch-finally, throw

Branching break, continue, label:, return

Note: Although goto is a reserved word, currently the Java programming language does not support

the goto statement.

5.2 Objectives

44

At the end of this chapter, you should be able to identify and use the different control structures that

Java supports.

5.3 Pre Test
1. If you were to make a decision in your program, how would you achieve it?

2. Explain how you would find the average of any 20 numbers.

5.4 Main Content

5.4.1 The if/else Statements

The if statement enables your program to selectively execute other statements, based on some criteria.

Syntax:

Generally, the syntax of simple if statement can be written like this:

if (logical expression) {

 statement(s)

}

The statement(s) will only be executed only if the logical expression evaluates to true. If the

expression is not rtue, the control simply passes to the next statement following the statement(s)

block, { …. } and continues downwards from there.

As an example, suppose we have input a value for x previously in our program, we could write:

 if (x < 50)

 System.out.println(“The score is below cut off”);

What if we want to perform a different set of statements if the expression is false? We use the else

statement for that. The next program segment illustrates this:

System.out.println(“Enter the grade: “);

int grade = input.nextInt();

if (grade >= 50)

 System.out.println(“The grade is above cut off point “);

 else

System.out.println(“Grade below cut off point “);

Note that if the number of statements to be affected by the if is more than one, the statements

must be enblocked thus:

if (logical expression) {

 Statement1;

 Statement2;

 …..

}

else {

 statement1;

 statements2;

 …..

}

Another form of the else statement, else if, executes a statement based on another expression.

An if statement can have any number of companion else if statements but only one else.

45

Following is a program, IfElse that assigns a grade based on the value of a test score: an A for

a score of 90% or above, a B for a score of 80% or above, and so on:

 public class IfElse {

public static void main(String[] args) {

 int testscore = 76;

 char grade;

 if (testscore >= 90) {

 grade = 'A';

 } else if (testscore >= 80) {

 grade = 'B';

 } else if (testscore >= 70) {

 grade = 'C';

 } else if (testscore >= 60) {

 grade = 'D';

 } else {

 grade = 'F';

 }

 System.out.println("Grade = " + grade);

 }

}

The output from this program is:

Grade = C

You may have noticed that the value of testscore can satisfy more than one of the expressions in the

compound if statement: 76 >= 70 and 76 >= 60. However, as the runtime system processes a

compound if statement such as this one, once a condition is satisfied, the appropriate statements are

executed (grade = 'C';), and control passes out of the if statement without evaluating the remaining

conditions

.

As another example, consider the following code on quadratic equation:

The general model for quadratic equations is ax
2
 + bx + c = 0, where a, b and c are the variables that

are used to determine the values of x; called the roots of the equation. Using the formula method

 -b d

X =

 2a

d = discriminant = b
2
 – 4ac

if d = 0, only one roots exists with value –b/2a

if d < 0, the roots are complex and if d >0, there are two real roots and the formula stated above is

used to compute the roots.

1. // program to compute the roots of a quadratic equation

2. import java.util.Scanner;

3. class quadratic {

4. public static void main(String[] args) {

5. Scanner input = new Scanner(System.in);

6. // getting the values of the coefficients a, b and c

7. System.out.println("Enter the value of a");

8. float a = input.nextFloat();

9. System.out.println("Enter the value of b");

10. float b = input.nextFloat();

11. System.out.println("Enter the value of c");

12. float c = input.nextFloat();

13.

14. //computing the discriminant d

46

15. double d = b*b - 4.0*a*c;

16.

17. // testing for the solution path

18. if (d<0) {

19. System.out.println("Complex roots pleas...");

20. }

21. else if (d = = 0) {

22. System.out.println("Only one real root exists

23. with value....");

24. double x =(-b)/(2*a);

25. System.out.println(x);

26. }

27. else {

28. double x1 = ((-b) + Math.sqrt(d))/(2*a);

29. double x2 = ((-b) - Math.sqrt(d))/(2*a);

30. System.out.println("Two real roots exists with

31. values...");

32. System.out.println(x1 + " and " + x2);

33. }

34.

35. System.out.println("Bye - Bye to the user");

36. System.exit(0);

37. }

38. }

The sample output is shown in the next figure

--------------------Configuration: <Default>--------------------

Enter the value of a

2

Enter the value of b

3

Enter the value of c

1

Two real roots exists with values...

-0.5 and -1.0

Bye - Bye to the user

5.4.2 The switch Statement

We use the switch statement to conditionally perform statements based on an integer expression.

The general syntax of a switch statement is:

 switch (expression) {

 case L1: statements; break;

 case L2: statements; break;

 case L3: statements; break;

 ……

 default: statements

 }

Note that:

1. The case labels L1 to Ln must be integers.

2. At the end of all statements for a case, a break statement is written. This is done to avoid the

unwarranted flowing of control to other cases when a particular case has been executed.

3. The default statement may not be necessary, but may be part of the switch statements.

47

4. The last case or default may not end with break statement since the control will automatically

passed out of the switch block when they are executed.

Following is a sample program, SwitchDemo that declares an integer named month whose value

supposedly represents the month in a date. The program displays the name of the month, based on the

value of month, using the switch statement:
public class SwitchDemo {

 public static void main(String[] args) {

 int month = 8;

 switch (month) {

case 1: System.out.println("January"); break;

case 2: System.out.println("February");break;

case 3: System.out.println("March"); break;

case 4: System.out.println("April"); break;

case 5: System.out.println("May"); break;

case 6: System.out.println("June"); break;

case 7: System.out.println("July"); break;

case 8: System.out.println("August"); break;

case 9: System.out.println("September"); break;

 case 10: System.out.println("October"); break;

case 11: System.out.println("November"); break;

case 12: System.out.println("December"); break;

 }

 }

 }

The switch statement evaluates its expression, in this case the value of month, and executes the

appropriate case statement. Thus, the output of the program is: August. Of course, you could

implement this by using an if statement:
int month = 8;

if (month == 1) {

 System.out.println("January");

} else if (month == 2) {

 System.out.println("February");

}

. . . // and so on

Deciding whether to use an if statement or a switch statement is a judgment call. You can decide

which to use, based on readability and other factors. An if statement can be used to make decisions

based on ranges of values or conditions, whereas a switch statement can make decisions based only on

a single integer value. Also, the value provided to each case statement must be unique. Another point

of interest in the switch statement is the break statement after each case. As explained earlier, each

break statement terminates the enclosing switch statement, and the flow of control continues with the

first statement following the switch block. The break statements are necessary because without them,

the case statements fall through. That is, without an explicit break, control will flow sequentially

through subsequent case statements. Following is an example, SwitchDemo2, which illustrates why it

might be useful to have case statements fall through:

 public class SwitchDemo2 {

 public static void main(String[] args) {

 int month = 2;

 int year = 2000;

 int numDays = 0;

 switch (month) {

 case 1:

 case 3:

 case 5:

 case 7:

 case 8:

javascript:var%20meth=openWin;%20meth('case');
javascript:var%20meth=openWin;%20meth('break');
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/example/SwitchDemo2.java

48

 case 10:

 case 12:

 numDays = 31;

 break;

 case 4:

 case 6:

 case 9:

 case 11:

 numDays = 30;

 break;

case 2:

 if (((year % 4 == 0) && !(year%100 == 0))

 || (year % 400 == 0))

 numDays = 29;

 else

 numDays = 28;

 break;

 }

 System.out.println("Number of Days = " + numDays);

 }

 }

The output from this program is:

Number of Days = 29

Technically, the final break is not required because flow would fall out of the switch statement

anyway. However, we recommend using a break for the last case statement just in case you need to

add more case statements at a later date. This makes modifying the code easier and less error-prone.

You will see break used to terminate loops in Branching Statements. Finally, you can use the default

statement at the end of the switch to handle all values that aren't explicitly handled by one of the case

statements.

int month = 8;

. . .

switch (month) {

case 1: System.out.println("January"); break;

case 2: System.out.println("February"); break;

case 3: System.out.println("March"); break;

case 4: System.out.println("April"); break;

case 5: System.out.println("May"); break;

case 6: System.out.println("June"); break;

case 7: System.out.println("July"); break;

case 8: System.out.println("August"); break;

case 9: System.out.println("September"); break;

case 10: System.out.println("October"); break;

case 11: System.out.println("November"); break;

case 12: System.out.println("December"); break;

default: System.out.println("Hey, that's not a valid month!"); break;

}

The following program gives a real-life application of the switch – case structure. The program

computes the area and pperimeters of some common plane shapes.

1. import java.util.Scanner;

2. class shapes {

3. public static void main(String[] args) {

4. Scanner input = new Scanner(System.in);

49

5. System.out.println("This program computes the area and

6. perimeter of plane shapes" + " \n Enter 1 for Rectangle

7. \n Enter 2 for Square \n Enter 3 for Circle \n Enter 4 for

8. Parallelogram" + "\n Enter 5 for Triangle \n Enter 6 to

9. exit the program \n\n Your Option here...");

10. int option = input.nextInt();

11. System.out.println();

12. switch (option) {

13. case 1: System.out.println("You have chosen

14. Rectangle");

15. System.out.println("Enter its length");

16. float l = input.nextFloat();

17. System.out.println("Enter its breadth");

18. float b = input.nextFloat();

19. double a = l * b;

20. double p = 2.0 *(l + b);

21. System.out.println("Area = "+ a +" Cm"+

22. "\nPerimeter = "+ p + " Cm-square");

23. System.out.println();

24. break;

25.

26. case 2: System.out.println("You have chosen

27. Square");

28. System.out.println("Enter its length");

29. l = input.nextFloat();

30. a = l * l;

31. p = 4.0 * l;

32. System.out.println("Area = "+ a +" Cm"+

33. "\nPerimeter = "+ p + " Cm-square");

34. System.out.println();

35. break;

36.

37. case 3: System.out.println("You have chosen

38. Circle");

39. System.out.println("Enter its radius ");

40. float r = input.nextFloat();

41. a = Math.PI * r * r;

42. p = 2.0 * Math.PI * r;

43. System.out.printf("Area = %.2f Cm

44. \nPerimeter = %.2f Cm-square", a ,p);

45. System.out.println();

46. break;

47.

48. case 4: System.out.println("You have chosen

49. Parallelogram");

50. System.out.println("Enter its Height");

51. float h = input.nextFloat();

52. System.out.println("Enter one of its slanting

53. parallel sides ");

54. l = input.nextFloat();

55. System.out.println("Enter its base");

56. b = input.nextFloat();

57. a = b * h;

58. p = (2.0 * l) + (2.0 * b);

59. System.out.println("Area = "+ a +" Cm"+

60. "\nPerimeter = "+ p + " Cm-square");

61. System.out.println();

62. break;

63.

64. case 5: System.out.println("You have chosen

50

65. Triangle");

66. System.out.println("Enter its height");

67. h = input.nextFloat();

68. System.out.println("Enter first slanting height

69. ");

70. float l1 = input.nextFloat();

71. System.out.println("Enter second slanting

72. height");

73. float l2 = input.nextFloat();

74. System.out.println("Enter its base");

75. b = input.nextFloat();

76. a = 0.5 * b * h;

77. p = l1 + l2 + b;

78. System.out.println("Area = "+ a +" Cm"+

79. "\nPerimeter = "+ p + " Cm-square");

80. System.out.println();

81. break;

82.

83. case 6: System.out.println("You have chosen to exit,

84. Thank you, Program stops...");

85. System.out.println();

86. System.exit(0); break;

87.

88. default: System.out.println("Wrong option chosen,

89. Program terminates... ");

90. System.out.println();

91. System.exit(0);

92. } //end switch

93. System.out.println();

94. System.out.println("Thanks for using this program,

95. Bye...");

96. System.out.println();

97. System.exit(0);

98. } // end method main

99. } // end class shapes

Sample Output:

-------------------Configuration: <Default>--------------------

This program computes the area and perimeter of plane shapes

 Enter 1 for Rectangle

 Enter 2 for Square

 Enter 3 for Circle

 Enter 4 for Parallelogram

 Enter 5 for Triangle

 Enter 6 to exit the program

 Your Option here...

2

You have chosen Square

Enter its length

6

Area = 36.0 Cm

Perimeter = 24.0 Cm-square

Thanks for using this program, Bye...

51

5.4.3 The for Statement

The for statement provides a compact way to iterate over a range of values. It is used when we know

ahead the number of times a section of code is to be repeated. It is a counter-controlled loop.

The general form of the for statement can be expressed like this:

for (initialization; termination/continuation criterion; increment) {

 statements;

 }

The initialization is an expression that initializes the loop. It is executed once at the beginning of the

loop. The termination/continuation criterion determines when to terminate the loop. It in essence

gives the conditions to continuing the loop until when the loop will terminate. This expression is

evaluated at the top of each iteration of the loop. When the expression evaluates to false, the loop

terminates. Finally, increment is an expression that gets invoked after each iteration through the loop.

All these components are optional. In fact, to write an infinite loop, you omit all three expressions:

for (; ;) {

 // infinite loop ...

}

The Demo program that follows adds the numbers from 1 to 10 and displays the result.

1. public class Demo {

2. public static void main(String[] args) {

3. int sum = 0;

4. for (int i = 1; i<= 10; i++) {

5. sum += i;

6. }// next i

7. System.out.println("Sum = " + sum);

8. }

9. }

The output from this program is: Sum = 55

Other Examples

To sum all odd numbers together from 1 to n

1. import java.util.Scanner;

2. public class number {

3. public static void main(String[] args) {

4. Scanner in = new Scanner(System.in);

5. System.out.println("Enter the maximum number to

6. compute");

7. int n = in.nextInt();

8. int sum = 0;

9. for (int i = 1; i<= n; i+=2) {

10. sum += i;

11. } //next i

12. System.out.println();

13. System.out.println("Sum of odd from 1 to " + n + " = " +

14. sum);

15. System.out.println();

16. }

17. }

52

Note: The increment is i += 2 or i = i + 2 and not i +2!

The sum is being used as an accumulator here and has to be initialized to 0. It accumulates all the

summations in the loop.

Note that you can declare a local variable within the initialization expression of a for loop. The scope

of this variable extends from its declaration to the end of the block governed by the for statement so it

can be used in the termination and increment expressions as well. If the variable that controls a for

loop is not needed outside of the loop, it's best to declare the variable in the initialization expression.

The names j, k, and i are often used to control for loops; declaring them within the for loop

initialization expression limits their life span and reduces errors.

Nested For-loops

In some cases, two or more for-loops can be nested with each other. In such cases, the innermost for-

loop will run faster than the outer one. This means that the innermost loop will have to run into

completion before the control is passed to the outermost loop.

The general syntax for two nested for-loops is:

for (i loop) {

 for (j loop) {

 S;

 } // next j

} // next i

Consider the example code below, which computes the times table from 1 to 10:

1. class times {

2. public static void main(String [] args) {

3. for (int i = 1; i <= 10; i++) { //outermost loop

4. for (int j = 1; j <= 10; j++) { //innermost loop

5. int Times = i * j;

6. System.out.print(“|” + Times + “\t”);

7. } // Ending Innermost loop

8. System.out.println(“………………………………………….”);

9. } //Ending outermost loop

10. } // End main

11. } //End class

Output next page ………………..

 TIMES TABLE

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

53

| 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20

--

| 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30

--

| 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40

--

| 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50

--

| 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60

--

| 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70

--

| 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80

--

| 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90

--

| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100

Explanation:
At the first entry of the two for-loops (lines 3 – 4), each of the loop invariants i and j have initial

values of 1 and 1 respectively. After the first iteration, the innermost j will have to increment to 2

while i still remain at 1. This is how the innermost loop will increment up to 10. At the end of the 10
th

iteration, then a line will be printed (Line 8) and then i now increment to 2, while j starts the

iterations again as before. Note the use of System.out.print in the innermost loop (Line 6), just to print

the results on a line; and the use of System.out.println (Line 8) in the outermost loop, just to move on

to next line.

As an exercise, implement a program to compute means of five experiments’ data with each

experiment repeated 3 times each.

5.4.4 The while and do-while Statements

while loop

We use a while statement to continually execute a block of statements while a condition remains true.

It is somehow regarded as a pre-conditional testing control. The general syntax of the while statement

is:
while (expression) {

 Statements;

}

First, the while statement evaluates expression, which must return a boolean value. If the expression

returns true, then the while statement executes the statement(s) associated with it. The while statement

continues testing the expression and executing its block until the expression returns false. In this wise,

we say a while loop is a pre-test looping mechanism, since it will first of all test the condition before

executing the loop. The control moves to the next statement after the while statements’ block when

the expression is no more valid and execution continues from there downwards.

Consider the following program segment that sums all numbers from 1 to 10.

int sum = 0;

int i = 1;

while (i <= 10) {

54

 sum += i;

 i++;

 }//end while

System.out.print(“Total sum of numbers from 1 to 10 = “ + sum);

The while first of all tests for value of i if it is less or equal to 10. If true, then the block of code for

while is executed and i is incremented in the block. The while will continue like this until the

condition i<=10 is no more valid. Then it will jump to the statement that follows the while block –

System.out.print(“Total sum of numbers from 1 to 10 = “ + sum);

Consider the following program, which continuously accepts some positive numbers until when a

negative number is entered. The negative number terminates the loop. Any data that is used to

terminate a loop like the negative number in this case is called a sentinel.

1. import javax.swing.*;

2. class summation {

3. public static void main(String[] args) {

4. int count = 0;

5. float sum = 0;

6. float data = Float.parseFloat (JOptionPane.showInputDialog

7. ("Enter first data"));

8. while (data > 0) {

9. count++;

10. sum += data;

11. data = Float.parseFloat(JOptionPane.showInputDialog(

12. "Enter next data"));

13. }//end while

14. JOptionPane.showMessageDialog(null, "Sum of " + count + "

15. data added is " + sum,"Results",

16. JOptionPane.INFORMATION_MESSAGE);

17. System.exit(0);

18. }

19. }

Exercise: Type the program into an editor and run the program for the following sets of data. Record

your observations.

(i) 5, 6, -5, 8, -9

(ii) –8, 8, -7

Answers: (i) 11 (ii) 0, Give reasons for these answers

do-while loop

The Java programming language provides another statement that is similar to the while statement-the

do-while statement. It is often regarded as a post-conditional testing control.

The general syntax of the do-while is:

do {

 statement(s)

} while (expression);

Instead of evaluating the expression at the top of the loop, do-while evaluates the expression at the

bottom. Thus the statements associated with a do-while are executed at least once. This structure is

post-conditional testing technique, just like Repeat-Until in some languages like Pascal. Consider the

program below which is the do – while version of the last program.

javascript:var%20meth=openWin;%20meth('do');

55

import javax.swing.*;

1. class summation1 {

2. public static void main(String[] args) {

3. int count = 0;

4. float sum = 0;

5. float data = Float.parseFloat(JOptionPane.

6. showInputDialog ("Enter first data"));

7. do {

8. count++;

9. sum += data;

10. float data = Float.parseFloat (JOptionPane.

11. showInputDialog ("Enter next data"));

12. } while (data > 0);

13. JOptionPane.showMessageDialog(null, "Sum of " + count

14. + " data added is " + sum,"Results",

15. JOptionPane.INFORMATION_MESSAGE);

16. System.exit(0);

17. }

18. }

Practical Exercise: Type the program into an editor and run the program for the following sets of

data. Record your observations.

(i) 5, 6, -5, 8, -9

(ii) –3,6,7,8,-1,8

(iii) –8, 8, 7

Answers: (i) 11 (ii) 18 (iii) infinite looping. Explain the reasons for these answers

5.4.5 Exception Handling Statements

The Java programming language provides a mechanism known as exceptions to help programs report

and handle errors. When an error occurs, the program throws an exception. What does this mean? It

means that the normal flow of the program is interrupted and that the runtime environment attempts to

find an exception handler--a block of code that can handle a particular type of error. The exception

handler can attempt to recover from the error or, if it determines that the error is unrecoverable,

provide a gentle exit from the program.

Three statements play a part in handling exceptions:

 The try statement identifies a block of statements within which an exception might be

thrown.

 The catch statement must be associated with a try statement and identifies a block of

statements that can handle a particular type of exception. The statements are executed if

an exception of a particular type occurs within the try block.

 The finally statement must be associated with a try statement and identifies a block of

statements that are executed regardless of whether or not an error occurs within the try

block.

Here's the general form of these statements:

try {

 statement(s)

} catch (exceptiontype name) {

 statement(s)

} finally {

 statement(s)

}

56

This has been a brief overview of the statements provided by the Java programming language used in

reporting and handling errors. However, other factors and considerations, such as the difference

between runtime and checked exceptions and the hierarchy of exceptions classes, which represent

various types of exceptions, play a role in using the exception mechanism.

5.4.6 Your First Encounter with Java Exceptions

If you have done any amount of Java programming at all, you have undoubtedly already encountered

exceptions. Your first encounter with Java exceptions was probably in the form of an error message from the

compiler like this one:

InputFile.java:11: Exception java.io.FileNotFoundException must be caught, or it must be declared in the

throws clause of this method.

in = new FileReader(filename);

 ^
This message indicates that the compiler found an exception that is not being handled. The Java language

requires that a method either catch all "checked" exceptions (those that are checked by the runtime system) or

specify that it can throw that type of exception.

5.4.7 Branching Statements

The Java programming language supports three branching statements:

 The break statement

 The continue statement

 The return statement

The break statement and the continue statement, which are covered next, can be used with or without

a label. A label is an identifier placed before a statement. The label is followed by a colon (:):

statementName: someJavaStatement;

You'll see an example of a label within the context of a program in the next section.

 The break Statement

The break statement has two forms: unlabeled and labeled. You saw the unlabeled form of the break

statement used with switch earlier. As noted there, an unlabeled break terminates the enclosing switch

statement, and flow of control transfers to the statement immediately following the switch. You can

also use the unlabeled form of the break statement to terminate a for, while, or do-while loop. The

following sample program, Breakdemo, contains a for loop that searches for a particular value within

an array:

1. public class BreakDemo {

2. public static void main(String[] args) {

3. int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076, 2000, 8, 622,

4. 127 };

5. int searchfor = 12;

6. int i = 0;

7. boolean foundIt = false;

8. for (; i < arrayOfInts.length; i++) {

9. if (arrayOfInts[i] == searchfor) {

10. foundIt = true;

11. break;
12. }

13. } //end for

14. if (foundIt) {

57

15. System.out.println("Found " + searchfor + " at index " + i);

16. } else { System.out.println(searchfor + "not in the array");

17. }

18. }

19. }

The break statement terminates the for loop when the value is found. The flow of control transfers to

the statement following the enclosing for, which is the print statement at the end of the program. The

output of this program is: Found 12 at index 4

The unlabeled form of the break statement is used to terminate the innermost switch, for, while, or do-

while; the labeled form terminates an outer statement, which is identified by the label specified in the

break statement. The following program, BreakWithlabelDemo, is similar to the previous one, but it

searches for a value in a two-dimensional array. Two nested for loops traverse the array. When the

value is found, a labeled break terminates the statement labeled search, which is the outer for loop:

1. public class BreakWithLabelDemo {

2. public static void main(String[] args) {

3. int[][] arrayOfInts = { { 32, 87, 3, 589 },

4. { 12, 1076, 2000, 8 },

5. { 622, 127, 77, 955 }

6. };

7. int searchfor = 12;

8. int i = 0;

9. int j = 0;

10. boolean foundIt = false;

11. search:
12. for (; i < arrayOfInts.length; i++) {

13. for (j = 0; j < arrayOfInts[i].length; j++) {

14. if (arrayOfInts[i][j] == searchfor) {

15. foundIt = true;

16. break search;

17. } // end if

18. } // next j

19. } // next i

20. if (foundIt) {

21. System.out.println("Found " + searchfor + " at " + i +

22. ", " + j);

23. } else {

24. System.out.println(searchfor + "not in the

25. array");

26. }

27. }

28. }

The output of this program is: Found 12 at 1, 0

This syntax can be a little confusing. The break statement terminates the labeled statement; it does not

transfer the flow of control to the label. The flow of control transfers to the statement immediately

following the labeled (terminated) statement.

 The Continue Statement

You use the continue statement to skip the current iteration of a for, while, or do-while loop. The

unlabeled form skips to the end of the innermost loop's body and evaluates the boolean expression that

controls the loop, basically skipping the remainder of this iteration of the loop. The following

program, ContinueDemo, steps through a string buffer checking each letter. If the current character is

58

not a p, the continue statement skips the rest of the loop and proceeds to the next character. If it is a p,

the program increments a counter, and converts the p to an uppercase letter.

1. public class ContinueDemo {

2. public static void main(String[] args) {

3. StringBuffer searchMe = new StringBuffer("peter

4. piper picked a peck of pickled

5. peppers");

6. int max = searchMe.length();

7. int numPs = 0;

8. for (int i = 0; i < max; i++) {

9. //interested only in p's

10. if (searchMe.charAt(i) != 'p')

11. continue;

12. //process p's

13. numPs++;

14. searchMe.setCharAt(i, 'P');

15. } //next i

16. System.out.println("Found " + numPs + " p's in

17. the string.");

18. System.out.println(searchMe);

19. }

20. }

Here is the output of this program:

 Found 9 p's in the string.

 Peter PiPer Picked a Peck of Pickled

 PePPers

The labeled form of the continue statement skips the current iteration of an outer loop marked with the

given label. The following example program, ContinueWithLabelDemo, uses nested loops to search

for a substring within another string. Two nested loops are required: one to iterate over the substring

and one to iterate over the string being searched. This program uses the labeled form of continue to

skip an iteration in the outer loop:

1. public class ContinueWithLabelDemo {

2. public static void main(String[] args) {

3. String searchMe = "Look for a substring in me";

4. String substring = "sub";

5. boolean foundIt = false;

6. int max = searchMe.length() - substring.length();

7. test:

8. for (int i = 0; i <= max; i++) {

9. int n = substring.length();

10. int j = i;

11. int k = 0;

12. while (n-- != 0) {

13. if (searchMe.charAt(j++) !=

14. substring.charAt(k++)) {

15. continue test;

16. } // end if

17. } // end while

18. foundIt = true;

19. break test;

20. } // end for

21. System.out.println(foundIt ? "Found it" : "Didn't find

22. it");

23. }

59

24. }

Here is the output from this program: Found it

Another example

Consider the following code, which writes and computes the sum of all prime numbers from 20 to

100.

1. public class prime {

2. public static void main(String[] args) {

3. int sum = 0, i, j;

4. L1: for (i = 20; i <= 100; i++) { // numbers from 20 to 100

5. for (j = 2; j < i; j++) {

6. if (i%j = = 0) // remainder of i by j from 2 to i – 1

7. continue L1;

8. }// Next j

9. System.out.print(i + "\t");

10. sum += i;

11. }// Next i

12. System.out.println("\n" + "Total sum of prime

13. numbers from 20 to 100 = " + sum);

14. }

15. }

Output:

If i is divided by j and the remainder equals zero (0) (Line 6), this means i is not prime. The continue

L1; statement (Line 4) makes the control to jump out of j – loop and go to for-loop labeled L1. The

current iteration of i is skipped; i is then incremented to the next value. This construct works like

GOTO statement found in other languages like FORTRAN. But it only works with nested loops.

5.4.8 The return Statement

The last of Java's branching statements is the return statement. You use return to exit from the current

method. The flow of control returns to the statement that follows the original method call. The return

statement has two forms: one that returns a value and one that doesn't. To return a value, simply put

the value (or an expression that calculates the value) after the return keyword:
 return ++count;

The data type of the value returned by return must match the type of the method's declared return

value. When a method is declared void, use the form of return that doesn't return a value: return;

Summary
In this chapter you have been introduced to the control structures in Java

programming. The ball is in your court. Start writing simple programs now so

that you become a Java ‘guru’

60

Post Test

1. A man borrows N3000 from a bank at an interest rate of 1.5% per month. He pays N250 at

the end of each month. The amount he owes (AM) at the end of the each month is calculated

thus:

 AM = P + (1.5 /100 * P) – 250

 Where P = the Principal amount left to be paid.

Write a program that will print the amount he owes each month and the number of months it

will take him to pay all the debt.

2. At Lever Brothers Nigeria Limited, each staff member is given a monthly basic salary

commensurate with his/her salary grade level. In addition, each staff is given 10% of basic

salary as Transport allowance, 15.5% of basic as Housing Allowance and N500 flat as meal

subsidy. Also, if a staff has spent over 10 years in the company, he/she is given 2% of his

basic salary as ‘long serving staff allowance’. Write a java program to implement the above

pay-roll policy, assuming 50 staff numbers in all.

3. There were twenty experimental set-ups in a Chemistry Laboratory. Each of the experiments

was repeated four times. Implement a program that captures the results from the experiments

and reports the mean values for each of the experiments. Hint: Use Nested for loops.

4. The are n stores in a big marketing company. Each of the stores has m departments. Each

department has daily sales per week. Write a program to compute the (i) total sales per week

for the company, (ii) total sales per week for each each of the stores and (iii) total sales per

week for each of the departments.

61

6 Java Arrays and Vectors

6.1 Introduction

In this chapter, you shall be introduced to the use use of arrays and how Java handles them. You are

advised to review the concept of loops especially for-loops in the previous chapter.

6.2 Objectives

At the end of this chapter, you should be able to

(i) know the meaning, types and uses of arrays in Java

(ii) declare and insert data into arrays in Java

6.3 Pre Test

(i) Briefly explain the algorithm to calculate the standard deviation of any three numbers.

(ii) How many variables would you need if you were to calculate the same standard

deviation for hundred numbers?

6.4 Main Content

6.4.1 What is an Array?

An array is a group of variables, all of the same data type that is referred to by a single name. The

values in the group occupy contiguous locations in the computer memory, i.e., the data are stored one

next to each other in the computer memory. Each element in the array is identified by the array name

and a subscript pointing to the particular location within the array.

We have two types of array – one (single) and multi-dimensional arrays. Let us explain the term

dimension before we go on to the lecture properly. Dimension has to do with the number of objects or

entities a data is related to. For instance, if we say the score of a particular student. In this case, the

score data is related to one entity - student. This is one dimensional array, usually depicted on a single

row vector. But if we now say the score of a particular student in a particular course. Then, the same

score data is related to a student and course. This is two-dimension in this case, usually depicted with

a table having rows and columns. We could go ahead to relate the same score to student, course and

session, making a three dimension of the score data. Another example is the rain volume in a

particular day. This is one dimension. Rain volume in a particular day in a particular week. This is

two-dimension. Now, rain volume in a particular day, in a particular week, in a particular month,

(making three-dimension), in a particular year, making four-dimension.

 The following is a logical representation of a single dimensional array in memory.

A(1) A(2) A(3) A(4) A(5)

A(1) to A(5) are subscripts or locations or indexes of the array A and they can contain any valid

values of the same data type. The individual cell or location in the array is also called a subscript.

Subscript A(1) could contain 56 as its data. So, we reference this 56 with the subscript number, A(1).

In Java, the elements are numbered with subscripts starting from 0, and can be referenced by their

number using the subscript operator [].

For example, the following depicts the scores of 5 students in a test.

62

SCORE

20 40 10 50 30

Subscript 0 SCORE[1] SCORE[4]

SCORE[0]

The name of the Array is SCORE, 20 is stored at subscript/index 0 and 30 is stored at

subscript 4

6.4.2 Types of Arrays

1. One dimensional array – with a single row or column

2. Two dimensional Array – with more than one row and column

3. Character Arrays

4. String arrays

6.4.3 Creating a One-dimensional Array

The general syntax for creating an array is:

element-type [] arrayName; // declares the array

arrayName = new element type[n] // allocates storage for n elements

As with single objects, both the declaration and allocation can be combined in a single declaration

with initialization as shown below:

element-type[] arrayName = new element-type[n]

element-type could be any of the primitive data type such as int, float, double, char etc.

Examples:
 float[] x; // declares x to be a reference to an array of floats

 x = new float[8]; // allocates an array of 8 floats, referenced by x

 boolean [] flags = new boolean[8];

 int [] score = new score[20];

6.4.4 Reading in Data into a One-dimensional Array

for-loop is commonly used to achieve this. The following code snippet reads in data into a one

dimensional array:

for (int i = 0; i < arrayName.length; i++) {

 float arrayName[i] = Float.parseFloat

 (JOptionPane.showInputDialog(“Enter data for subscript ” + (i+1)));

}

Comments: when i is 0, the pointer is at location 0 of the array. What would be printed on screen is

Enter data for subscript 1. Ideally it should be subscript 0, but we have done an arithmetic operation in

the string parameter in the JOptionPane, (i + 1). This is only done at the level of the user of the

program, who does not know anything about java zero-based indexing. Data entered at this point will

be assigned to location 0 of the array. The for loop will iterate until the length of the array has been

filled up. Note that the termination point of the loop should be 1 less than the total array length

because we are starting from subscript zero (i < arrayName.length). If we had used i <=

63

arrayName.length, then we would have commited an arrayOutOfBoundException error, i.e., we go

beyond the length of the array. The length function should not contain parenthesis, () as in the String

length function.

6.4.5 Summing all the Data in a One-dimensional Array

The following code snippet sums all the data in a one-dimensional array;

float sum = 0; //sum serves as an accumulator

for (int i = 0; i < arrayName.length; i++) {

sum += arrayName[i];

}

6.4.6 Reversing the elements of an array

Study the code below and explain the algorithm for reversing the elements of a one-dimensional

array.

1. import javax.swing.*;

2. class arrayReverse {

3. public static void main (String[] args) {

4. int n = Integer.parseInt(JOptionPane.showInputDialog

5. ("Enter the length of the array"));

6. int[] a = new int[n];

7.

8. // Reading Data into the Array a

9. for (int m = 0; m < n; m++)

10. a[m] = Integer.parseInt(JOptionPane.showInputDialog

11. ("Enter data"+ (m+1)));

12.

13. // printing the original array a

14. System.out.println("Original array\n");

15. for (int l = 0; l < n; l++)

16. System.out.print(a[l] + "\t");

17.

18. System.out.println("\n");

19.

20. // reversing the array a

21. int i = 0, j = n - 1;

22. while ((i != j)) {

23. int temp = a[i]; //swapping

24. a[i] = a[j];

25. a[j] = temp;

26. i++;

27. j--;

28. if (j < i)

29. break;

30. } // end while

31.

32. // Printing the array in reverse order

33. System.out.println("Reversed array \n");

34. for (int k = 0; k < n; k++)

35. System.out.print(a[k] + "\t");

36.

37. //Closing the program

38. System.out.println("\n");

39. System.exit(0);

40. }

41. }

64

Sample Output

6.4.7 Character Arrays

The element-type of character Array is char. The strings are nearly the same as the character array but

with little difference. The program below compares a string object with a char array.

Example:
class TestCharArrays {

 public static void main(String args[]) {

 String s = new String("ABCDEFG");

 char[] a = s.toCharArray();

 System.out.print("S = "+ s +" \t a =" + a + "\' ");

 System.out.print("s.length()=" + s.length()+"\t a.length = " + a.length);

 for (int i = 0; i < s.length(); i++)

 System.out.print("S. charAt("+i +") = " + s.charAt(i) + "\t a [" + i + "] ="

 + a[i]);

 }

}

The output is

s = “ABCDEFG” a =”ABCDEFG”

s.length() = 7 a. length = 7

s.charAt(0) = A a[0] = A

s.chartAt(1) = B a[1] = B

. .

. .

. .

s.chartAt(6) = G a[6] = G

Note that

 Arrays are zero-based indexing, i.e., the first element has index 0.

 s and a are reference variables.

 s refers to a string object while a refers to a char[] object

 Array objects have a public field named length which stores the number of elements in the

array. So the expression a.length is analogous to the invocation of s.length().

 An array of length n has index numbers from 0 to n-1.

 We can initialize an array explicitly with an initialization list : like this:

int [] c = {44, 88, 55, 33};

This single line is equivalent to the following six lines

65

 int [] c;

 c = new int [4];

 c[0] = 44;

 c[1] = 88;

 c[2] = 55;

 c[3] = 33;

6.4.8 Two-dimensional Arrays

A two-dimensional array looks like a matrix as shown below:

34 23 24
24 56 13
15 10 19

The following are therefore the features of a two-dimensional array

 It uses 2 subscripts; [row][column]

 It has grid of rows and columns, with the 1st subscript locating the row and the 2nd subscript

locating the column.

 Java sees a two-dimensional array as a big array containing small arrays. Each row forms an array

of the whole array.

For example,

 int [][] a = new int [7][9];

The above declares a two-dimensional array a of 7 rows and 9 columns. The row number is specified

first followed by the column number. To assign a value to a location in the array:

a[0][2] = 50;

assigns 50 to the element in row 0 column 2, (1st row, 3rd column)

6.4.8.1 Reading Data into a Two-dimensional Array

The following program snippet would achieve this:

for (int i = 0; i < a.length; i++) {

 for (int j = 0; j < a[i].length; j++) {

 System.out.println(“Enter data for subscript [“ + i + “,” + j + “]”);

float a[i][j] = input.nextFloat();

 }

 }

The snippet uses two nested for loops. The first i-loop moves round the rows while the inner j-loop

moves round the columns of the array. As you have been taught while learning nested for loop control

structure, the j-loop moves faster than the i-loop. This means that for each row i, the columns would

heve to be filled first before going to the next row. The row length is specified as a.length while the

column length is specified as a[i].length. Why the a[i].length for the column number? This is

because each row of a two-dimensional array is an array itself with its own length. As i increases, it

denotes the next row to operate on.

66

As an illustration, consider the following program

1. import javax.swing.*;

2. import java.text.DecimalFormat; // to format our output

3. class array2D {

4. public static void main(String[] args) {

5. float[][] score; //declaring a 2-dimensional array

6.

7. //Getting the number of rows and columns for the array

8. int r = Integer.parseInt(JOptionPane.showInputDialog

 ("Enter number of rows for the 2-dimensional

 array"));

9. int c= Integer.parseInt(JOptionPane.showInputDialog

 ("Enter number of columns for the 2-dimensional

 array"));

10. // Giving the array the number of rows and columns

11. score = new float[r][c];

12. float sum = 0;

13.

14. // Data capturing into the array

15. for (int i = 0; i < r; i++){ //Outer loop for rows

16. for (int j = 0; j < c; j++) { // Outer loop for columns

17. score[i][j] = Float.parseFloat(JOptionPane.

18. showInputDialog("Enter data for row" +

 (i + 1) + "and column" + (j + 1)));

19. sum += score[i][j]; //Accumulating data into sum

20. } //Ending innermost for loop

21. }//Ending outermost for loop

22. // Computing the average score for the whole data

23. double mean = sum/(r*c);

24. String output = "Average for all students = " + mean +

25. "\n";

26. // Computing the average score for each student

27. //Note the position of the initialized accumulator sum

28. for (int i = 0; i < r; i++) {

29. sum = 0;

30. for (int j = 0; j < c; j++) {

31. sum += score[i][j];

32. } //Ending innermost for loop for a row

33. double avg = sum/c;

34.

35. // rounding up avg to 2 places of decimals

36. DecimalFormat twoDigits = new DecimalFormat

37. ("0.00");

38. AvgRnd = twoDigits.format(avg);

39. output += "Average for student" +(i+1)+ " = " +

40. AvgRnd + "\n";

41. } //Ending outermost loop to process another row of data

42. //Printing the final result

43. JOptionPane.showMessageDialog(null, output,

44. "Results…", JOptionPane.INFORMATION_

45. MESSAGE);

46. System.exit(0);

47. } //Ending the main method

48. } // Ending the class array.

67

Sample Output Screen Shots:

Note:

(i) We use i<r and i<c in the for loops, instead of <= to avoid array out-of-bound-exception, i.e.

We don’t want to go beyond the array’s dimension, since java array indexing starts from zero.

Again, we try to use the conventional means of accessing array, not using the array.length

method.

(ii) To do any arithmetic computation inside a string, we need to put the expression inside a

bracket within the string. For instance, we have (i+1) inside the string of showInputDialog

and that of the output. Can you guess the reason why we use (i + 1) and (j + 1) instead of

ordinary i and j in the showInputDialog?

(iii) Note the effect of the DecimalFormat method. It is a powerful method from the Text class

which can be used to format our output to some number of decimal places in Java.

(iv) The two-dimensional array used in this program is assumed to contain scores of some

students in rows in some courses done in columns.

 Course1 Course2 Course3 Course4 Course5

(v) In computing the average score of each student, the accumulator sum is initialized to 0 and

placed in between the two for loops. Can you guess a reason for this? This is done so that

when the innermost for-loop is completed and average for that row of data computed and

reported, then the accumulator will be re-initialized back to zero for the next set of data for

45 67 90 76 45
60 69 59 40 47
79 58 60 32 57
56 34 70 36 49

Student1

Student2

Student3

Student4

68

another student. Otherwise, the previous value in the accumulator sum will be carried over to

the next set of iteration of the outermost for-loop.

Practical Exercise:
(i) Try to copy and execute the program and state your observations.

(ii) How would you modify the program above to compute the average for each column, that

is, average score per course?

A two dimensional array is actually an array of arrays. Each row is a separate array. Consider the

program below, which illustrates this point.

 Example:
 class test {

 public Static void main (String args[]) {

 int [][] a = new int [7][9];

 System.out.println (“a. length = ” + a.length);

 System.out.println (“a[0].lenth = ” + a[0].length;

 }

 }

Output

a.length = 7

a[0].length = 9

As an array, the object ‘a’ has length 7. That’s because it is really an array of 7 rows. The first of these

row arrays is a[0]; having length 9. Each row has 9 elements. We can also initialize a 2-dimensional

array like a 1-dimensional array. The only difference is that since it is an array of arrays; its

initialization list has to be a list of initialization lists. For example, consider the case of a ragged 2-

dimensional array below. Ragged because the lengths of its rows vary.

1. class test2 {

2. public static void main (String args[]) {

3. int [][] a = { { 77, 33, 88},

 {11, 55, 22, 99},

 {66, 44}

 };

4. for (int i = 0; i < a.length; i++) {

5. for (int j = 0; j< a[i].length; j++)

6. System.out.print (“\t” + a[i][j]);

7. System.out.println();

8. }

9. }

10. }

The output is

77 33 88

11 55 22 99

66 44

Note: The use of nested for loops, which is the standard way to process 2-dimensional arrays. The

outside loop is controlled by the row index i, and the inside loop is controlled by the column index j.

The row index i increments until it reaches a.length, which is 3 in this example. For each value of i,

the column index j increments until it reaches a[i].length, which in this example is 3 when i=0, 4 when

i = 1 and 2 when i = 2.

69

Processing 3-dimensional array is similar. Three nested for loops are used:

 for (int i = 0; i < a.length; i++){ // plane i

 for (int j = 0; j < a[i].length; j++) { // row j

 for (int k = 0; k < a[i][j].length; k++) { // column K.

 // process a[i][j][k] element

The element is analogous to a single letter on a line on a page in a book: a[i][j][k] would represent

character number k on line number j on page number i, a[i][j] would represent line number j on page

number i and a[i] would represent page number i. The number of characters on line j on page i would

be a[i][j].length and the number of lines on page i would be a[I].length. So, iteration of the first loop

would process page [i], iteration j of the second loop would process line a[i][j] and the iteration k of

the third loop would process character a[i][j][k].

Exercise: Multiplication of Matrices

Two matrices Amn and Bnp could be multiplied to produce the third matrix Cmp. The ijth element of C

is computed as follows:

 Cij = ∑
n
k=1 Aik Bkj for i = 1, …., m and j = 1, . . , p

The following algorithm may be used to solve this problem:

 for (i =1; i <= m; i++) {

 for (j =1; j < = p; j++) {

 C[i][j] = 0;

 for (k =1; k < = n; k++) {

 C[i][j] = C[i][j] + A[i][k] + C[k][j];

 }

 }

 }

Exercise: Translate this algorithm into a java code.

6.4.9 Sorting and Searching an Array – Intrinsic functions

Java provides a predefined sort method in its Application Programming Interface (API). The

Arrays.sort(arrayName) method could be invoked on a one-dimensional array in order to sort it in

ascending order. Note that java.util.* must be imported to your program before the method could be

used. Example program below illustrates the use of the method.

1. import javax.swing.*;

2. import java.util.*;

3. class array {

4. public static void main(String[] args) {

5. int n = Integer.parseInt(JOptionPane.show

6. InputDialog("Enter the size of the array"));

7. int [] a = new int[n];

8. for (int i = 0; i < a.length; i++)

9. a[i] = Integer.parseInt(JOptionPane.show

10. InputDialog("Enter data for column" + (i+1)));

11.

12. //printing original array

13. System.out.println("Original array data ..\n");

14. for (int i = 0; i < a.length; i++)

15. System.out.print("\t" + a[i]);

16. System.out.println();

17.

18. // Sorting the array using a predefined sort procedure

19. Arrays.sort(a);

70

20.

21. //Printing sorted array ..

22. System.out.println("Sorted array data ..\n");

23. for (int i = 0; i < a.length; i++)

24. System.out.print("\t" + a[i]);

25.

26. System.out.println();

27. System.exit(0);

28. }

29. }

Sample Output

Practical Exercise

The method, Arrays.sort(arrayName) can only sort an array in ascending order, implement a

program that will sort an array in descending order using bubble sorting algorithm or any other you

know.

Java also provides an intrinsic function to do a binary search on a linear array, using the
Arrays.binarySearch(ArryaName, x) function. The function can only work on sorted array and that is why we

need to firstly apply Arrays.sort(ArrayName) function to the array. The ArrayName is the name of the array we

are working with while x is the data we want to search on the array. The Arrays.binarySearch(A, x) function

returns 1 if the data (x) is found in the array and zero (0) otherwise. Examine this aspect critically in Lines 17 –

20 in the code below.

1. import java.util.*;

2. class binasearch {

3. public static void main(String args[]) {

4. Scanner inp = new Scanner(System.in);

5. System.out.println("Enter the length of the array");

6. int n = inp.nextInt();

7. int A[] = new int[n];

8. for (int i = 0; i < n; i++) {

9. System.out.println("Enter data "+ (i+1));

10. A[i] = inp.nextInt();

11. } // next i

12.

13. System.out.println("Enter data to search ");

14. int x = inp.nextInt();

15.

16. Arrays.sort(A);

17. if(Arrays.binarySearch(A, x) == 1)

18. System.out.println("Data found") ;

19. else

20. System.out.println("Data not found");

21. }

22. }

71

6.4.10 Java Vectors

Vectors are expandable and contractible array of objects. The size of a vector can change at will by

the programmer. Below are some of the operations that can be performed on vectors:

6.4.10.1 Declaring a Vector

The following simple line of code would create a vector for you:

 Vector v = new Vector();

Note that V in Vector is upper-case. This constructor creates a default vector containing no elements.

Two technical terms commonly used with vectors are size and capacity. The size of a vector is the

number of elements currently stored into it. Whereas the capacity of a vector is the amount of memory

allocated to hold elements, and it is always greater than or equal to the size.

To specify the capacity of a vector, we declare the vector as:

Vector v = new Vector (25);

This means the vector will support 25 elements. But vectors can be expanded! Therefore, for the

vector to accept more data, we will specify the factor of expansion. So we could declare the vector

like this:

Vector v = new Vector(25,5);

This vector has an initial size of 25 elements and expands in increments of 5 elements when more

than 25 elements are added to it. That means the vector jumps to 30 elements in size, and then 35, and

so on.

6.4.10.2 Accessing Elements in a Vector

Just like in arrays, we use the square brackets (“[]”) to achieve this operation in vectors.

72

6.4.10.3 Adding Elements to the Vector

We use the add() method to add an element to a vector. For example, the codes below shows how to

add some strings to the vector v:

v.add(“Akinola”);

v.add(“S. O.”);

v.add(“Ibadan”);

6.4.10.4 Retrieving the Last Element From a Vector

The following code will retrieve the last element added to the vector v:

String s = (String)v.lastElement();

So, s will be assigned ‘Ibadan’ at the end of the operation. Note the casting into String (the keyword

String is put into bracket) for the vector. This is because a vector is designed to work with the object

class.

6.4.10.5 Retrieving elements at a particular index from a Vector

The get() method helps us to do this:

String s1 = (String)v.get(0);

String s2 = (String)v.get(2);

Because vectors are zero-based in indexing, the first statement retrieves “Akinola” and the second

retrieves “Ibadan”.

6.4.10.6 Add and remove elements at a particular index

v.add(1, “Solomon”);

v.add(0, “Olalekan”);

v.remove (3);

The first statement inserts “Solomon” at index 1, between “Akinola” and “S. O.” strings. The second

statement inserts “Olalekan” at index 0, which happens to be the beginning of the vector. All existing

elements will be moved up to accommodate the new elements inserted in the appropriate positions.

The resulting vector will look like below:

 Olalekan

 Solomon

 Akinola

 S. O.

 Ibadan

The call to remove() at index 3 in line 3 will cause “S. O.” to be removed from the vector. Therefore,

the final list in the vector will now be:

 Olalekan

 Solomon

 Akinola

73

 Ibadan

Removing the element based on the element itself rather than on an index can be achieved via the

statement below:

v.removeElement(”S. O.”);

6.4.10.7 Overwriting elements at a particular index in a Vector

The following statement will change “Solomon” to “Olasunkanmi” in the vector v using the set()

method.

v.set(1, “Olasunkanmi”);

6.4.10.8 Deleting all elements from a Vector

Use the following code to clear all the elements from the vector v.

 v.clear();

6.4.10.9 Searching for a Particular Element in a Vector

For instance, to check if “Ade” is in the vector list, we write

boolean isThere = v.contains(“Ade”);

To find the index of a particular element, we write
int i = v.indexOf(“Akinola”);

The indexOf returns the position of “Akinola” in the vector if it is actually there, else it returns -1.

Post Test

1. Write a program segment to compute the average value of all data stored in even positions (2,

4, 6, …) inside a one-dimensional array, assuming data has been stored into the array initially.

2. (a) A linear search compares each element of an array with a search key. Write a java code

snippet that will return “found” with the index of an element if found in the array and “Not

found” otherwise.

(a) Extend the program in 5(a) to compute the sum of all data which are in even indexes (2,

4, 6…) in an array.

(b) Extend the program in 5(a) to reverse all the elements in the array; such that element in

the last index will now occupy the first index in that order.

Summary

In this Chapter, you have been introduced to the declarations

and use of arrays in Java. We were able to see that an array

can be used to manipulate a large set of related data that are of

same type and format.

74

7 Java Strings Manipulations

7.1 Introduction

A string is a sequence of characters. Words, sentences and names are strings. This chapter introduces

you manipulations of strings in Java programming language.

7.2 Objectives

At the end of the chapter, you should be able to

(i) Identify string objects and their functions

(ii) manipulate strings in your program

7.3 Pre Test
1. Give two examples of string.

2. How would you determine the length of the strings.

3. How would you reverse the strings

7.4 Main Content

7.4.1 The String Class

The simplest type of string in Java is an object of the string class and cannot be changed.

7.4.2 Operations on Strings

(1) Length of Strings: gives the total number of characters in a string. Consider the program

segment below:

 {

 String str = “I am now a student”;

 int strLength = str.length();

 System.out.println(“Length of the string given is is ” + strLength);

 }

Output: Length of the string given is is 18

Note that

(i) space is a character in a string.

(ii) the length method used in this case as different from that of the array. Length method in

strings has the opening and closing brackets as suffix, length(), i.e., it is a method

without any argument passed into it.

(2) Getting the Character at a Particular Point or Index. Note: Java starts its counting

from 0. Using the example above
String strPosition5 = str.charAt(5);

Solution here is letter n

(3) Getting the Index of a Character: The index of a character is the position of the

character in a string. Zero indexing must be observed. There are 18 characters in the string.

 String stringCharIndex = str.indexOf(‘m’); //solution, 3

75

(4) Getting the Hash code for a String

The hash code gives the unique integer value for a string. The number or code has no meaning

other than serving as a numeric label for the object. Hash values are used as storage locators

when the objects are stored in tables. Although each string object has one and only one hash

code, the same number may be the hash code for more than one object. This operation is

commonly used in compiler construction.

 String stringHashCode = str.hashCode();

(5) Getting Substrings

A substring is a string whose characters form a contiguous part of another string. The

Substring() method extracts substrings from strings. Two arguments are normally passed into

this method, the lower and upper indices. To get this method clear, we have to find the

difference between the two indices, say 8 – 4 = 4 as in the example below. This now means

that we are extracting a total of 4 characters starting from the lower index (4) upwards.

For example:

String str = “I am now a student”;

String substringFrom4to8 = str.substring(4,8);

Solution: now // note that a space is at the prefix of the string return

String substringFrom4to4 = str.substring(4,4);

Solution: nil

Note: The substring keyword must be in small case letters throughout.

(6) Changing Case of a String: Case has to do with small or bigletters such as a, A, b, B. We

can change all the characters in a string to either big or small letters.
String country = “NIGEria”;

String lower = country.toLowerCase();// solution: nigeria

String upper = country.toUpperCase(); //solution: NIGERIA

(7) Concatenation: We have dealt with this in our past examples. We use + symbol to

concatenate or join strings together. Java also use the concat method for this operation. For

example:
 String a1 = “I am coming ”;

 String b = “to you soon”;

 String c1 = a1 + b;

 String c2 = a1.concat(b);

solution: both c1 and c2 contain I am coming to you soon

(8) Searching for Characters in a String: We can search for a particular character in a

string. Also, we can look for other positions or indexes of the character in the string. Consider

the example below:

 String str = “Arise to sing a song”;

 // To get the first index of s

 int i = str.indexOf(‘s’);

 system.out.println(“First index of ‘s’: ” + i);

 //To get the next index of s

 int j = str.indexOf(‘s’, i + 1);

76

 system.out.println(“Next index of ‘s’: ” + j);

 int k = str.indexOf(‘s’, j + 1);

 system.out.println(“Next index of ‘s’:” + k);

 //To get the last index of s

 k = str.lastIndexOf(‘s’);

 system.out.println(“Last index of ‘s’:” + k);

(9) Replacing Characters in a String. Using the replace() method,we can substitute a

character with another character in a string. The example below illustrates this:

public class Replacing {

 public static void main (String[] args) {

 String inventor = “Charles Babbage”;

 system.out.println(inventor.replace(‘B’,’C’));

 }

} // Output: Charles Cabbage

(10) Converting Strings into Primitive Types:

The program below shows how to do arithmetic on numerical values that are embedded within a

string. Study, compile and execute this program and report your observations.

public class TextConversion {

 public static void main (String[] args) {

 String today = "Feb 18, 2009";

 String todaysDayString = today.substring(4,6);

 int todaysDayInt = Integer.parseInt(todaysDayString);

 int nextWeeksDayInt = todaysDayInt + 7;

 String nextWeek = today.substring(0,4) + nextWeeksDayInt +

 today.substring(6);

 System.out.println("Today’s date is" + today);

 System.out.println("Today’s day is" + todaysDayInt);

 System.out.println("Next week’s day is " +

 nextWeeksDayInt);

 System.out.println("Next week’s date is " + nextWeek);

 }

}

The Output:

 The parseInt() method (defined in the integer class) reads the two characters ‘1’ and ‘8’ from the

todaysDayString string, converts them to their equivalent numerical values 1 and 8, combines

them to form 18 and then returns that int value.

77

11. Comparing Strings Using the Methods equals, equalIgnoreCase, compareTo and

regionMatches

Consider the following segment

 String s1 = new String(“Akinola”);

 String s2 = “good day”;

 String s3 = “Happy Day”;

 String s4 = “happy day”;

If we wanted to test for equality, we could use the method equals. Method equals tests any two

objects for equality, that is, if the strings contained in the two objects are identical. The method

returns true if they were and false otherwise. This method uses a lexicographical comparison. The

integer Unicode values that represent each character in each string are compared. Thus the statement;

 if (s1.equals(“akinola”))

will return false. Note that java is case sensitive.

We use “==” operator to compare object references to determine whether they refer to the same

object; not whether two objects have the same contents. However, if we write the following code:

 if (s1 == “Akinola”), the condition will be true.

Method IgnoreCase ignores the case of the letters in each string. Thus, if we write the following code:

 if (s3.equalsIgnoreCase(s4))

the condition will be true since the cases of the letters does not matter in “Happy Day” and “happy

day” strings. This method is ideal for sorting strings.

Method compareTo returns zero (0) if the strings are equal, a negative number if the string that

invokes compareTo is less than the string that is passed as an argument and a positive number if

otherwise. That is, the invoking string is greater than the argument. The method uses a lexicographical

comparison to compare the numeric values of corresponding characters in each string. For instance,

the code:

 String output = s3.compareTo(s4);

returns a negative number to output. But s4.compareTo(s3) will return a positive number. Note that

method compareTo is case-sensitive. Consider the following code, which sorts words in a string in an

ascending order using a bubble sort technique. Method split() is used in the code to split a string into

tokens and converts the string into a string array. This is explained further in section 17 of this

chapter.

Sorting Words in a String

1. import javax.swing.*;

2. class str {

3. public static void main(String[] args) {

4. // The program accepts a string, converts the string into a string

5. //array Using the split method

6. // Sorts the string in ascending order

7.

78

8. // reading the string

9. String s =JOptionPane.showInputDialog("Enter a string of

10. any length");

11. System.out.println("\n The original string is \n\n" + s);

12.

13. // Splitting the string into a string array.

14. // Space is used as the token-separator in the string

15. String[] sArray = s.split(" ");

16.
17. // sorting with bubble sort technique, using the compareTo() method

18. for (int i = 0; i< sArray.length; i++) {

19. for (int j = (i + 1); j < sArray.length; j++) {

20. int k = sArray[i].compareTo(sArray[j]);
21. // compareTo() returns a negative, zero or positive integer
22. // if compareTo() returns a positive integer, swap the elements position

23. if (k > 0) {

24. String temp = sArray[i];

25. sArray[i] = sArray[j];

26. sArray[j] = temp;

27. } //end if

28. } // next j

29. } //next i

30.

31. //Printing sorted string

32. System.out.println("\n The sorted words in the string are\n");

33. for (int i = 0; i < sArray.length; i++)

34. System.out.println(sArray[i]);

35. System.exit(0);

36. }

37. }

Practical Exercise: Extend the above program to search for a particular word in a string.

Method regionMatches compares portions of two strings for equality. The first argument is the

starting index in the string that invokes the method. The second argument is a comparison string. The

third is the starting index in the comparison string and the last is the number of characters to compare

between the two strings. The method only returns true only if the specified number of characters are

lexicographically equal. For example,

String s3 = “Happy Day”;

String s4 = “happy day”;

if (s3.regionMatches(0, s4, 0, 5))

 output += “First 5 characters of s3 and s4 match\n”;

 else

 output += “First 5 characters of s3 and s4 do not match\n”;

79

Note that this method is case sensitive. In this case, the else path will be followed. However, if we

want to ignore cases, then the code would be written as follows:

if (s3.regionMatches(true, 0, s4, 0, 5))

 output += “First 5 characters of s3 and s4 match\n”;

 else

 output += “First 5 characters of s3 and s4 do not match\n”;

In this case, the first five characters in the two strings matches.

12. Other Comparison Methods – startsWith and endsWith

Just as the words indicate, the methods test if a string starts or ends with some sets of

characters. We could specify the position or index where we want to start the comparison on the

strings. Consider the following code segments:
1. public class str{

2. public static void main(String[] args) {

3. String strings[] = {"Akin", "Akinola", "Akintola", "Akinsola"};

4. String output = " ";

5.

6. for (int k = 0; k< strings.length; k++)

7. if (strings[k].startsWith("Ak"))

8. output += strings[k] + " starts with Ak\n";

9.

10. // test method startsWith starting from a position

11. for (int k = 0; k < strings.length; k++)

12. if (strings[k].startsWith("ol", 5))

13. output += strings[k] + " starts with ol at position 5 \n";

14.

15. // test method endsWith

16. for (int k = 0; k < strings.length; k++)

17. if (strings[k].endsWith("la"))

18. output += strings[k] + " ends with la\n" ;

19.

20. System.out.print(output);

21. }

22. }

Output

Akin starts with Ak

Akinola starts with Ak

Akintola starts with Ak

Akinsola starts with Ak

Akintola starts with ol at position 5

Akinsola starts with ol at position 5

Akinola ends with la

Akintola ends with la

Akinsola ends with la

13. Reversing a String

Characters in a string can be reversed and printed in the reverse order. This is a way of data

encryption. A counting down for-loop could be used to achieve this. For example,

 public class sR {

 public static void main(String[] args) {

80

 String string = "My name is Akinola";

 for (int i = string.length()-1; i>=0; i--)

 System.out.print(string.charAt(i));

 }

 }

 Output
alonikA si eman yM

14. Trimming a String: The trim() method is normally used to remove leading or trailing

white spaces before and after a string. For example:

 String s1 = “ Akinola “;

 String s2 = s1.trim()

// no more spaces before and after Akinola

15. Converting a String into an Array using toCharArray() method

The code below creates a new character array ontaining a copy of the characters in string s1

and assigns a reference to variable charArray.

String s1 = new String(“welcome”);

//conversion to character array

char charArray[] = s1.toCharArray();

// to access characters in the charArray, we need to go by the way of array.

for(int j = 0; j < charArray.length; ++j)

 System.out.println(charArray[j]);

16. String Tokenizer: StringTokenizer class is a class from package java.util, which breaks a

string into its component tokens. Tokens are individual words and punctuations, each of

which conveys meaning to a reader of a sentence. Tokens are separated from one another by

delimiters, such as space, tab, new line and carriage return. This class would be useful in

compiler’s tokenization. Compilers breaks up statements into individual pieces like keywords,

identifiers, operators and other elements of a programming language. The following program

illustrates string tokenization in Java.

Consider this small code:
1. import java.util.*;

2. import javax.swing.*;

3. class Tokenizer {

4. public static void main (String[] args){
5. String str = JOptionPane.showInputDialog("Enter the string");

6. StringTokenizer tokens = new StringTokenizer(str);

7. System.out.println(tokens.countTokens()+"Tokens");

8. String [] words = new String[tokens.countTokens()];

9. while (tokens.hasMoreTokens()){ // Print the tokens

10. System.out.println(tokens.nextToken());

11. } // end while

12. }

13. }

Output

81

17. String Splitting

Split() is a method that can be used to split a string into its constituent words and then stored them

into a string array. The parameter to be passed into the split() will be the delimiter used to separate

the words in the string, for example, space. Examine the code below, which is another way of

implementing a tokenizer. The program also counts the number of occurrence of the word ‘the’ in the

string given.

Using Split() method
1. import javax.swing.*;

2. class str {

3. public static void main(String[] args) {

4. // The program accepts a string, converts the string into a

5. //string array Using the split method

6. // prints the words / tokens in the string and finally checks for

7. //how many times 'the' occurs in the string

8.

9. // reading the string

10. String s =JOptionPane.showInputDialog("Enter a string of

11. any length");

12. System.out.println("\n The original string is \n\n" + s);

13.

14. // Splitting the string into a string array.

15. // Space is used as the token-separator in the string

16. String[] sArray = s.split(" ");

17.

18. //Printing out the length of the string array

19. System.out.println("Number of words in the array is "+

20. sArray.length);

21. //Printing out the tokens

22. System.out.println("\n The tokens in the array

23. subscripts\n");

24. for (int i = 0; i < sArray.length; i++)

25. System.out.println(sArray[i]);

26.

27. //Checking for 'the' occurrence

82

28. int count = 0;

29. for (int i = 0; i < sArray.length; i++) {

30. if (sArray[i].equalsIgnoreCase("the"))

31. count++;

32. } // next i

33.

34. System.out.println("\nTotal number oof times 'the'

35. occurs in the string is " + count);

36.

37. System.exit(0);

38. }

39. }

Sample Output

In the above code, space was used to separate the tokens in the string. Sometimes we may want to use

a comma separated string in which comma (,) will be used to separate the tokens in the string. We

only need to change the split() argument to comma, such as

 String[] sArray = s.split(",");

 The sorting code is re-run here but with a comma separated tokens. Only the output is shown here.

83

18. StringBuffer Objects: normally used for string objects that need to be changed. Consider

the example below, which creates only one object, buf, which is then modified several times using

concatenation operator and the append() method:

public class TextAppending {

 public static void main (String[] args) {

 StringBuffer buf = new StringBuffer(10);

 buf.append(“It was”);

 System.out.println(“Initial string is:“ + buf);

 buf.append(“the best”);

 System.out.println(“Final string is: “ + buf);

 }

}

Output:
Initial string is: It was

Final string is: It was the best

19. Replacing StringBuffer Objects. Using the simple program above, write another line of

code after the last line as:
 buf.SetCharAt(1,”s”);

System.out.println(“Replaced statement is:“ + buf);

Output: Is was the best

Practical Example: Palindrome

A palindrome is a string that can be spelt same way forwards and backwards. The algorithm for a

palindrome is stated here.

1. Two indexes i, and j are set at the extreme ends of the string respectively, Line 7 in the code

 below.

 This is a string

i j

5. Index i is incremented by 1 to the right while index j is decremented by 1 to the left (Lines 9-13).

6. The Characters they are pointing to are compared. If they are the same, step number 2 is repeated

to other set of characters in the string (Line 9).

84

7. If at any point, the characters being pointed to by the indexes differs, the program reports that the

string is not a palindrome (Lines 15-18). But when the two indexes meet on a character, the string

is a palindrome (Line 22).

Here is a palindrome program that checks if a string is spelt same way forwards and backwards:

1. import javax.swing.JOptionPane;

2. class palind {

3. public static void main(String[] args) {

4. String a = JOptionPane.showInputDialog("This program

5. checks if a string is a palindrome, \n Enter any

6. string of your choice: ");

7. boolean stop = false;

8. int i = 0, j = a.length()-1;

9. while (i < a.length()) {

10. if (a.charAt(i) == a.charAt(j)) {

11. i++;

12. j--;

13. stop = true;

14. continue;

15. } // end if

16. else {

17. System.out.println(a + " is not a

18. palindrome");

19. break;

20. } // end else

21.

22. }// end while

23. if (stop = = true) {

24. System.out.println(a + " is a palindrome");

25. } //end if

26. System.out.println("Good bye to palindrome user");

27. }// end main

28. }//end class

Sample Output

85

A more efficient code is shown below

1. import javax.swing.*;

2. class palindrome{

3. public static void main(String[]args){

4. String str = JOptionPane.showInputDialog("Enter sting to

5. check");

6. int lengthstr = str.length();

7.

8. String reverse = "";

9. for (int i=lengthstr-1;i >= 0 ;i--)

10. reverse += str.charAt(i);

11.

12. if (str.equalsIgnoreCase(reverse))

13. JOptionPane.showMessageDialog(null,"String

14. "+str+" is a palindrome");

15. else

16. JOptionPane.showMessageDialog(null,"String

17. "+str+" is not palindrome");

18. }

19. }

86

Explain how this above code achieves the principle of palindrome.

Post Test

1. Consider the following program

 segment/snippet:

 String univer = “My School is very good”;

 String Uni = “my school is very Good”;

 Write Java snippets to:

a. Get the total length of the string univer.

b. Compare if the two strings are equal, not minding letter cases.

c. Print out only “University is good” from univer

d. Reverse the string Uni

e. Get the last index of ‘s’from the string univer

2. Write a program in Java that reads a line of text from the keyboard and displays it on the

screen one word per line as well as writing on the screen the number of words in the text. The

text contains letters and blanks only.

Summary

The chapter has introduced you to strings and their

manipulations in Java. Strings are very useful in Text mining

and especially in Bioinformatics. Find out about these

applications.

87

8 Java Methods

8.1 Introduction

In this chapter, you will be introduced to the concept of modularity in Java, i.e. how Java handles

subprograms or program modules. This is usually achieved by the use of “methods”; referred to as

functions and procedures in some other languages.

8.2 Objectives

At the end of this chapter, you should be able to

(i) understand how programs could be broken down into modules or functions

(ii) know how to program functions (methods) in Java

8.3 Pre Test

Assuming you are interested in capturing some number of data, compute their sum, mean and

standard deviation, state all the possible modules you may break the program into.

8.4 Main Content

8.4.1 What is a Method?

Methods are techniques employed for breaking large programs into small functional modules. It is

popularly called functions in some languages. These modules in java are called methods and classes.

There are some built-in methods and classes such as mathematical calculations, string manipulation,

error checking, etc. Methods are written to define specific tasks that may be used at any points in a

program.

A method is invoked by a method call. A method call is characterized by its name and the information

(arguments) that the called method need to do its task. When the method call completes, the method

either returns a result to the calling method (or caller) or simply returns control to the calling method.

We can then infer from this fact that the caller is not interested in the way the called method will

perform the job given to it and the called method can also call another method to do some job for it. In

the following assignment statements;

Y = Math.sqrt(x);

Y = Integer.parseInt(x);

Math.sqrt and Integer.parseInt are the method names and x is the argument in the above arithmetic

expressions.

Methods in Java could be programmer-declared or prepackaged. The prepackaged methods are

available in the Java Application Programming Interface Java API or Java Class Library. The java

API provides a rich collection of classes that contain methods for performing common mathematical

calculations, string manipulations, character manipulations, input/output operations, error checking

and many other useful operations. Methods allow the programmer to modularize a program by

separating its task into self-contained functional units. The actual statements implementing the

methods are written only once and are hidden from other methods.

88

8.4.2 Advantages of Using Methods in Programs

(1) Program manageability: Methods and classes in java make

program development more manageable.

(2) Software reusability: Using existing methods and classes as building blocks to create new

programs is one of the today’s programming paradigms. We create programs from standardized

methods and classes rather than by building customized codes. For example, in earlier

programs, we did not have to define how to convert strings to integers and floating-point

numbers; Java provides these capabilities in class Integer (static method parseInt) and class

Double (static method parseDouble), respectively.

(3) Reduction in code repetition: Repeating codes in programs is highly reduced using methods.

Packaging code as a method allows a program to execute that code from several locations in a

program simply by calling the method.

(4) Ease of program maintenance and debugging: Methods make programs easier to debug and

maintain.

Note:

(i) To promote software reusability, each method should be limited to performing a single, well-

defined task, and the name of the method should express that task effectively.

(ii) A method should usually be no longer than one printed page. Better yet, a method should usually

be no longer than half a printed page. Regardless of how long a method is, it should perform one

task well. Small methods promote software reusability.

8.4.3 The Math-Class Methods

The table below summarizes some of the predefined methods in the Math class:

Method Description Example

abs(x) Absolute value of x abs(23.7) = 23.7,

abs(-20.5) = 20.5

ceil(x) Rounds x to the smallest integer

not less than x

ceil(9.2) = 10.0

ceil(-9.8) = -9.0

cos(x) Cosine of x (x is in radians) cos(0.0) = 1.0

exp(x) Exponential method e
x
 exp(1.0) = 2.71828

floor(x) Rounds x to the largest integer not

greater than x

floor(9.2) = 9.0

floor(-9.8) = -10.0

log(x) Natural logarithm of x, (base e) log(Math.E) = 1.0

max(x,y) Larger value of x and y max(2.3, 12.7) = 12.7

max(-2.3, -12.3 = -2.3

min(x,y) Smaller value of x and y min(2.3, 12.7) = 2.3

pow(x,y) X raised to the power of y (X
y
) pow(2.0, 3.0)= 2

3
 = 8

sin(x) Sine of x (x is in radians) sin(0.0) = 0

sqrt(x) Square root of x sqrt(900.0) = 30

tan(x) Tangent of x, (x is in radians) tan(0.0) = 0

To use any of the above-predefined methods, we need to append Math as subscript to them. For

instance, we could write xSqrt = Math.sqrt(x-y);

Class Math also declares two commonly used mathematical constants: Math.PI and Math.E. The

constant Math.PI (3.14159…) of class Math is the ratio of a circle’s circumference to its diameter.

The constant Math.E (2.71828…) is the base value for natural logarithms.

89

8.4.4 Writing Your Own Methods

The general format of a method declaration is that we firstly write the method header, which is the

first line. Following the method header, declarations and statements in braces form the method body,

which is a block. Variables can be declared in any block and blocks can be nested, but a method

cannot be declared inside another method. The basic format of a method declaration is

 return-value-type method-name(para1, para2,…. paraN) {

 Declarations and statements

 }

Note para means parameter.

The method-name is any valid identifier. The return-value-type is the type of the result returned by the

method to the caller (int, char, double, …). Methods can return at most one value.

The parameters are declared in a comma-separated list enclosed in parentheses that declares each

parameter’s type and name. There must be one argument in the method call for each parameter in the

method declaration. Also, each argument must be compatible with the type of the corresponding

parameter. For example, a parameter of type double can receive values of 8.56, 67 or –0.89567, but

not “year” (because a string cannot be implicitly converted to a double variable). If a method does not

accept any arguments, the parameter list is empty (i.e., the name of the method is followed by an

empty set of parentheses). Parameters are sometimes called formal parameters.

There must be a one-on-one correspondence between the arguments in the method call and the

parameter list in the method. For example, if we have the following in the method call avg(a,b,c), then

x, y, and z will represent a, b, c, respectively in the following method declaration

static double avg(float x, float y, float z) {

Parameters x, y and z in the method avg are sometimes called the dummy arguments or formal

parameters, simply because they are placeholders for the real and / or actual parameters or arguments

that are coming from the method call. There is no hard and fast rule about whether the parameters in

the method call and that of the method are the same. But for good programming principle, we always

use different nomenclatures (names) for them. What this means is that float x, float y, float z in the

method could as well be written as float a, float b, float c.

There are two major ways of passing parameters into methods/functions in a program. When the

actual values of variables are passed into a method, this is called parameter passing by value. Any

changes on this data do not affect the original data. Parameter passing by reference is a two-way

communication process. Usually the address of a variable is passed into a method and any changes

made on the variable affects the original value of the variable in wherever it is located in memory.

Array address passing is an example.

There are three ways of returning control to the statement that calls a method.

 If the method does not return a result, control returns when the program flow reaches the

method’s ending right brace;

 Or when the statement

return;

 is executed; and

 If the method returns a result, the statement

return expression;

 evaluates the expression, then returns the resulting value to the

 caller.

90

When a return statement executes, control returns immediately to the statement that called the

method. Below is an example to illustrate programmer-defined methods.

Example 1: A Method that Returns the Cube of an Integer

public class TestCube {

 public static void main(String[] args) {

 for (int i = 0; i < 6; i++)

 System.out.println(i + “\t” + Cube(i));

 }

 static int Cube(int n) {

 return n * n * n;

 }

 }

Output

0 0

1 1

2 8

3 27

4 64

5 125

Note: Method Cube is invoked from the println method, with argument i, which represents the current

value of i in the for-loop. Method call is Cube(i).

8.4.5 Where Can We Place Our Methods?

Methods could be placed at the end of the main method as was done in Example 1 above. That is,

after we might have written all the codes for the main(String[] args) method.

Alternatively, we could write all our methods just after the declaration of the class header. Example 2

below illustrates this.

Example 2: Methods that return the sum, mean and maximum of 2 numbers

1. import javax.swing.*;

2. class sumMeanMax {

3. // method to sum the two numbers

4. static int sum(int a, int b) {

5. return a + b;

6. }

7.

8. // method to find the average of the two numbers

9. static double mean(int a, int b) {

10. // add, declared below is a local variable, local to this method

11. int add = sum(a,b); // calling the sum method

12. double avg = add/2.0;

13. return avg;

14. }

15.

16. // method that returns the maximum of the two numbers

17. static int maxim(int a, int b) {

18. if (a > b)

19. return a;

20. else

91

21. return b;

22. }// end method maxim

23.

24. // The main method

25. public static void main(String[] args) {

26. int x = Integer.parseInt(JOptionPane.showInputDialog("

27. Enter the first number", "x = "));

28. int y = Integer.parseInt(JOptionPane.showInputDialog

29. ("Enter the second number", "y = "));

30. String output = "Summation = " + sum(x,y) + "\n" +

31. "Average = " + mean(x,y) + "\n" + "Maximum = " +

32. maxim(x,y);

33. JOptionPane.showMessageDialog(null,output,"Methods

34. Demo...", JOptionPane.INFORMATION_MESSAGE);

35. System.exit(0);

36. } // End main

37. } // End class

Sample Output:

Note: Methods can call another method if it will need the method. An example is illustrated in the

method mean above, repeated below:

8. // method to find the average of the two numbers

9. static double mean(int a, int b) {

10. // add, declared below is a local variable, local to this method

11. int add = sum(a,b); // calling the sum method

12. double avg = add/2.0;

13. return avg;

14. }

Also, a local variable has its scope only within the method that declares it. An attempt to reference

add, which is declared in the mean method in another method will produce an error. Refer to Section

2.9 for further knowledge on this.

Exercise: Rewrite the Maxim method for any three numbers using the Math.max method.

92

Example: Program that computes the factorial of n, method fac assumes that the factorial of any

numbers less or equal to 1 is zero.

1. import javax.swing.JOptionPane;

2. class factorial {

3. // The Factorial Method

4. static long fac(int n) {

5. if (n <= 1)

6. return 1;

7. long f = 1;

8. for (int i = n; i >= 2; i--)

9. f = f*i;

10. return f;

11. }

12.

13. // Method Main

14. public static void main(String[] args) {

15. int n = Integer.parseInt(JOptionPane.showInputDialog

16. ("Enter the value of n"));

17. long fact = fac(n); // fact declared as long precision data

18. JOptionPane.showMessageDialog(null, "Factorial of " + n

19. + " = " + fact, "Result",

20. JOptionPane.INFORMATION_MESSAGE);

21. System.exit(0);

22. }

23. }

Exercise: Extend the above program to compute the combination of n and r, (nCr).

8.4.6 Passing Arrays into Methods

To pass an array argument to a method, specify the name of the array without any brackets. For

example, if array score is declared as

int [] score = new int[5];

then the method call

 swap(score);

passes a reference to array score to method swap. In Java, every array object “knows” its own length

(via the length field). Thus, when we pass an array object into a method, we do not need to pass the

length of the array as an additional argument.

Although entire arrays and objects referred to by individual elements of reference-type are passed by

reference, individual array elements of primitive types are passed by value exactly as simple variables

93

are. To pass an array element to a method, use the indexed name of the array as an argument in the

method call.

For a method to receive an array through a method call, the method’s parameter list must specify an

array parameter (or several if more than one array is to be received). For example, the method header

for method arrayMean below is written as

 static double arrayMean(int a[])

indicating that arrayMean expects to receive an integer array in parameter a. Since arrays are passed

by reference, when the called method uses the array name a, it refers to the actual array (named a) in

the calling method.

Example: The program below passes an array into a method and computes the mean value in the

array

1. import javax.swing.*;

2. class arrayMethod {

3. //method to compute the mean value in the array

4. static double arrayMean(int a[]) { // Entire array passed

5. double sum = 0;

6. for(int i = 0; i < a.length; i++){

7. sum += a[i];

8. } // next i

9.

10. double mean = (double)sum/a.length;

11. return mean;

12. } // end method arrayMean

13.

14. //Main program

15. public static void main (String[] args) {

16. // declaring the length of the array

17. int n = Integer.parseInt(JOptionPane.showInputDialog

18. ("Enter the length of the array"));

19. int[] a = new int[n];

20. // Reading Data into the Array a

21. for (int m = 0; m < n; m++)

22. a[m] = Integer.parseInt(JOptionPane.showInputDialog

23. ("Enter data"+ (m+1)));

24.

25. // printing the original array a

26. System.out.println("Original array elements\n");

27. for (int l = 0; l < n; l++)

28. System.out.print(a[l] + "\t");

29.

30. System.out.println("\n");

31.

32. //Calling the sum method to compute the mean in the array
33. System.out.printf("Mean of the array data is %.3f \n\n\n",

34. arrayMean(a));

35.

36. //Closing the program

37. System.exit(0);

38. }

39. }

Sample Output:

94

8.4.7 Random Number Generation

Random numbers are popular with simulation experiment and game playing applications. Random

method is part of the Math Class, which could be invoked and used in programs.

Math method random generates a random double value in the range from 0.0 up to, but not including,

1.0. The values returned by random are actually pseudo-random numbers – a sequence of values

produced by a complex mathematical calculation. The calculation uses the current system time to

“seed” the random number generator such that each execution of a program yields a different

sequence of random values. For example, the code:

 double randomVal = Math.random();

will assign a double random number to randomVal.

Since the values of random numbers we need in most applications would be in integers, then, we need

to type-cast the values returned by the generator. We also need to specify the initial and final values of

numbers we want.

This manipulation is called scaling the range of values produced by Math method random. For

example, to produce integers from 0 to 5, we could write:
 (int)(Math.random() * 6)

The number 6 in the expression is called the scaling factor. The integer cast operator (int), truncates

the floating point part (the part after the decimal point) of each value produced by the expression. The

shifting value that specifies the initial value in the desired set of random numbers should also be

stated; else, zero (0) is assumed as in the above code. Thus we have the following formula holding for

random numbers:

number = shiftingValue + (int)(Math.random() * scaling factor);

For example, for a die rolling, we could write

 int dieFace = 1 +(int)(Math.random() * 6);

which will assign an integer random value to dieFace.

A complete program is illustrated below, which generates 20 random numbers from 1 to 6.

95

Example: 20 random numbers from 1 to 6, printing 5 data per line.

1. import javax.swing.*;

2. public class RandomDie {

3. public static void main(String[] args) {

4. String output = " "; // for appending results

5. for (int i = 1; i <= 20; i++) {

6.

7. //Generates random integers from 1 to 6

8. int value = 1 +(int)(Math.random() * 6);

9.

10. output += value + " "; //append value to output

11.

12. // if i is divisible by 5, append new line to output

13. if (i % 5 = = 0)

14. output += "\n";

15. } //end for-loop

16.

17. JOptionPane.showMessageDialog(null, output, "20 Random

18. numbers from 1 to 6", JOptionPane.INFORMATION_

19. MESSAGE);

20. System.exit(0);

21. } // end main method

22. } //end class

Output:

Practical Exercise: Copy this code into your editor, compile and execute this program.

8.4.8 Void Methods

If a method would only receive data but will not return any value to any other method, that method is

void in nature. And if a method has a void return type, control returns at the method-ending right

brace or by executing the statement:

 return;

Consider the Fibonacci series: 0, 1, 1, 2, 3, 5, 8, 13, 21, ….

The series begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum

of the previous two Fibonacci numbers. The ratio of successive Fibonacci numbers converges on a

constant value 1.618, a number called the golden ratio or golden mean. The Fibonacci model equation

is given as:

Fibonacci(0) = 0

Fibonacci(1) = 1

Fibonacci(n) = Fibonacci(n – 1) + Fibonacci(n – 2)

96

The implementation below uses an array. It assumes that the Fibonacci numbers are kept in an array

with the 0 and 1 in the first two indexes or locations representing the Fibonacci values of 0 and 1

respectively. The subsequent Fibonacci numbers are computed based on the general formula

presented above. That is, the Fibonacci of 3 will be the sum of Fibonacci at location [3 – 1] and

location [3 – 2], which are locations 2 and 1 respectively.

The Fibonacci program
1. import javax.swing.*;

2. class fibonacci {

3. // the void method

4. static void fibn(int a) {

5. int[] fib = new int[a];

6. fib[0] = 0;

7. fib[1] = 1;

8. for (int i = 2; i<a; i++)

9. fib[i] = fib[i-1] + fib[i-2];

10.

11. for (int i = 0; i < fib.length; i++)

12. System.out.println("Fib[" + i + "] = " + fib[i]);

13. }// end method fibn

14. // the main method …

15. public static void main(String[] args) {

16. int n = Integer.parseInt(JOptionPane.showInputDialog

17. ("Enter the terminating point for n: "));

18. fibn(n); // calling the void method fibn

19. }

20. }

Output:

Fib[0] = 0

Fib[1] = 1

Fib[2] = 1

Fib[3] = 2

Fib[4] = 3

Fib[5] = 5

Fib[6] = 8

Fib[7] = 13

Fib[8] = 21

Fib[9] = 34

Note that the method fibn is just called at the main method without assigning it to any variable or

object; since it is not going to return a value to anywhere.

97

8.4.9 Recursive Methods

The example methods we have discussed so far are structured as methods that can call each other in a

disciplined, hierarchical manner. However, a method can call itself in a number of times. A recursive

method is one that calls itself either directly or indirectly through another method.

In recursion, the problems being solved are similar in nature and their solutions too are similar. When

a recursive method is called to solve a problem, the method could actually solve the simplest case or

base case. If the method is called with a base case, the method returns a result. However, if the

method is called with a complex problem, it divides the problem into two conceptual pieces: a piece

that the method knows how to solve (the base case) and a piece that the method does not know how to

solve. The latter piece must resemble the original problem but be a slightly simpler or slightly smaller

version of it. Because this new problem looks like the original problem, the method calls a fresh copy

of itself to work on the small problem. This procedure is called a recursive call or recursion step. The

recursion step must include a return statement because its result will be combined with the portion of

the problem the method knew how to solve to form a result that will passed back to the original caller.

The recursion step executes while the original call has not finished executing. As a matter of fact,

there could be many recursion calls, as the method divides each new subproblem into two conceptual

pieces.

Example 1: Recursive Factorial
public long fac (int n) {

 // Base case

 if (n <= 1)

 return 1;

 //Recursive step

 else

 return n * fac(n – 1);

 } // End method fac

Example 2: Recursive Fibonacci Series
public long fib (int n) {

 if (n == 0 || n == 1)

 return n; // Base case

 else

 return fib(n – 1) + fib(n – 2); // Recursive step

 } // End method fib

Comparing Recursion and Iteration

 Both iteration and recursion are based on a control statement: iteration uses a repetition control

(for, while or do- while); recursion uses a selection control (if, if – else or switch).

 Both involve repetition: Iteration explicitly uses a repetition statement, recursion achieves

repetition through repeated method calls.

 Both involve a termination test: Iteration terminates when the loop continuation condition fails.

Recursion terminates when a base case is recognized.

 Iteration with counter-controlled repetition and recursion, each gradually approach termination:

iteration keeps modifying a counter until the counter assumes a value that makes the loop

continuation condition fail, recursion keeps producing simpler versions of the original problem

until the base case is reached.

 Both can occur infinitely: an infinite loop occurs with iteration if the loop continuation test

never becomes false. Infinite recursion occurs if the recursion step does not reduce the problem

each time in a manner that converges on the base case.

98

 Demerits of recursion: it repeatedly invokes the mechanism, and consequently, the overhead,

of method calls. This repetition can be expensive in terms of both processor time and memory

space. Each recursive call causes another copy of the method (actually, only the method’s

variables) to be created; this set of copies can consume considerable memory space. Iteration

occurs within a method, so repeated method calls and extra memory assignment are avoided.

Therefore, there is no need of choosing recursion (Deitel and Deitel, 2007).

Post Test

1. Write a function in Java that could accept an integer denoting a year and returns true or false

according to whether the year is a leap year or not.

2. Write a function in Java that accepts two dates in a year and computes the number of days

between them. State the conditions under which the function may work properly (regarding

the ordering of input to the function).

3. Write a recursive Java method to return the factorial of a number, n.

4. Using the concept of java methods, write a java program that solves the combination problem,

i.e. nCr. What advantages can you infer from using method in this program?

Summary
This chapter has introduced you to the use of methods in a Java

program. Methods are like functions and procedures in the

procedural languges. They are used to break a program into

functional modules. Methods enhances program manageability

and usability.

99

9 Principles of Object-Oriented Programming with Java

9.1 Introduction

This chapter is an introduction to object-based programming. In this chapter, we shall be introduced to

the techniques involved in developing our own objects and classes in Java programming language.

9.2 Objectives

At the end of this chapter, you should be able to

(i) understand the key principles of object-oriented programming

(ii) design and implement object-based programs in Java

9.3 Pre Test

1. What are the major components of an object?

2. Explain what you understand by the term classes and objects

3. Draw a UML class diagram for Class Customer having name, address, and quantity-needed as

attributes

9.4 Main Content

9.4.1 Concept of Object Oriented Programming

An object-oriented program will usually contain different types of objects, each type corresponding to

a particular kind of complex data to be managed or perhaps to a real-world object or concept such as a

bank account, a hockey player, or a bulldozer. A program might well contain multiple copies of each

type of object, one for each of the real-world objects the program is dealing with. For instance, there

could be one bank account object for each real-world account at a particular bank. Each copy of the

bank account object would be alike in the methods it offers for manipulating or reading its data, but

the data inside each object would differ reflecting the different history of each account.

Objects can be thought of as wrapping their data within a set of functions designed to ensure that the

data are used appropriately, and to assist in that use. The object's methods will typically include

checks and safeguards that are specific to the types of data the object contains. An object can also

offer simple-to-use, standardized methods for performing particular operations on its data, while

concealing the specifics of how those tasks are accomplished. In this way alterations can be made to

the internal structure or methods of an object without requiring that the rest of the program be

modified. This approach can also be used to offer standardized methods across different types of

objects. As an example, several different types of objects might offer print methods. Each type of

object might implement that print method in a different way, reflecting the different kinds of data each

contains, but all the different print methods might be called in the same standardized manner from

elsewhere in the program. These features become especially useful when more than one programmer

is contributing code to a project or when the goal is to reuse code between projects.

An object-oriented program may thus be viewed as a collection of interacting objects, as opposed to

the conventional model, in which a program is seen as a list of tasks (subroutines) to perform. In

OOP, each object is capable of receiving messages, processing data, and sending messages to other

objects. Each object can be viewed as an independent "machine" with a distinct role or responsibility.

The actions (or "methods") on these objects are closely associated with the object. For example, OOP

data structures tend to "carry their own operators around with them" (or at least "inherit" them from a

similar object or class) - except when they have to be serialized.

100

9.4.2 OOP languages

Simula (1967) is generally accepted as the first language to have the primary features of an object-

oriented language. It was created for making simulation programs, in which what came to be called

objects were the most important information representation. Smalltalk (1972 to 1980) is arguably the

canonical example, and the one with which much of the theory of object-oriented programming was

developed. Concerning the degree of object orientation, following distinction can be made:

 Languages called "pure" OO languages, because everything in them is treated consistently as an

object, from primitives such as characters and punctuation, all the way up to whole classes,

prototypes, blocks, modules, etc. They were designed specifically to facilitate, even enforce, OO

methods. Examples: Scala, Smalltalk, Eiffel, JADE, Emerald.

 Languages designed mainly for OO programming, but with some procedural elements. Examples:

C++, Java, C#, VB.NET, Python.

 Languages that are historically procedural languages, but have been extended with some OO

features. Examples: Visual Basic (derived from BASIC), FORTRAN 2003, Perl, COBOL 2002,

PHP, ABAP.

 Languages with most of the features of objects (classes, methods, inheritance, reusability), but in

a distinctly original form. Examples: Oberon (Oberon-1 or Oberon-2) and Common Lisp.

 Languages with abstract data type support, but not all features of object-orientation, sometimes

called object-based languages. Examples: Modula-2 (with excellent encapsulation and

information hiding), Pliant, CLU.

9.4.3 Java Classes

A java program has one or more files that contain java classes, one of which is public, containing a

method named main(). For instance,
public static void main(String[] args) {

 Statements;

}

A class is usually described as the template or blueprint from which the object is actually made. When

you create an object from a class, you “create an instance” of the class. Consider the example below:

fruits mango = new fruits();

The new operator creates a new instance of the fruits class.

An object is characterized by its ‘state’ and ‘behaviour’. The object’s data is its state, and the method

used in manipulating those that data is its behaviour.

In essence, Object Oriented Programming (OOP) means writing programs that define classes whose

method carry out the program’s instructions. OOP programs are designed by deciding first what

classes will be needed and then defining methods for those classes that solve the problem. Java classes

are similar to types (int, short), but three essential characteristics of classes that distinguish them from

Java types are:

 They are or can be user/programmer’s defined

 Class objects can contain variables, including references to other objects.

 Classes can contain methods that give their objects the ability to act.

Just as Java type specifies the range of values e.g. (-32767 to 32767 for short) that variables of that

type can have, a java class specifies the range of values that objects of that class can have.

101

Classes can be (and in Java always are) built on other classes. Therefore, a class that builds on another

class ‘extends’ it. Java comes with ‘base class’ from which all other classes are built.

When a base class is extended, the new class has all the properties and methods of its parent. We then

choose whether to modify or simply keep any method of the parents or supply new methods that apply

to the child class only. This concept of extending a base class is called ‘inheritance’.

9.4.4 Relationships between classes:

The relationships between different classes could be

 Use

 Containment (“has –a”)

 Inheritance (“Is-a”)

A class uses another class if it manipulates objects of that class. Generally class A uses class B if

 a method of A sends a message to an objects of class B

 or

 a method of A creates, receives or returns objects of class B

Containment is a special case of use; if object A contains objects B, then at least one method of class

A will make use of that object of class B.

If class A extends class B, class A inherits methods from class B, but has more capabilities.

9.4.5 Building Your Own Classes

The syntax for a class in Java is:

accessSpecifier class NameOfClass {

// definitions of the class’s features

// includes methods and instance fields

}

The classes do not (and often cannot) stand alone: they are the building blocks for constructing or

building stand-alone programs.

Essentially, there are three aspects to consider when we are writing our own classes.

(i) The class fields, which are the private variables to be declared and used in the class,

(ii) The class constructor, which is a special method/function that will be used to instantiate

the class, and

(iii) Other methods that will be used to manipulate the private data in the class.

102

Consider the following example, which is an Account class, depicted in the class diagram below, that

might be used by a business in writing a simple customer accounting system:

Example Class code: The Account Class

1. class Account {

2. // instance variables or class fields

3. String custName;

4. double balance;

5.

6. // constructor

7. public Account(String name, double bal) {

8. custName = name;

9. balance = bal;

10. }

11.

12. // method to compute new balance after deposit

13. public void deposit(double dep) {

14. balance += dep;

15. }

16.

17. // method to get balance

18. public double getBalance() {

19. return balance;

20. }

21.

22. // method to get the customer’s name

23. public String getName() {

24. return custName;

25. }

26. // method to compute new balance after withdrawal

27. public void withdraw(double out) {

28. balance -= out;

29. }

30. } // end class Account

1. // Program to test the class

2. public class AccountTest {

3. public static void main(String[] args) {

4. //Instantiating the Account class

5. Account acc = new Account(“Akinola S.O.”, 500);

6. String name;

7. double bal;

8. name = acc.getName();

9. bal = acc.getBalance();

10. System.out.println(“Account for “ + name + “has balance

Account

custName: String

 balance : double

Account ()
deposit()
getBalance()
getName()
withdraw ()

103

11. =N=” + bal);

12. acc.deposit(800);

13. bal = acc.getBalance();

14. System.out.println(“New Account balance after deposit

15. for “ + name + “is =N=” + bal);

16. acc.withdraw(1000);

17. bal = acc.getBalance();

18. System.out.println(“New Account balance after withdraw

19. for “ + name + “is =N=” + bal);

20. }

21. }

Sample Output from this Program is shown next:

Note: To run this program,

(i) The class Account and its tester AccountTest.Java need to be in one file and saved as

AccountTest.Java since this is the one having the main method. Actually, both the two might

also be compiled separately with their class names.

(ii) On compilation, two classes will be created; AccountTest.class and Account.class

(iii) On Executing or running the code, java byte code interpreter starts running the code in the

main method in the AccountTest class. This code in turn creates some new Account objects

and shows us their states.

Now, let us analyze this Account class.

1. The class has five methods with headers:

public Account(String name, double bal)

 public void deposit(double dep)

 public double getBalance()

 public String getName()

 public void withdraw(double out)

The word public here is called Access modifier discussed soon. These modifiers always specify who

can use the method or the class. In this case public means that any method in any class that has access

to an instance of the Account class can call the method.

104

2. There are two instance fields, holding data in the Account class:

 String custName;

 double balance;

Normally, private keyword is used as access modifier for instance fields. That is, we could declare the

instance filed like:

private String custName;

private keyword means that no outside agency can access the instance fields except through the

methods of our class. Using public keyword or not specifying anything as in the Account class for the

instance fields does not matter but ruins encapsulation.

3. The Class Constructor

Classes can have three kinds of members: fields, methods and constructors.

 A field is a variable that is declared as a member of a class. Its type may be any of the eight

primitive data types - boolean, char, byte, short, int, long, float, double) or a reference to an

object.

 A Method is a function that is used to perform some action for instances of the class.

 A constructor is a special function/method whose only purpose is to create the class’s objects.

This is called instantiating the class, and the objects are called instances of the class.

The constructor in our Account class is:

7. // constructor

8. public Account(String name, double bal) {

9. custName = name;

10. balance = bal;

11. }

This constructor is used to initialize objects of the class -giving the instance variables the initial state

you want them to have.

For example, in creating an instance of the class with code

Account acc = new Account(“Akinola S.O.”, 500);

We set the instance fields, as follows

custName = “Akinola S.O”;

balance = 500;

We could see that the new method is always used together with a constructor to create an object of the

class. This forces us to set the initial state of our objects either explicitly or implicitly. An object

created without a correct initialization is useless and occasionally dangerous. It can cause a general

memory protection fault (GPF), i.e. memory corruption.

105

9.4.6 Properties of Constructors

The following are the general properties of constructors

1. A constructor has the same name as the class itself.

2. A constructor may take one or more (or none) parameters.

3. A constructor is always called with the new keyword.

4. A constructor returns no value.

Q. Differentiate constructors from ordinary methods

Every class has at least one constructor to instantiate it. For a class without one, the compiler will

automatically declare one with no arguments. This is called a default constructor. A default

constructor has no arguments. Java provides this type of constructor if we design a class with no

constructor. The default constructor sets all the instance variables to their default values. All numeric

data contained in the instance fields would be zeroed out, all booleans would be false and all object

variables would point to null.

We can overload a constructor or a method. That is, different constructors/methods with the same

signature. We shall see example of this later. Also, it is possible to have more than one constructor in

a class.

Summarily, a constructor is a member function of a class that is used to create objects of that class.

This has the same name as the class itself, has no return type and is invoked using the new operator. A

method is an ordinary member function of a class. It has its own name, a return type (which may be

void) and is invoked using the dot operator. For example, double y = Math.pow(a,b)

9.4.7 Caution About Constructor

We must not introduce local variables with the same names as the instance fields. For example, the

following constructor will not set the balance.

public Account (String name, double bal) {

 custName = name;

 double balance = bal; // Error, variable balance redeclared

}

The last line declares a local variable ‘balance’ (with double appended as data type beside it) that is

only accessible inside the constructor. This shadows the instance field ‘balance’.

Again we must be careful in all of our methods that we don’t use variable names that equal the names

for instance fields.

9.4.8 The Methods of the Account Class
These four methods are just like ordinary methods we know. However, all these methods have access

to the private instance fields by name. This is because instance fields are always accessible by the

methods of their own class.

106

For example,

public void deposit (double dep) {

 balance += dep;

}

sets a new value for the balance instance field in the object that executes this method. That is,

increasing it by value of dep.

Note: This method does not return a value. For example, the call

 Acc.deposit(1000);

will make initial deposit to be increased by 1000.

Every method declared within a class has two arguments passed to it: one is implicit and will not

appear in the method’s parenthesis and the other(s) is/are explicitly declared in the parenthesis. For

instance, the implicit argument to the deposit method is the object of type Account, which does not

appear in the method declaration. The explicit argument -double dep, is listed in the method

declaration.

Other methods in the account class are like ordinary methods we know. Some of the methods may

have empty argument list, that is, no data is passed into them. The idea is that they make use of the

instantiating field values already passed into the constructor of the class. These type of methods are

normally used to return values to the object’s references.

Any method that will get argument data from outside object referencing the class will be declared as

void, meaning that it will not return a value outside. The data values passed into these type of methods

are normally used to manipulate the instantiating fields, or class variables.

9.4.9 Using the Class

In order to make use of this class in programs, the Account class will be called or referenced like we

have in arrays:

Account acc = new Account (“Akinola S. O.”, 500)

Compared to an array:

 int array[] = new int(5);

acc is a new object we are creating from the Account class. The parameters (“Akinola S. O.”, 500) are

the initial data we are sending to the class to instantiate the class.

We could reference any of the methods of the class via the object we create from it. For example,

acc.getName() means we are referencing the method, getName from the class, which will in turn

return the name of the account holder, Akinola S. O., passed as instantiating data to the class. The

next examples illustrate further on creating objects and classes

1. //The Rectangle class
2. class Rectangle {

3. // instance variables

4. private double width;

5. private double height;

6. // constructor

7.

8. public Rectangle (double h, double w) {

9. height = h;

10. width = w;

11. }

107

12. // method to return the area of the rectangle

13. public double area() {

14. return height * width;

15. }

16. // method to return the height of the rectangle

17. public double getHeight() {

18. return height;

19. }

20. // method to return the width of the rectangle

21. public double getWidth() {

22. return width;

23. }

24. // method to return the perimeter of the rectangle

25. public double perimeter() {

26. return 2 * (height * width);

27. }

28. }

// Main program to test the Rectangle class

1. public class RectangleTest {

2. public static void main(String [] args) {

3. Rectangle myRectangle = new Rectangle(1.5, 4);

4. double height, width, area, perimeter;

5. height = myRectangle.getHeight();

6. width = myRectangle.getWidth();

7. area = myRectangle.area();

8. perimeter = myRectangle.perimeter();

9. System.out.println(“The rectangle’s height is “ + height);

10. System.out.println(“The rectangle’s width is “ + width);

11. System.out.println(“The rectangle’s area is “ + area);

12. System.out.println(“The rectangle’s perimeter is “ + perimeter);

13. }

14. }

Sample Output:

9.4.10 Classes without Explicit Constructor

We could define a class without an explicit constructor. Just as was mentioned earlier, in this type of

class, the compiler will automatically declare one with no arguments. This is called a default

constructor. A default constructor has no arguments. The default constructor sets all the instance

108

variables to their default values. All numeric data contained in the instance fields would be set to zero,

all booleans would be false and all object variables would point to null. Consider the example below:

Example: The person Class, with default constructor

3. class Person {

4.

5. //instance variables

6. private String familyName = “I don’t have a name yet”;

7. private String givenName = “No name here either!”;

8. private int yearOfBirth;

9.

10. //method to return the family name

11. public String getFamilyName() {

12. return familyName;

13. }

14.

15. //method to return the given name

16. public String getGivenName() {

17. return givenName;

18. }

19.

20. //method to return the year of Birth

21. public int getYearOfBirth() {

22. return yearOfBirth;

23. }

24.

25. // method to give a value to the family name

26. public void setFamilyName(String name) {

27. familyName = name;

28. }

29.

30. // method to give a value to the given name

31. public void setGivenName(String name) {

32. givenName = name;

33. }

34.

35. // method to give a value to the year of birth

36. public void setYearOfBirth(int year) {

37. yearOfBirth = year;

38. }

39. } // end class

1. // main program to test the person class

2. public class PersonTest {

3. public static void main(String [] args) {

4. Person theLecturer = new Person();

5. String temp;

6. int year;

7. temp = theLecturer.getFamilyName();

8. System.out.println(“The Lecturer’s family name is “

9. + temp);

10. theLecturer.setFamilyName(“Akinola”);

11. temp = theLecturer.getFamilyName();

12. System.out.println(“The Lecturer’s family name is “

13. + temp);

14. temp = theLecturer.getGivenName();

15. System.out.println(“The Lecturer’s given name is “ +

16. temp);

17. theLecturer.setGivenName(“Olalekan”);

18. temp = theLecturer.getGivenName();

109

19. System.out.println(“The Lecturer’s given name is “ +

20. temp);

21. year = theLecturer.getYearOfBirth();

22. System.out.println(“The Lecturer’s year of birth is “ +

23. year);

24. theLecturer.setYearOfBirth(1990);

25. year = theLecturer.getYearOfBirth();

26. System.out.println(“The Lecturer’s year of birth is “ +

27. year);

28. }

29. }

Note that in this type of class with default constructor:

(i) When we are creating the new object theLecturer from the class Person, we did not pass any

instantiating value into the invocation.

 Person theLecturer = new Person();

This shows that we want to use a default constructor for our class. We could initialize the

class instantiating fields to whatever we want, or we just declare them without initialization.

6. //instance variables

7. private String familyName = “I don’t have a name yet”;

8. private String givenName = “No name here either!”;

9. private int yearOfBirth;

The first two fields are initialized while the third is not. But by default, yearOfBirth being of integer

data type will be automatically set to zero as we mentioned before that all numeric fields will be set

zero by default constructor.

(ii) The class has some other methods, which are used to give initial values to the class fields. For

example,

 // method to give a value to the year of birth

 public void setYearOfBirth(int year) {

 yearOfBirth = year;

110

 }

(iv) Any attempt for us to reference the class methods without first of all set values to the class

fields would mean that the values returned by the methods will be default values as set by the

default constructor itself. For instance, consider the code:

temp = theLecturer.getFamilyName();

 System.out.println(“The Lecturer’s family name is “ + temp);

This method getFamilyName() returns: The Lecturer’s family name is I don’t have a name yet

This happens to be the value given to the familyName field initially.

 private String familyName = “I don’t have a name yet”;

But when we set the field with a value:

theLecturer.setFamilyName(“Akinola”);

temp = theLecturer.getFamilyName();

System.out.println(“The Lecturer’s family name is “ + temp);

Then the method returns:

The Lecturer’s family name is Akinola.

9.4.11 The Life Cycle of an Object

Once an object has completed the work for which it was created, it is garbage-collected and its

resources are recycled for use by other objects. This may be likened to garbage collection with

pointers in C, C
++

 and Pascal languages.

9.4.12 The Scope of a Class

All instance variables and methods in a class belong to the class scope. Within a class’s scope, class

members are immediately accessible to all of that class’s methods and can be referenced simply by

name. Variables defined in a method belong to that method and are ‘local’ to it. Such variables are

said to have block scope.

The class members that could be accessed by other objects (i.e., public members) can be accessed off

a “handle” (i.e. primitive data type members can be referred to by

objectReferenceName.primitiveVariableName

 and object members can be referenced by

objectReferenceName.objectMemberName.

If a method defines a variable with the same name as a variable with class scope (i.e. an instance

variable), the class-scope variable is hidden by the method-scope variable in the method scope. A

hidden instance variable can be accessed in the method by preceding its name with the keyword ‘this’

and the dot operator, as in this.x. The ‘this’ reference is implicitly used to refer to both the instance

variables and methods of an object. Java uses ‘this’ keyword that the proper object is referenced

when a method of a class references another member of that class for a specific object of that class.

With this, each object has access to a reference to itself - called the “this reference”.

111

For example,
 class Arith {

private int a, b;

// constructor

public Arith (int a, int b) {

 this.a = a;

 this.b = b;

 }

Note: In a method in which a method parameter has the same name as one of the class members, use

‘this’ explicitly if you want to access the class member, otherwise you will incorrectly reference the

method parameters.

Essentially, in a method, the keyword ‘this’ refers to the object on which the method operates. For

example, many java classes have a method called “toString()” that returns a string describing the

object. If you pass any object to the System.out.println method, that method invokes the ‘toString()’

method on the object and prints the resulting string. Therefore, we can print out the current state of the

implicit argument of any method as System.out.println(this). This is a useful strategy for debugging.

The ‘this’ keyword also has another meaning. If the first statement of a constructor has the form

this(…), then the constructor calls another constructor of the same class. For example,

 class customer (String n) {

 this(n, Account.getNewNumber();

{

public customer (String n, int a) {

 name = n,

 accountNumber = a;

}

…

…

…

}

A call, like new customer(“Akinola S.O”) invokes the customer(String n), which in turn calls the

customer(String n, int a) constructor.

As an example, consider the following example with default constructor. The program demonstrates

that methods in the same class can call each other and that both the class and the tester program for

the class could be in one monolithic file.

The class firstly computes the customer’s payment before discount. Then it computes the discount to

be given to a customer based on the number of quantities bought from the store. If the quantity bought

is 20 and above then a 20% discount is given to the customer, if it is between 10 to 19, a 5% discount

is given. If the quantity is between 6 to 9, discount is 2% and if it is between 1 to 5, 0.5% discount is

given on the initial payment. Finally, the program computes the net pay after discount.

Example:

1. import javax.swing.JOptionPane;

2. class sales {

3. // class fields

4. private int q;

5. private double p;

6.

7. // using default constructor

8. // method to return the Initial pay before discount

9. public double ip() { // ip means initial pay value

10. return p * q;

112

11. }

12.

13. // method to return the discount

14. public double d() {

15. double disc; // A local variable declared

16. if (q >= 20)

17. disc = 10.0/100.0 * ip(); //ip() method called

18. else if (q>= 10)

19. disc = 5.0/100.0 * ip();

20. else if (q >=6)

21. disc = 2.0/100.0 * ip();

22. else if (q >= 1)

23. disc = 0.5/100.0 * ip();

24. else

25. disc = 0;

26. return disc;

27. } // end method d()

28.

29. // Method to return the net pay after discount

30. public double np() {

31. return ip() - d(); // the two methods up are called

32. }

33.

34. // method to set the unit price p

35. public void setP(double x) {

36. this.p = x; //keyword ‘this’ explained recently

37. }

38.

39. // method to set the quantity q

40. public void setQ(int y) {

41. this.q = y;

42. }

43.

44. // The main program begins…

45. public static void main(String[] args) {

46. sales market = new sales(); // calling the default

47. //constructor with no arguments

48.

49. int q = Integer.parseInt (JOptionPane.showInputDialog

50. ("Enter the quantity bought"));

51. double p = Float.parseFloat(JOptionPane.showInput

52. Dialog ("Enter the unit price"));

53.

54. //Setting the unit price and quantity class instance fields

55. using their methods in the class

56. market.setP(p);

57. market.setQ(q);

58.

59. // using a string variable ‘out’ to capture the outputs

60. String out = "Deatails of your transactions with us \n ";

61. out += "Quantity bought:" + q + "\nUnit price:"+p + "\n";

62. out += "Purchase Price Before Discount: " + market.ip();

63. out += "\nDiscount Given: " + market.d();

64. out += "\nPurchase Price After Discount: " + market.np();

65. out += "\n\n\n Thanks for patronizing us, call again";

66.

67. // printing out values

68. JOptionPane.showMessageDialog(null, out, "Akinola

69. Supermarket and Stores", JOptionPane.

70. INFORMATION_MESSAGE);

113

71. System.exit(0);

72. } // end method main

73. } // end class

Output Screen Shots

The example below gives the general quadratic equation class

//The general class for solving quadratic equations

Quadratic_Equation

a: float

 b : float

c: float

quadratic ()
discriminant()
root1()
rroot2()
real ()

imaginary()

114

1. import javax.swing.JOptionPane;

2. class quadratic {

3. private float a, b,c;

4.

5. //Constructor

6. public quadratic(float a, float b, float c) {

7. this.a = a;

8. this.b = b;

9. this.c = c;

10. }

11.

12. //Method to compute discrimant, d

13. public double d() {

14. return (b*b - 4.0 *a * c);

15. }

16.

17. //Method to compute first root

18. public double r1() {

19. return (-b + Math.sqrt(d()));

20. }

21.

22. //Method to compute second root

23. public double r2() {

24. return (-b - Math.sqrt(d()));

25. }

26. //Method to compute real part

27. public double real() {

28. return (-b /(2.0*a));

29. }

30.

31. //Method to compute imaginary part

32. public double imag() {

33. return (Math.sqrt(Math.abs(d()))/(2.0*a));

34. }

35.

36. //The main method

37.

38. public static void main(String[] args) {

39. //Data entry

40. float a = Float.parseFloat(JOptionPane.showInputDialog

41. ("Enter the coefficient of x-square, a"));

42. float b = Float.parseFloat(JOptionPane.showInputDialog

43. ("Enter the coefficient of x, b"));

44. float c = Float.parseFloat(JOptionPane.showInputDialog

45. ("Enter the constant, c"));

46.

47. //Instantiating a new object quad from the quadratic class

48. quadratic quad = new quadratic(a, b, c);

49.

50. //Reporting the roots

51. System.out.println("a = "+ a + " b = "+ b + " c = " + c +

52. "\n\n");

53. if (quad.d() < 0) // complex roots

54. System.out.printf("Complex roots please \n Complex

55. Root1 = i%.2f \n Complex Root2 = i%.2f",

56. quad.imag(), quad.real());

57. else if (quad.d() == 0) // One real root

58. System.out.printf("One Real Root with value %.2f",

59. quad.real());

60. else //Two real roots

115

61. System.out.printf("Two Real Roots with values \n

62. Root1 = %.2f \nRoot2 %.2f= ", quad.r1() , quad.r2());

63.

64. System.out.println();

65. System.exit(0);

66. }// end method main

67. } // end class quadratic

Sample outputs

9.4.13 Access Modifiers

These specify where the declared entity can be used. The entity can be a class, field, constructor, or

method.

The following table summarizes the modifiers that can appear in the declarations of class fields, local

variables, constructors and methods.

If none of the three access modifiers, (public, protected and private) is specified for a class, field,

constructor or method, then they have “package access”, which means that it can be accessed from

any class in the same package.

The modifier ‘static’ is used to specify that a method is a class method, else without it, the method is

an instance method, which can be invoked only when bound to an object of the class.

For example, Add() is an instance method which can be invoked as y.Add() in the main() program.

In this invocation, method Add() is bound to the object y, so y is an implicit argument.

116

A ‘class method’ is a method that is invoked without being bound to any specific object of the class.

9.4.14 Constructor Overloading

We can have more than one constructor in a class with the same signature or name. Since all

constructors in the same class must have the same name (viz the name of the class itself), there must

be some other way for the compiler to be able to distinguish them. The only other way is for them to

have distinct parameter list. The rule is that the sequence of parameter types must be different for each

overloaded constructor or method. The example below illustrates further.

Example: The Rectangle Class, having four Constructors

1. public class Rectangle {

2. public int width = 0;

3. public int height = 0;

4. public Point origin; // Point is another class

5.

6. // The four Constructors..

7. public Rectangle() {

8. origin = new Point(0, 0);

9. }

10.

11. public Rectangle(Point p) {

12. origin = p;

13. }

Modifier Class Constructor Field Local Variables Method

public

The class is

accessible from

all other class.

Accessible from

all classes

Accessible from

all classes

--

Accessible from

all class

abstract

The class cannot

be instantiated

Not Applicable

--

--

It has no body

and belong to an

abstract class

final

No subclasses be

can declared

--

It must be

initialized and

cannot be

changed e.g.

final int x = 2;

It must be

initialized and

cannot be

changed

No subclass can

override it.

protected

Not applicable

It is accessible

only from within

its own class and

its subclasses

It is accessible

only from within

its own class and

its subclasses

It is accessible

only from within

its own class and

its subclasses

private

Not applicable

It is accessible

only from within

its own class

It is accessible

only from within

its own class

It is accessible

only from within

its own class

static

Only one value

of the field exist

for all instances

of the class

It is bound to the

class itself

instead of an

instance of that

class

native

__

Its body is

implemented in

another

programming

language

117

14.

15. public Rectangle(int w, int h) {

16. this(new Point(0, 0), w, h);

17. }

18.

19. public Rectangle(Point p, int w, int h) {

20. origin = p;

21. width = w;

22. height = h;

23. }

24.

25. // A method for moving the rectangle

26. public void move(int x, int y) {

27. origin.x = x;

28. origin.y = y;

29. }

30.

31. //A method for computing the area of the rectangle

32. public int area() {

33. return width * width;

34. }

35. }

36.

37. // Here’s the code for the Point class

38. public class Point {

39. public int x = 0;

40. public int y = 0;

41.

42. // The only constructor for the class

43. public Point(int x, int y) {

44. this.x = x;

45. this.y = y;

46. }

47. }

48. /* Here is a small program, called RectangleTest, which creates three objects: one Point object

and two Rectangle objects. You will need all three source files to compile this program */

49. public class RectangleTest {

50. public static void main(String[] args) {

51. // creates a point object and two rectangle objects

52. Point origin_one = new Point(23, 94);

53. Rectangle rect_one = new Rectangle(50, 100);

54. Rectangle rect_two = new Rectangle();

55.

56. // display rect_one’s width, height and area

57. System.out.println(“Width of rect_one: “ +

58. rect_one.width);

59. System.out.println(“Height of rect_one: “ +

60. rect_one.height);

61. System.out.println(“Area of rect_one: “ + rect_one.area(

62.));

63.

64. // Set rect_two’s position

65. rect_two.origin = origin_one;

66.

67. // Display rect_two’s position

68. System.out.println(“X position of rect_two: “ +

69. rect_two.origin.x);

118

70. System.out.println(“Y position of rect_two: “ +

71. rect_two.origin.y);

72.

73. // Move rect_two and display its new position

74. rect_two.move(40,72);

75. System.out.println(“New X position of rect_two: “ +

76. rect_two.origin.x);

77. System.out.println(“New Y position of rect_two: “ +

78. rect_two.origin.y);

79. }

80. }

After creating the objects, the program manipulates the objects and displays some information about

them. Here’s the output from the program:

Width of rect_one: 100

Height of rect_one: 200

Area of rect_one: 20000

X position of rect_two: 23

Y position of rect_two: 94

New X position of rect_two: 40

New Y position of rect_two: 72

From the above program, you realize that each constructor let’s you provide initial values for different

aspects of the rectangle: the origin, width and the height, all three or none. The java platform

differentiates the constructors, based on the number and the type of arguments. For instance when the

java compiler encounters the following code:

Rectangle rect-one = new Rectangle(origin_one, 100, 200);

It knows to call the constructor in the rectangle class that requires a point argument followed by two

integer arguments.

The call initializes the rectangle’s origin variable to the point object referred to by origin_one. The

code also sets width to 100 and height to 200. Multiple references can refer to the same object as in

this case of the point object.

9.4.15 Writing Classes without Constructors and private fields

We have used the Math class methods without instantiating a new object of the class before we used

them. For example, Math.pow, Math.PI, Math.E, etc. We can also write a class that may not have a

constructor and without any private data field. The only thing is that the method of the class should be

declared as static and must not refer to any of the fields declared for the class. To call the method

from the class, we only need to write className.method(argument), like in the example below:

23

94

X

Y

23

94

Width

Height

 Origin

Origin_one

A Point object

119

demo.value(k). dem is the name of the class and value is a method we are calling from the class. k is

the argument passed to the method from the main program.

Example:

1. import javax.swing.*;

2. class demo {

3. static int value(int a) {

4. return a*a;

5. }

6. public static void main(String[] args) {

7. // computing the square of a number

8. int k = Integer.parseInt(JOptionPane.showInputDialog ("Enter

9. a number"));

10. System.out.println("The square of " + k + " = "+ " " +

11. demo.value(k));

12. System.exit(0);

13. }

14. }

Exercise: Extend this class to compute the cube and cube-root of numbers.

Post Test

1. Write a java program, using a class to compute the roots of any quadratic equation whose

model equation is ax
2
 + bx + c = 0.

2. Write a java class to search for x in a 1-dimensional array of integer data, x belongs to the

class of integers.

3. Matrix has been a wonderful mathematical tool for solving real – life computational

problems. Write Java class program that

(a) Adds three sum-able matrices together.

(b) Computes the product of any two multipliable matrices.

(c) Add all the elements in the right diagonal of a square matrix A, with those in

the left of another square matrix B, and prints out the summation.

(All conditional rules of matrix operations should be included in your codes).

Summary

In this chapter, you have been introduced to object

oriented programming in Java. The concept of

constructors, access modifiers and instantiation of classes

to create objects have been learnt. It was seen that classes

may be constructor-less while some may not even

constructor and private fields

120

10 Programming Inheritance with Java

10.1 Introduction

A class represents a set of objects which share the same structure and behaviors. The class determines

the structure of objects by specifying variables that are contained in each instance of the class, and it

determines behavior by providing the instance methods that express the behavior of the objects. This

is a powerful idea. However, something like this can be done in most programming languages. The

central new idea in object-oriented programming–the idea that really distinguishes it from traditional

programming–is to allow classes to express the similarities among objects that share some, but not all,

of their structure and behavior. Such similarities can be expressed using inheritance and

polymorphism.

The idea behind inheritance in Object Oriented Programming (OOP) is that we can re-use or change

the methods of existing classes, as well as add new instance fields and new methods in order to adapt

them to new situations. For instance, we need to use inheritance to show text or graphics in a window.

10.2 Learning Objectives

At the end of this chapter, it is expected that you know how to implement inheritance in Java

10.3 Pre Test

1. Explain how children inherit genes from their parents as you learned in O’ Level Biology

(Genetics).

2. Give a suitable definition to genetic inheritance as was learnt then.

10.4 Main Content

10.4.1 What is Inheritance?

Essentially, inheritance is a form of software re-usability in which new classes are created from

existing classes by absorbing their attributes and behaviours and embellishing these with capabilities

the new classes require. Software re-usability saves time in program development. It encourages reuse

of proven and debugged high quality software, thus reducing problems after a system becomes

operational. Polymorphism makes it easy to add new capabilities to a system. Inheritance and

polymorphism are effective techniques for dealing with software complexity.

10.4.2 Inheritance and Class Hierarchy

The term inheritance refers to the fact that one class can inherit part or all of its structure and behavior

from another class. The class that does the inheriting is said to be a subclass of the class from which it

121

inherits. If class B is a subclass of class A, we also say that class A is a superclass of class B.

(Sometimes the terms derived class and base class are used instead of subclass and superclass; this is

the common terminology in C++.) A subclass can add to the structure and behaviour that it inherits. It

can also replace or modify inherited behavior (though not inherited structure). The relationship

between subclass and superclass is sometimes shown by a diagram in which the subclass is shown

below, and connected to, its superclass.

In Java, to create a class named “B” as a subclass of a class named “A”, you would write

class B extends A {

..

/ / additions to, and modification s of ,

. / / stuff inherited from class A

.

}

Several classes can be declared as subclasses of the same superclass. The subclasses, which might be

referred to as “sibling classes,” share some structures and behaviours – namely, the ones they inherit

from their common superclass. The superclass expresses these shared structures and behaviors. In the

diagram to the left, classes B, C, and D are sibling classes. Inheritance can also extend over several

“generations”of classes. This is shown in the diagram, where class E is a subclass of

When creating a new class, instead of writing completely new instance variables and instance

methods, the programmer can designate that the new class is to inherit the instance variables and

methods of a previously defined “Superclass”. The new class is the “Subclass”, which can become a

superclass for some future subclass.

The direct superclass of a subclass is the superclass from which the subclass explicitly inherits (via

the keyword ‘extends’). An indirect superclass is inherited from two or more levels up the class

hierarchy.

Illustrative Example

Consider books and magazines - both specific types of publication. We can show classes to represent

these on a UML class diagram. In doing so we can see some of the instance variables and methods

these classes may have.

122

Attributes ‘title’, ‘author’ and ‘price’ are obvious. Less obvious is ‘copies’ this is how many are

currently in stock. For books, orderCopies() takes a parameter specifying how many copies are added

to stock. For magazines, orderQty is the number of copies received of each new issue and currIssue is

the date/period of the current issue (e.g. “January 2013”, “Fri 6 Jan”, “Spring 2009” etc.) When a

newIssue is received the old are discarded and orderQty copies are placed in stock. Therefore

recvNewIssue() sets currIssue to date of new issue and restores copies to orderQty. adjustQty()

modifies orderQty to alter how many copies of subsequent issues will be stocked.

These classes have three instance variables in common: title, price, copies.

They also have in common the method sellCopy().

The differences are as follows:

Book additionally has author, and orderCopies().

Magazine additionally has orderQty, currIssue, adjustQty() and recvNewIssue().

We can separate out (‘factor out’) these common members of the classes into a superclass called

Publication.

The differences will need to be specified as additional members for the ‘subclasses’ Book and

Magazine.

123

In this UML Class Diagram, The hollow-centred arrow denotes inheritance.

Note the Subclass has the generalized superclass characteristics plus additional specialized

characteristics. Thus the Book class has four instance variables (title, price, copies and author) it also

has two methods (sellCopy() and orderCopies()). The inherited characteristics are NOT listed in

subclasses. The arrow shows they are acquired from superclass.

10.4.3 Inheritance in Java

Java only supports single inheritance whereby a class is derived from one Superclass. This is opposed

to C
++

, which supports multiple inheritance. This is archived in Java through “interfaces”.

The superclass is not superior to its subclass or contains more functionality. In fact, the opposite is

true; subclasses have more functionality than their superclasses. This is because a subclass normally

adds instance variables and instance methods of its own, making it more robust. Every object of a

subclass is also an object of the subclass’s superclass. The converse is not true. Subclass methods and

methods of other classes in the same package as the superclass can access ‘protected’ superclass

members.

Recall our ‘is a’ and ‘has a’ relationships. ‘Is a’ is inheritance and ‘has a’ is composition. In a “has a”

relationship, a class object has one or more objects of other classes as members.

A subclass’s methods may need to access certain of its superclass instance variables and methods. If a

subclass could access the superclass’s ‘private’ members, this would violate information hiding in the

superclass. A subclass can however access the ‘public’, ‘protected’ and ‘package’ access members of

its superclass provided it is in the same package as the superclass. Superclass members that should not

be accessible to a subclass via inheritance are declared ‘private’ in the superclass. A subclass can

effect state changes in superclass ‘private’ members only through ‘public’, ‘protected and package

access methods provided in the superclass and inherited into the subclass.

One problem with inheritance is that a sub class can inherit methods that it does not need or should

not have; but this could be ‘overridden’ (redefined) in the subclass with an appropriate

implementation. However, someday, most software may be constructed from “standardized reusable

components” just as hardware is often constructed today. This will help meet the challenges of

developing the ever more powerful software we will need in the future.

124

Examples of Superclass and Subclasses

Superclass Subclasses
Quadrilateral Rectangle, square, parallelograms,

Rhombus, Trapezium. (For instance a

rectangle is a quadrilateral”).
Shape Circle, Triangle, Rectangle
Student Graduate, Undergraduate
Loan Car loan, mortgage loan, Agric Loan
Staff Academic, Non-academic, Junior,

Senior.
Account Current, Savings, Special.

10.4.4 Implementing Inheritance in Java

No special features are required to create a superclass. Thus any class can be a superclass unless

specifically prevented. A subclass specifies it is inheriting features from a superclass using the

keyword extends. For example

class MySubclass extends MySuperclass

{

 // additional instance variables and

 // additional methods

}

10.4.4.1 Constructors
Each class (whether sub or super) should encapsulate its own initialization, usually relating to setting

the initial state of its instance variables. A constructor for a superclass should deal with general

initialization. Each subclass can have its own constructor for specialised initialization but it must often

invoke the behaviour of the superclass constructor. It does this using the keyword super.

class MySubClass extends MySuperClass

{

 public MySubClass (sub-parameters)

 {

 super(super-parameters);

 // other initialization

}

If super is called, ie. the superclass constructor, then this must be the first statement in the onstructor.

Usually some of the parameters passed to MySubClass will be initialized values for superclass

instance variables, and these will simply be passed on to the superclass constructor as parameters. In

other words super-parameters will be some (or all) of sub-parameters.

Shown below are two constructors, one for the Publication class and one for Book. The book

constructor requires four parameters three of which are immediately passed on to the

superclass constructor to initialize its instance variables.

public Publication (String pTitle, double pPrice, int pCopies)

{

 title = pTitle;

 // etc.

}

125

public Book (String pTitle, String pAuthor, double pPrice,int pCopies)

{

 super(pTitle, pPrice, pCopies);

 author = pAuthor;

 //etc.

}

10.4.4.2 Constructor Rules

Rules exist that govern the invocation of a superconstructor.

If the superclass has a parameterless (or default) constructor this will be called automatically if no

explicit call to super is made in the subclass constructor though an explicit call is still better style for

reasons of clarity.

However if the superclass has no parameterless constructor but does have a parameterized

one, this must be called explicitly using super.
To illustrate this….

On the left above:- it is legal, though bad practice, to have a subclass with no constructor because

superclass has a parameterless constructor.

In the centre:- if subclass constructor doesn’t call super, the parameterless superclass constructor will

be called.

On the right:- because superclass has no paramterless constructor, subclass must have a constructor

and it must call super. This is simply because a (super) class with only a parameterized constructor

can only be initialized by providing the required parameter(s).

10.4.4.3 Access Control

To enforce encapsulation we normally make instance variables private and provide accessor/mutator

methods as necessary. The sellCopy() method of Publication needs to alter the value of the variable

‘copies’ it can do this even if ‘copies’ is a private variable. However Book and Magazine both need to

alter ‘copies’. There are two ways we can do this …

 make ‘copies’ ‘protected’ rather than ‘private’ – this makes it visible to subclasses, or

 create accessor and mutator methods.

126

For variables we generally prefer to create accessors/mutators rather than compromise encapsulation

though protected may be useful to allow subclasses to use methods (e.g. accessors and mutators)

which we would not want generally available to other classes.

Thus in the superclass Publication we define ‘copies’ as a variable private but create two methods that

can set and access the value ‘copies’. As these accessor methods are public or protected they can be

used within a subclass when access to ‘copies’ is required.

In the superclass Publication we would therefore have….

private int copies;

public int getCopies () {

 return copies;

}

public void setCopies(int pCopies) {

 copies = pCopies;

}

These methods allow superclass to control access to private instance variables.

As currently written they don’t actually impose any restrictions, but suppose for example we wanted

to make sure ‘copies’ is not set to a negative value.

(a) If ‘copies’ is private, we can put the validation (i.e. an if statement) within the setCopies method

here and know for sure that the rule can never be compromised.

(b) If ‘copies’ is partially exposed as protected, we would have to look at every occasion where a

subclass method changed the instance variable and do the validation at each separate place.

We might even consider making these methods protected rather than public themselves so their use

is restricted to subclasses only and other classes cannot interfere with the value of ‘copies’.

Making use of these methods in the sublasses Book and Magazine we have ..

// in Book

public void orderCopies(int pCopies)

{

 setCopies(getCopies() + pCopies);

}

// and in Magazine

public void recvNewIssue(String pNewIssue)

{

 setCopies(orderQty);

 currIssue = pNewIssue;

}

These statements are equivalent to
mCopies = mCopies + pCopies

and
mCopies = mOrderQty

127

10.4.4.4 Abstract Classes

The idea of a Publication which is not a Book or a Magazine is meaningless, just like the idea of a

Person who is neither a MalePerson nor a FemalePerson. Thus while we are happy to create Book or

Magazine objects we may want to prevent the creation of objects of type Publication.

If we want to deal with a new type of Publication which is genuinely neither Book nor Magazine –

e.g. a Calendar – it would naturally become another new subclass of Publication. As Publication will

never be instantiated ie. we will never create objects of this type the only purpose of the class exists is

to gather together the generalized features of its subclasses in one place for them to inherit.

We can enforce the fact that Publication is non-instantiable by declaring it ‘abstract’:-

abstract class Publication

{

 // etc.

10.4.4.5 Overriding Methods

A subclass inherits the methods of its superclass and must therefore always provide at least that set of

methods, and often more. However, the implementation of a method can be changed in a subclass.

This is overriding the method.

To do this we write a new version in the subclass which replaces the inherited one. The new method

should essentially perform the same functionality as the method that it is replacing however by

changing the functionality we can improve the method and make its function more appropriate to a

specific subclass.

For example, imagine a special category of magazine which has a disc attached to each copy – we can

call this a DiscMag and we would create a subclass of Magazine to deal with DiscMags. When a new

issue of a DiscMag arrives not only do we want to update the current stock but we want to check that

the discs are correctly attached. Therefore we want some additional functionality in the

recvNewIssue() method to remind us to do this. We achieve this by redefining recvNewIssue() in the

DiscMag subclass.

Note: when a new issue of Magazine arrives, as these don’t have a disc we want to invoke the original

recNewIssue() method defined in the Magazine class.

128

When we call the recvNewIssue() method on a DiscMag object Java automatically selects the new

overriding version – the caller doesn’t need to specify this, or even know that it is an overriden

method at all. When we call the recvNewIssue() method on a Magazine it is the method in the

superclass that is invoked.

10.4.4.6 Implementing DiscMag

To implement DiscMag we must create a subclass of Magazine using extends. No additional instance

variables or methods are required though it is possible to create some if there was a need. The

constructor for DiscMag simply passes ALL its parameters directly on to the superclass and a version

of newIssue() is defined in discMag to overrides the one inherited from Magazine (see next code).
public class DiscMag extends Magazine {

 // the constructor

public DiscMag (String pTitle, double pPrice, int pOrderQt,String

 pCurrIssue, int pCopies) {

 super(pTitle, pPrice, pOrderQty, pCurrIssue, pCopies);

 } // end constructor

 // the overridden method

 public void recvNewIssue(String pNewIssue) {

 super.recvNewIssue(pNewIssue);

 System.out.println("Check discs attached to this magazine");

 } // end method

} // end class

Note the user of the super keyword to call a method of the superclass, thus re-using the existing

functionality as part of the replacement, just as we do with constructors. It then additionally displays

the required message for the user.

10.4.5 The ‘Object’ Class

In Java all objects are (direct or indirect) subclasses of a class called ‘Object’. Object is the ‘root’ of

the inheritance hierarchy in Java. Thus this class exists in every Java program ever created. If a class

is not declared to extend another then it implicitly extends Object.

Object defines no instance variables but several methods. Generally these methods will be overridden

by new classes to make them useful. An example is the toString() method. Thus when we define our

own classes, by default they are direct subclasses of Object.

If our classes are organised into a hierarchy then the topmost superclass in the hierarchy is a direct

subclass of object, and all others are indirect subclasses. Thus directly, or indirectly, all classes

created in Java inherit toString().

129

10.4.5.1 Overriding toString() defined in ‘Object’

The Object class defines a toString() method, one of several useful methods.

toString() has the signature:

 public String toString()

Its purpose is to return a string value that represents the current object. The version of toString()

defined by Object produces output like: "Book@11671b2". This is the class name and the “hash

code” of the object. However to be generally useful we need to override this to give a more

meaningful string.

In Publication
public String toString()

{

 return mTitle;

}

In Book
public String toString()

{

 return super.toString() + " by " + mAuthor;

}

In Magazine
public String toString()

{

 return super.toString() + " (" + mCurrIssue + ")";

}

In the code above toString() originally defined in Object has been completely replaced, i.e.

overridden, so that Publication.toString() returns just the title.

130

The toString() method has been overridden again in Book such that Book.toString() returns title (via

superclass toString() method) and author. Ie. this overridden version uses the version defined in

Publication. Thus if Publication.toString() was rewritten to return the title and ISBN number then

Book.toString() would automatically return the title, ISBN number and author. Magazine.toString()

returns title (via superclass toString() method) and issue

We will not further override the method in DiscMag because the version it inherits from Magazine is

OK. We could choose to provide more data (i.e. more, or even all, of the instance variable values) in

these strings. The design judgement here is that these will be the most generally useful printable

representation of objects of these classes. In this case title and author for a book, or title and current

issue for a magazine, serve well to uniquely identify a particular publication.

Simple Example:
1. class Rectangle {

2. float l;

3. float b;

4. //constructor

5. public Rectangle(float length,float breadth) {

6. l = length;

7. b = breadth;

8. }

9.

10. public float area() {

11. return l*b;

12. }

13. public double perimeter() {

14. return 2.0*(l+b);

15. }

16. }

1. //The following class inherits from the Rectangle class.

2. class Prism extends Rectangle {

3. float h;

4. //constructor

5. public Prism(float l,float b,float height){

6. super(l, b);

7. h = height;

8. }

9. //method to compute volume

10. public float volume(){

11. return h * super.area();

12. }

13. }

The following is a program to test the two clases.

1. public class Tester {

2. public static void main(String[] args){

3. Prism newPrism = new Prism(10,5,5);

4. System.out.println("The volume of the prism= "+

5. newPrism.volume());

6. Rectangle r = new Rectangle(10,5);

7. System.out.println("The Area of the Rectangle =

8. "+r.area());

9. }

10. }

131

The Output:

Note: Each of the above programs is compiled separately in different files.

Post Test

Design and implement a program involving inheritance that will make use of banking accounts,

deposits and withdrawals.

Summary
Inheritance allows us to factor out common attributes and behaviour. We model

the commonalities in a superclass. Subclasses are used to model specialized

attributes and behaviour. Code in a superclass is inherited to all subclasses. If

we amend or improve code for a superclass it impacts on all subclasses. This

reduces the code we need to write in our programs.

Special rules apply to constructors for subclasses.

A superclass can be declared abstract to prevent it being instantiated (i.e.

objects created). We can ‘override’ inherited methods so a subclass implements

an operation differently from its superclass.

In Java all classes descend from the class ‘Object’. ‘Object’ defines some

universal operations which can usefully be overriden in our own classes.

132

11 File Handling with Java

11.1 Introduction

All along, we have been using the keyboard and monitor to input data into our programs and output

the results of computations respectively from our programs. We now turn our attention to the use of

files. A file stores data permanently unlike variables and arrays, which loose data as soon as the

programs that use them terminates. Java programs can read data as input from files kept in the

secondary storage of computers such as harddisk or flash, and directs output results to another file in

the storage.

Data items collected about a particular entity form the fields. For instance, data items about a student

could be name, matric, sex, age, ume_score, etc. The combination of all these fields forms a record.

Thus, a record is a group of related fields. Each of these fields has a type associated with it. Name is a

string data type, while matric and ume_score are of type int.

Records are usually arranged in form of table as shown below:

Rec_no Name Matric Age Sex Ume_Score

 o1 Akinola s. O. 68888 25 m 222

 02 Zacheus M.G. 133564 17 f 257

 …. …. …. ….

The combination of all these records forms a file. Thus, a file is a group of related records.

To facilitate the retrieval of specific records from a file, at least one field in each record is chosen as a

record key. Usually, the key is unique to every record to avoid duplication of records in the file. In the

example table above, matric is a good candidate for the record key. The key is also used for searching

and sorting records in a file.

Records in a file could be organized sequentially, in which records are stored in order by the record

key, or in random order, in which case, there is no particular ordering of the records in the file, but the

records are indexed.

Usually, in big organizations, data are stored in many files. For example we could have customer file,

payroll file, recruitment file, supplies file, etc. These files are kept in a database. A group of related

files is called a database. We introduce this concept in the next chapter.

11.2 Objectives

At the end of this chapter, you should be able to use sequential files in your programs.

11.3 Pre Test

(i) What are fields, records and files

(ii) Mention one business application of file.

133

11.4 Main Contents

11.4.1 Java Perception of Files

Java views each file as a sequential stream of bytes. The end of file marker is usually provided by the

Operating System. In some cases, the end-of-file indication occurs as an exception, and in other

cases, the indication is a return value from a method invoked on a stream-processing object.

When java opens a file, an object in which a stream of bytes is associated with, is created. In some

cases, java associates streams of bytes with any of the three different devices: System.in, System.out

and System.err. Object System.in allows the input of data via the keyboard, System.out allows output

of result to the screen and System.err allows output of error messages to the screen. All the three form

the standard files, otherwise called standard stream objects in Java.

Each of these standard stream objects could be redirected to different location. The System.in enables

the program to read from a different source while System.out and System.err enable output to be sent

into some other locations, such as a file on disk. The SetIn, SetOut and SetErr methods from the Class

System provide these capabilities.

Java.io package must be imported to a java program before files can be used in that program. The

java.io package provides definitions for stream classes and methods such as

 FileInputStream – for byte-based input from a file

 FileOutputStream – for byte-based output to a file

 FileReader – for character-based input from a file

 FileWriter – for characterbased output to a file.

Files are opened by creating objects of these stream classes that inherit from classes InputStream,

OutputStream, Reader and Writer respectively.to perform input and output of data types, objects of

classes ObjectInputStream, DataInputStream, ObjectOutputStream and DataOutputStream will be

used togther with the byte-based file stream classes FileInputStream and FileOutputStream.

Files that are created using byte-based streams are referred to as binary files, while files created using

character-based streams are referred to as text files. Text files can be read by text editors, while binary

files are read by a program that converts the data to a human-readable format.

Java provides many classes for performing input/output operations.

 InputStream and OutputStream subclasses of object are abstract classes that declare methods

for performing byte-based input and output respectively.

 FileInputStream subclass of InputStream and FileOutputStream subclass of OutputStream are

used to manipulate files.

 PipedOutputStream, PipedInputStream, are used in connection with threads in java.

 A FilterInputStream filters an InputStream as FilterOutputStream filters OutputStream.

Filtering in this case could be buffering, monitoring line numbers or aggregating data bytes

into meaningful primitive type units.

 A printStream subclass of FilterOutputStream performs text output to the specified stream.

Systemout and System.err are PrintStream objects.

Reading data as raw bytes is fast but crude. Usually, programs read data as aggregates of bytes in

form of an int, a float, a double, etc. Classes DataInputStream and RandomAccessFile from the

interface DataInput provides methods readLine (for byte arrays), readBoolean, readByte, readChar,

readInt, readDouble, readFloat, readFully (for byte arrays), readLong, readShort, readUnsignedByte,

readUnsignedShort, readUTF (for strings) and SkipBytes for reading the primitive types. Classes

DataOutputStream (a subclass of FilterOutputStream) and RandomAccessFile each implements the

Interface DataOutput to write primitive type values such as byte or int. interface DataOutput contins

134

methods such as write (for byte and byte arrays), writeBoolean, WriteDouble, writeFloat, writeChars

(for Unicode strings), writeLong, writeSjhort, writeUTF, writeBytes, and writeChar.

In addition, large chunks of data may be transferred to a temporary storage before being read or

written to enhance speed of data transfer. This is known as buffering technique. BufferedInputStream,

a subclass of FileInputStream and BufferedOutputStream, a subclass of FileOutputStream are used for

this purpose. Typical input/output operations are extremely slow compared with the speed of

accessing computer memory. Buffered inputs and outputs normally yield significant performance

improvements over unbuffered inputs and outputs.

In addition to the byte-based streams, we have Reader and Writer classes, which are Unicode two-

byte, character-based streams. Most of the byte-based streams have corresponding character-based

Reader and Writer classes.

 Classes BufferedReader and BufferedWriter enable efficient buffering for character-based

streams.

 Classes CharArrayReader and CharArrayWriter read and write respectively, a stream of

characters to a character array.

 A LineNumberReader is a buffered character stream that keeps track of line numbers (i.e. a

new line, a return or a carriage-return-line-feed combination).

 Class FileReader and FileWriter read characters from and write characters to a file.

 A PrintWriter writes characters to a stream.

 StringReader and StrigWriter read and write characters respectively.

In this text, we introduce the reader to sequential file processing in java.

11.4.2 Processing Sequential Access Data File

In this section, we implement a program to process a sequential data file containing both string and

numeric data. This program shows how to read data sequentially from a text file.

We firstly create an input data file named “data.dat” and saved in the same folder as our program, i.e.

the bin subfolder of the java toolkit. Each record in the file contains the following fields: Surname,

Othernames, Matric No., and three scores in some courses. Each field is separated by a space. Figure

below shows the screen shot of the input file.

The program listing on next page shows the program that uses the input file while the figure below it

shows the output file created by the program itself in the same bin folder.

135

Example Program:
1. import java.io.*;

2. import java.util.*;

3. import javax.swing.*;

4. // sequential file demo

5. public class seqData {

6. public static void main(String[] arguments) {

7. try { // try1

8. Scanner input = new Scanner(new File("data.dat"));

9. int count = 0; // for counting records

10. String out = "Results of processing the data \n\n ";

11. out += "Rec. No. \tSurname \tOtherNames \tMatric

12. No.\tScore Total\tMean Score\n\n";

13. // read all the records

14. while(input.hasNext()) {

15. count++;

16. // Assign all the records’ fields to their identifiers

17. String name1 = input.next();

18. String name2 = input.next();

19. int matric = input.nextInt();

20. int score1 = input.nextInt();

21. int score2 = input.nextInt();

22. double score3 = input.nextDouble();

 //summing data

23. double sum = score1 + score2 + score3;

24. double average = sum/3.0; // the mean

25. out += count +"\t\t"+ name1 +"\t\t" + name2 +"\t\t"

26. + matric +"\t\t"+ sum +"\t\t"+ average +"\t\t"

27. + "\n";

28. // writing to an output file

29. try { // try2 to operate output file

30. //Creating the output file

31. File file = new File("OutputFile.txt");

32. PrintWriter output = new PrintWriter(file);

33. output.write(out); // write all the output

34. output.close(); //Close the output file

35. }//end try2

36.

37. catch(Exception exception){ //catch for try2

38. JOptionPane.showMessageDialog(null,"Cannot write to

39. file!","Error",JOptionPane.ERROR_MESSAGE);

40. }//end catch for try2

41. }//end while

42. } catch(Exception exception){ //catch for try1

43. JOptionPane.showMessageDialog(null,"Cannot read from

44. file!","Error",JOptionPane.ERROR_MESSAGE);

45. }//end catch for try1

46. //Notifying the user of the end of processing…

47. JOptionPane.showMessageDialog(null,"Data has been

 written to file!","Writing Complete",

48. JOptionPane.INFORMATION_MESSAGE);

49. } // end method main()

50.} //end class seqData

Output: Use WordPad to open the output if you don’t have EditPlus.

136

You need to study this program carefully line by line in order to understand how to use file for your

subsequent programs. Below is the explanation for the program.

The program demonstrates how class Scanner can be used to input data from a file rather than the

keyboard.

The Scanner is a Sub class of Java.util class (util means utility). Therefore, both java.io, javax.swing

and java.util APIs are imported into the program in lines 1 to 3. Swing is for the JOptionPane. Line 14

uses Scanner method hasNext() to determine whether the end-of-file key combination has been

entered. The loop executes until hasNext() encounters the end-of-file marker.

Line 7 contains a try statement. All processes in a file must be put in a try – catch block. This is a

necessity as java believes that an error may occur in reading from or writing to a file. For instance,

there may be file input error, in which the file name specified is not found.

 8. Scanner input = new Scanner(new File("data.dat"));

This line combines two functions: creating the new file object. We pass a File object to the

constructor, which specifies that the Scanner object will read from the file "data.dat" located in the

directory from which the application executes (bin). If the file cannot be found, a

FileNotFoundException occurs. The exception is handled in lines 42 and “Cannot read from file” is

generated in line 43-44. We could specify the complete path of the file to specify where it could be

located; but it is advisable to save the file in the bin sub-folder of the java toolkit to avoid File input

error.

Lines 10 – 12 are for generating the headings in the output as shown in the output screen shot. We

generated the output in tabulated format with appropriate headings.

Line 17 – 22.
16. // Assign all the records’ fields to their identifiers

17. String name1 = input.next();

18. String name2 = input.next();

19. int matric = input.nextInt();

20. int score1 = input.nextInt();

21. int score2 = input.nextInt();

22. double score3 = input.nextDouble();

137

In order to read a String data by the Scanner, input.next() method (or function) is used. To read an

integer data, we use the input.nextInt() method. This goes for float, input.nextFloat() and double

input.nextDouble(). Note that the Scanner reads a record at a time as tokens (i.e. field by field).

Therefore, we assign each field to their individual field names. It is possible to read the three scores

into a one-dimensional array, and then use for-loop to read the data into the array, especially if we

have more than three scores. However, this is left as an exercise for the reader.

Line 25 – 27:
25. out += count +"\t\t"+ name1 +"\t\t" + name2 +"\t\t"

26. + matric +"\t\t"+ sum +"\t\t"+ average +"\t\t"

27. + "\n";

These lines are used to ‘append’ the results of summation and mean to the out string, which is going

to be printed later.

Lines 29 – 40:
29. try { // try2 to operate output file

30. //Creating the output file

31. File file = new File("OutputFile.txt");

32. PrintWriter output = new PrintWriter(file);

33. output.write(out); // write all the output

34. output.close(); //Close the output file

35. }//end try2

36.

37. catch(Exception exception){ //catch for try2

38. JOptionPane.showMessageDialog(null,"Cannot write to

39. file!","Error",JOptionPane.ERROR_MESSAGE);

40. }//end catch for try2

 These lines are for opening and closing the output file. However, the program will automatically

open the output file and gives it the name we specify as parameter for the File constructor,

"OutputFile.txt". All files opened must be closed, why? Can you suggest an answer for this? In the

program, we did not close the input file. Can you suggest an appropriate position where the close

should be put?

The catch statements are the necessary error routines that should be appended to the try statements in

case there are errors in reading and writing to files. Note in particular how these statements are

arranged to match the two try blocks.

Line 47 and 48:

47. JOptionPane.showMessageDialog(null,"Data has been

 written to file!","Writing Complete",

48. JOptionPane.INFORMATION_MESSAGE);

These statements inform the user of the program that the data has been processed.

11.4.3 Other File Methods

Method Description

boolean canRead() Returns true if a file is readable, false otherwise

Boolean canWrite() Returns true if a file is writable, false otherwise

boolean exists() Returns true if the name specified as the argument to the File constructor is a

file or directory in the specified path; false otherwise

boolean isFile() Returns true if the name specified as the argument to the File Constructor is a

file, false otherwise

138

boolean isDirectory() Returns true if the name specified as the argument to the File Constructor is

a directory, false otherwise

boolean isAbsolute() Returns true if the arguments specified to the File Constructor indicate an

absolute path to a file or directory; false otherwise.

String getAbsolutePath() Returns a string with the absolute path of the file or directory.

String getName() Returns a string with the name of the file or directory

String getPath() Returns a string with the path of the file or directory

Long length() Returns the length of the file, in bytes. Returns 0 if the File object is a

directory

Long lastModified() Returns a platform representation of the time at which the file or directory

was last modified.

String[] list() Returns an array of strings representing the contents of a directory. Returns

null if the file object is not a directory.

Post Test

1. Copy the code line by line into your editor. Compile and run the code and report your

observations. You must have created the input data file before you execute the program. The line

numbers in the program are not part of the program. They are there for explanation purpose only.

Modify the input data to contain 10 or more scores per record. Modify the program to use array for

the scores and compile and run the program. Record your observations and errors incurred in the

exercise.

Summary
In this chapter, you have been briefly introduced to the manipulating

of sequential files in Java. Move ahead to learn the manipulation of

random files in Java. Consult text books or tutorials online.

139

12 Database Handling with Java

12.1 Introduction

The Java Database Connectivity Application Programming Interface (JDBC API) is a Java API that

can access any kind of tabular data, especially data stored in a relational database. In this chapter you

shall be introduced to writing business applications involving databases.

12.2. Objectives

At the end of this chapter, you should be able to know how to write and even implement business

applications that make use of databases.

12.3 Pre Test

Explain the differences between a file and a database.

12.4 Main Contents

12.4.1 JDBC: An Introduction

The Java Database Connectivity (JDBC), helps you to write java applications that manage these three

programming activities:

1. Connect to a data source, like a database

2. Send queries and update statements to the database

3. Retrieve and process the results received from the database in answer to your query

The following simple code fragment gives a simple example of these three steps:

1. Connection con = DriverManager.getConnection("jdbc:myDriver:wombat",

2. "myLogin","myPassword");

3. Statement stmt = con.createStatement();

4. ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

5. while (rs.next()) {

6. int x = rs.getInt("a");

7. String s = rs.getString("b");

8. float f = rs.getFloat("c");

9. }

This short code fragment instantiates a DriverManager object to connect to a database driver and log

into the database, instantiates a Statement object that carries your Structured Query Language (SQL)

query to the database; instantiates a ResultSet object that retrieves the results of your query, and

executes a simple while loop, which retrieves and displays those results. It's that simple.

12.4.2 JDBC Product Components

JDBC includes four components:

1. The JDBC API
The JDBC™ API provides programmatic access to relational data from the Java™ programming

language. Using the JDBC API, applications can execute SQL statements, retrieve results, and

140

propagate changes back to an underlying data source. The JDBC API can also interact with multiple

data sources in a distributed, heterogeneous environment.

The JDBC API is part of the Java platform, which includes the Java™ Standard Edition (Java™ SE)

and the Java™ Enterprise Edition (Java™ EE). The JDBC 4.0 API is divided into two packages:

java.sql and javax.sql. Both packages are included in the Java SE and Java EE platforms.

2. JDBC Driver Manager
The JDBC DriverManager class defines objects which can connect Java applications to a JDBC

driver. DriverManager has traditionally been the backbone of the JDBC architecture. It is quite small

and simple.

The Standard Extension packages javax.naming and javax.sql let you use a DataSource object

registered with a Java Naming and Directory Interface™ (JNDI) naming service to establish a

connection with a data source. You can use either connecting mechanism, but using a DataSource

object is recommended whenever possible.

3. JDBC Test Suite
The JDBC driver test suite helps you to determine that JDBC drivers will run your program. These

tests are not comprehensive or exhaustive, but they do exercise many of the important features in the

JDBC API.

4. JDBC-ODBC Bridge
The Java Software bridge provides JDBC access via ODBC drivers. Note that you need to load

ODBC binary code onto each client machine that uses this driver. As a result, the ODBC driver is

most appropriate on a corporate network where client installations are not a major problem, or for

application server code written in Java in a three-tier architecture. A driver is a java interface that

includes a method that is used to obtain database connections.

There are many possible implementations of JDBC drivers. These implementations are categorized as

follows:

o Type 1: Drivers that implement the JDBC API as a mapping to another data access API, such as

ODBC (Open Database Connectivity). Drivers of this type are generally dependent on a native

library, which limits their portability. The JDBC-ODBC Bridge driver is an example of a Type 1

driver.

o Type 2: Drivers that are written partly in the Java programming language and partly in native

code. These drivers use a native client library specific to the data source to which they connect.

Again, because of the native code, their portability is limited. Oracle's OCI (Oracle Call Interface)

client-side driver is an example of a Type 2 driver.

o Type 3: Drivers that use a pure Java client and communicate with a middleware server using a

database-independent protocol. The middleware server then communicates the client's requests to

the data source.

o Type 4: Drivers that are pure Java and implement the network protocol for a specific data source.

The client connects directly to the data source.

Check which driver type comes with your DBMS. Java DB comes with two Type 4 drivers, an

Embedded driver and a Network Client Driver. MySQL Connector/J is a Type 4 driver.

Installing a JDBC driver generally consists of copying the driver to your computer, then adding the

location of it to your class path. In addition, many JDBC drivers other than Type 4 drivers require you

to install a client-side API. No other special configuration is usually needed.

141

12.4.3 JDBC Architecture

Two-tier and Three-tier Processing Models

The JDBC API supports both two-tier and three-tier processing models for database access.

Figure 12.1: Two-tier Architecture for Data Access.

In the two-tier model, a Java applet or application talks directly to the data source. This requires a

JDBC driver that can communicate with the particular data source being accessed. A user's commands

are delivered to the database or other data source, and the results of those statements are sent back to

the user. The data source may be located on another machine to which the user is connected via a

network. This is referred to as a client/server configuration, with the user's machine as the client, and

the machine housing the data source as the server. The network can be an intranet, which, for

example, connects employees within a corporation, or it can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which then sends the

commands to the data source. The data source processes the commands and sends the results back to

the middle tier, which then sends them to the user. MIS directors find the three-tier model very

attractive because the middle tier makes it possible to maintain control over access and the kinds of

updates that can be made to corporate data. Another advantage is that it simplifies the deployment of

applications. Finally, in many cases, the three-tier architecture can provide performance advantages.

Figure 12.2: Three-tier Architecture for Data Access.

Until recently, the middle tier has often been written in languages such as C or C++, which offer fast

performance. However, with the introduction of optimizing compilers that translate Java bytecode

into efficient machine-specific code and technologies such as Enterprise JavaBeans™, the Java

142

platform is fast becoming the standard platform for middle-tier development. This is a big plus,

making it possible to take advantage of Java's robustness, multithreading, and security features.

With enterprises increasingly using the Java programming language for writing server code, the JDBC

API is being used more and more in the middle tier of a three-tier architecture. Some of the features

that make JDBC a server technology are its support for connection pooling, distributed transactions,

and disconnected rowsets. The JDBC API is also what allows access to a data source from a Java

middle tier.

12.4.4 A Relational Database Overview

A database is a means of storing information in such a way that information can be retrieved from it.

In simplest terms, a relational database is one that presents information in tables with rows and

columns. A table is referred to as a relation in the sense that it is a collection of objects of the same

type (rows). Data in a table can be related according to common keys or concepts, and the ability to

retrieve related data from a table is the basis for the term relational database. A Database Management

System (DBMS) handles the way data is stored, maintained, and retrieved. In the case of a relational

database, a Relational Database Management System (RDBMS) performs these tasks. DBMS as used

in this book is a general term that includes RDBMS.

 Integrity Rules

Relational tables follow certain integrity rules to ensure that the data they contain stay accurate and

are always accessible. First, the rows in a relational table should all be distinct. If there are duplicate

rows, there can be problems resolving which of two possible selections is the correct one. For most

DBMSs, the user can specify that duplicate rows are not allowed, and if that is done, the DBMS will

prevent the addition of any rows that duplicate an existing row.

A second integrity rule of the traditional relational model is that column values must not be repeating

groups or arrays. A third aspect of data integrity involves the concept of a null value. A database takes

care of situations where data may not be available by using a null value to indicate that a value is

missing. It does not equate to a blank or zero. A blank is considered equal to another blank, a zero is

equal to another zero, but two null values are not considered equal.

When each row in a table is different, it is possible to use one or more columns to identify a particular

row. This unique column or group of columns is called a primary key. Any column that is part of a

primary key cannot be null; if it were, the primary key containing it would no longer be a complete

identifier. This rule is referred to as entity integrity.

Table 12.1 illustrates some of these relational database concepts. It has five columns and four rows,

with each row representing a different student.

Table 12.1: Table Students

Matric_Number Car_Number First_name Last_Name Score

10001 5 Akinola Solomon 45

10083 Abel John 56

10005 12 Hammed F. 67

10035 John Solomon 46

The primary key for this table would generally be the Matric_number because each one is guaranteed

to be different. (A number is also more efficient than a string for making comparisons.) It would also

143

be possible to use First_Name and Last_Name because the combination of the two also identifies just

one row in our sample database. Using the last name alone would not work because there are two

employees with the last name of "Solomon." In this particular case the first names are all different, so

one could conceivably use that column as a primary key, but it is best to avoid using a column where

duplicates could occur. If John Ibekwe gets an admission at this school and the primary key is

First_Name, the RDBMS will not allow his name to be added (if it has been specified that no

duplicates are permitted). Because there is already a John in the table, adding a second one would

make the primary key useless as a way of identifying just one row. Note that although using

First_Name and Last_Name is a unique composite key for this example, it might not be unique in a

larger database.

Manipulating a database involves the use of Structured Query Language (SQL) to create tables,

retrieve data from the database and edit data in the database.

SQL query keywords.

SQL

keyword Description

SELECT Retrieves data from one or more tables.

FROM Tables involved in the query. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved, deleted or

updated. Optional in a SQL query or a SQL statement.

GROUP BY Criteria for grouping rows. Optional in a SELECT query.

ORDER BY Criteria for ordering rows. Optional in a SELECT query.

INNER JOIN Merge rows from multiple tables.

INSERT Insert rows into a specified table.

UPDATE Update rows in a specified table.

DELETE Delete rows from a specified table.

 SELECT Statements

SQL is a language designed to be used with relational databases. There is a set of basic SQL

commands that is considered standard and is used by all RDBMSs. For example, all RDBMSs use the

SELECT statement.

A SELECT statement, also called a query, is used to get information from a table. It specifies one or

more column headings, one or more tables from which to select, and some criteria for selection. The

RDBMS returns rows of the column entries that satisfy the stated requirements. A SELECT statement

such as the following will fetch the first and last names of employees who have company cars:

SELECT First_Name, Last_Name

FROM Students

WHERE Matric_Number IS NOT NULL

The result set (the set of rows that satisfy the requirement of not having null in the Matric_Number

column) follows. The first name and last name are printed for each row that satisfies the requirement

144

because the SELECT statement (the first line) specifies the columns First_Name and Last_Name. The

FROM clause (the second line) gives the table from which the columns will be selected.

First_name Last_Name

Akinola Solomon

Abel John

Hammed F.

John Solomon

The following code produces a result set that includes the whole table because it asks for all of the

columns in the table Employees with no restrictions (no WHERE clause). Note that SELECT * means

"SELECT all columns."
SELECT *

FROM Students

 WHERE Clauses

The WHERE clause in a SELECT statement provides the criteria for selecting values. For example, in

the following code fragment, values will be selected only if they occur in a row in which the column

Last_Name begins with the string 'Jo'.

SELECT First_Name, Last_Name

FROM Students

WHERE Last_Name LIKE Jo%'

The keyword LIKE is used to compare strings, and it offers the feature that patterns containing

wildcards can be used. For example, in the code fragment above, there is a percent sign (%) at the end

of 'Jo', which signifies that any value containing the string 'Jo' plus zero or more additional characters

will satisfy this selection criterion. So ‘John' or 'Johnson' would be matches, but 'Jeoson' would not be.

The other wildcard used in LIKE clauses is an underbar (_), which stands for any one character. For

example,

WHERE Last_Name LIKE 'Ba_man'

would match 'Batman', 'Barman', 'Badman', 'Balman', 'Bagman', 'Bamman', and so on.

The code fragment below has a WHERE clause that uses the equal sign (=) to compare numbers. It

selects the first and last name of the student who is assigned car 12.

SELECT First_Name, Last_Name

FROM Students

WHERE Car_Number = 12

The next code fragment selects the first and last names of students whose Matric_number is greater

than 10005:

SELECT First_Name, Last_Name

FROM Students

WHERE Matric_Number > 10005

WHERE clauses can get rather elaborate, with multiple conditions and, in some DBMSs, nested

conditions. This overview will not cover complicated WHERE clauses, but the following code

fragment has a WHERE clause with two conditions; this query selects the first and last names of

students whose Matric_number is less than 10100 and who do not have a car.

SELECT First_Name, Last_Name

145

FROM Students

WHERE Matric_Number < 10100 and Car_Number IS NULL

A special type of WHERE clause involves a join, which is explained next.

 Joins

A distinguishing feature of relational databases is that it is possible to get data from more than one

table in what is called a join. Suppose that after retrieving the names of employees who have company

cars, one wanted to find out who has which car, including the make, model, and year of car. This

information is stored in another table, Cars, shown in Table 12.2.

Table 12.2. Cars

Car_Number Make Model Year

5 Honda Civic DX 1996

12 Toyota Corolla 1999

There must be one column that appears in both tables in order to relate them to each other. This

column, which must be the primary key in one table, is called the foreign key in the other table. In this

case, the column that appears in two tables is Car_Number, which is the primary key for the table

Cars and the foreign key in the table Students. If the 1996 Honda Civic were wrecked and deleted

from the Cars table, then Car_Number 5 would also have to be removed from the Students table in

order to maintain what is called referential integrity. Otherwise, the foreign key column

(Car_Number) in Students would contain an entry that did not refer to anything in Cars. A foreign key

must either be null or equal to an existing primary key value of the table to which it refers. This is

different from a primary key, which may not be null. There are several null values in the Car_Number

column in the table Students because it is possible for a student not to have a car.

The following code asks for the first and last names of Students who have cars and for the make,

model, and year of those cars. Note that the FROM clause lists both Students and Cars because the

requested data is contained in both tables. Using the table name and a dot (.) before the column name

indicates which table contains the column.

SELECT Students.First_Name, Students.Last_Name, Cars.Make, Cars.Model, Cars.Year

FROM Students, Cars

WHERE Students.Car_Number = Cars.Car_Number

This returns a result set that will look similar to the following:

FIRST_NAME LAST_NAME MAKE MODEL YEAR

----------- ------------ -------- --------- -------

Akinola Solomon Honda CivicDX 1996

Hammed F. Toyota Corolla 1999

 Common SQL Commands

SQL commands are divided into categories, the two main ones being Data Manipulation Language

(DML) commands and Data Definition Language (DDL) commands. DML commands deal with data,

either retrieving it or modifying it to keep it up-to-date. DDL commands create or change tables and

other database objects such as views and indexes.

A list of the more common DML commands follows:

146

 SELECT — used to query and display data from a database. The SELECT statement

specifies which columns to include in the result set. The vast majority of the SQL commands

used in applications are SELECT statements.

 INSERT — adds new rows to a table. INSERT is used to populate a newly created table or

to add a new row (or rows) to an already-existing table.

 DELETE — removes a specified row or set of rows from a table

 UPDATE — changes an existing value in a column or group of columns in a table

The more common DDL commands follow:

 CREATE TABLE — creates a table with the column names the user provides. The user also

needs to specify a type for the data in each column. Data types vary from one RDBMS to

another, so a user might need to use metadata to establish the data types used by a particular

database. CREATE TABLE is normally used less often than the data manipulation commands

because a table is created only once, whereas adding or deleting rows or changing individual

values generally occurs more frequently.

 DROP TABLE — deletes all rows and removes the table definition from the database. A

JDBC API implementation is required to support the DROP TABLE command as specified

by SQL92, Transitional Level. However, support for the CASCADE and RESTRICT options

of DROP TABLE is optional. In addition, the behavior of DROP TABLE is implementation-

defined when there are views or integrity constraints defined that reference the table being

dropped.

 ALTER TABLE — adds or removes a column from a table. It also adds or drops table

constraints and alters column attributes

 Result Sets and Cursors

The rows that satisfy the conditions of a query are called the result set. The number of rows returned

in a result set can be zero, one, or many. A user can access the data in a result set one row at a time,

and a cursor provides the means to do that. A cursor can be thought of as a pointer into a file that

contains the rows of the result set, and that pointer has the ability to keep track of which row is

currently being accessed. A cursor allows a user to process each row of a result set from top to bottom

and consequently may be used for iterative processing. Most DBMSs create a cursor automatically

when a result set is generated.

Earlier JDBC API versions added new capabilities for a result set's cursor, allowing it to move both

forward and backward and also allowing it to move to a specified row or to a row whose position is

relative to another row.

 Transactions

When one user is accessing data in a database, another user may be accessing the same data at the

same time. If, for instance, the first user is updating some columns in a table at the same time the

second user is selecting columns from that same table, it is possible for the second user to get partly

old data and partly updated data. For this reason, DBMSs use transactions to maintain data in a

consistent state (data consistency) while allowing more than one user to access a database at the same

time (data concurrency).

A transaction is a set of one or more SQL statements that make up a logical unit of work. A

transaction ends with either a commit or a rollback, depending on whether there are any problems

with data consistency or data concurrency. The commit statement makes permanent the changes

147

resulting from the SQL statements in the transaction, and the rollback statement undoes all changes

resulting from the SQL statements in the transaction.

A lock is a mechanism that prohibits two transactions from manipulating the same data at the same

time. For example, a table lock prevents a table from being dropped if there is an uncommitted

transaction on that table. In some DBMSs, a table lock also locks all of the rows in a table. A row lock

prevents two transactions from modifying the same row, or it prevents one transaction from selecting

a row while another transaction is still modifying it.

 Stored Procedures

A stored procedure is a group of SQL statements that can be called by name. In other words, it is

executable code, a mini-program that performs a particular task that can be invoked the same way one

can call a function or method. Traditionally, stored procedures have been written in a DBMS-specific

programming language. The latest generation of database products allows stored procedures to be

written using the Java programming language and the JDBC API. Stored procedures written in the

Java programming language are bytecode portable between DBMSs. Once a stored procedure is

written, it can be used and reused because a DBMS that supports stored procedures will, as its name

implies, store it in the database.

The following code is an example of how to create a very simple stored procedure using the Java

programming language. Note that the stored procedure is just a static Java method that contains

normal JDBC code. It accepts two input parameters and uses them to change a student’s car number.

Do not worry if you do not understand the example at this point. The code example below is presented

only to illustrate what a stored procedure looks like. You will learn how to write the code in this

example in the tutorials that follow.

import java.sql.*;

public class UpdateCar {

 public static void UpdateCarNum(int carNo, int empNo) throws SQLException {

 Connection con = null;

 PreparedStatement pstmt = null;

 try {

 con = DriverManager.getConnection("jdbc:default:connection");

 pstmt = con.prepareStatement("UPDATE STUDENTS SET

 CAR_NUMBER = ? " + "WHERE MATRIC_NUMBER = ?");

 pstmt.setInt(1, carNo);

 pstmt.setInt(2, Matric_number);

 pstmt.executeUpdate();

 }

 finally {

 if (pstmt != null) pstmt.close();

 }

 }

}

 Metadata

Databases store user data, and they also store information about the database itself. Most DBMSs

have a set of system tables, which list tables in the database, column names in each table, primary

keys, foreign keys, stored procedures, and so forth. Each DBMS has its own functions for getting

information about table layouts and database features. JDBC provides the interface

DatabaseMetaData, which a driver writer must implement so that its methods return information

about the driver and/or DBMS for which the driver is written. For example, a large number of

148

methods return whether or not the driver supports a particular functionality. This interface gives users

and tools a standardized way to get metadata. In general, developers writing tools and drivers are the

ones most likely to be concerned with metadata.

Example Code 1: Retrieving Data from a Database Table

Step 1: Create a Microsoft Access 2007 (or later) database having the following table schemas and

add some hypothetical records to the tables:

Student(Matric, Surname, FirstName, Middlename, Age, Gendar)

Course(CosCode, Title, Unit, Status)

Student_Course(Matric, CosCode, Session, Score)

Note: The primary keys are underlined for the tables.

Save the database name as Stud in the BIN subfolder of the Java toolkit.

Step 2: Set up the JDBC-ODBC bridge driver via the following steps:

(i) From the Start Menu, Click on Control Panel

(ii) Double-Click on Administrative tools

(iii) Double-Click on Data Sources (ODBC)

(iv) Click on Add

(v) Select Microsoft Access Driver (*.mdb, *.accdb) on the next pop-up window, then click on

Finish

(vi) Type Studs as the datasource name

(vii) Select the database via the Select button and then click on OK.

Step 3: Writing the Java Code

The first task in a JDBC program is to load the driver (or drivers) that will be used to connect to a

data source. A driver is loaded with the class.forName(String) method. Class, part of the java.lang

package, can be used to load classes into the Java interpreter. The forName(String) method loads

the class named by the specified string. A ClassNotFoundException can be thrown by this

method.

All programs that use an ODBC data sources use sun.jdbc.odbc.jdbcodbcDriver, the JDBC-ODBC

bridge driver included with java. Loading this class into a Java Interpreter requires the following

statement:

Class.forName(“sun.jdbc.odbc.jdbcOdbcDriver”);

After this driver has been loaded, you can establish a connection to the data source by using the

DriverManager class in the java.sql package.

The getConnection(String, String, String) method of DriverManager can be used to set up the

connection. It returns a reference to a connection object representing an active data connection. The

three arguments of this method are as follows:

 A name identifying the data source and the type of database connectivity used to reach it

 A username

 A password

149

The last two items are needed only if the data source is secured with a username and a password. If

not, these arguments can be null strings (“”). The name of the data source is preceded by the text

jdbc:odbc: when using the JDBC-ODBC bridge, which indicates the type of database connectivity in

use.

The following statement could be used to connect to a data source called Studs with a username of

“Lekan” and a password of “ola”:

Connection con = DriverManager.getConnection(“jdbc:odbc:Studs”, “Lekan”, “ola”);

After a connection is made, one can reuse it each time he wants to retrieve or store information from

that connection’s data source.

The getConnection() Method and all others called on a data source throw SQLException errors if

something goes wrong as the data source is being used. SQL has its own error messages, and they are

passed along as part of SQLException objects.

An SQL statement is represented in Java by a Statement object. Statement is an interface, so it can’t

be installed directly. However, an object that implements the interface is returned by the

CreateStatement() method of a connection object, as in the following example:

Statement st = con.createStatement();

This Statement object, st, would now be used to conduct an SQL query by calling the object’s

executeQuery(String) method as in the following example:

ResultSet rs = st.executeQuery("SELECT * " + "FROM Student " + "WHERE Matno < 400 " + “ORDER BY

 Gendar”);

 System.out.println("Matno \tSurname \tFirst Name \tMiddle Name \tAge \tGendar\n");

Note that the String argument should be an SQL query that follows the syntax of that language.

The above query retrieves all the fields in the Table Student from the Stud database and the records

are sorted according to the Gendar field because of the ORDER BY clause in the query. So all the

females would come before the males in the query result. You need to acquaint yourself with SQL

queries before you can effectively use them in your program.

If the SQL query has been phrased correctly, the executeQuery() method returns a ResultSet object

holding all the records that have been retrieved from the data source.

When a ResultSet is returned from executeQuery(), it is positioned at the first record that has been

retrieved. The following methods of ResultSet can be used to pull information from the current

record:

 getDate(String) – Returns the Date value stored in the specified field name (Using the Date

class in the java.sql package, not java.util.Date).

 getDouble(String) – Returns the double value stored in the specified field name.

 getFloat(String) – Returns the float value stored in the specified field name.

 getInt(String) – Returns the int value stored in the specified field name.

 getLong(String) – Returns the long value stored in the specified field name.

 getString(String) - Returns the string value stored in the specified field name.

These are just the simplest methods available in the Resultset interface. The methods used depend on

the form that the field data takes in the database, although methods such as getString() and getInt()

can be more flexible in the information they retrieve from a record.

150

We can also use an integer as the argument to any of these methods, such as getString(5), instead of a

string. The integer indicates which field to retrieve (1 for the first field, 2 for the second field and so

on).

After we have pulled the information needed from a record, we can move to the next record by calling

the next() method of the ResultSet object. This method returns a false Boolean value when it tries to

move past the end of a resultset. Normally, we move through a resultset once from start to finish,

after which its contents cannot be retrieved again.

When we are finished using a connection to a data source, we close it by calling the connection’s

close() method with no arguments.

An example program to illustrate all the above features is shown below.

The database table ‘Student’ used for the following program is shown below:

Student

Matno Surname FirstName MiddleName Age Gender

100 Chukwu Ann Mary 23 F

104 Michael Janet Tommy 21 F

123 Akinola Olalekan Solomon 20 M

345 John Josephine Eunice 23 F

456 Samson Jonathan Azikwe 50 M

789 Usman Momodu Karim 30 M

Example code: Retrieving Data from a Table in a Database

1. import java.sql.*;

2. public class database {

3. public static void main(String[] args) {

4. try {

5. Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

6. Connection con = DriverManager.getConnection

7. ("jdbc:odbc:Studs","","");

8. Statement st = con.createStatement();

9. ResultSet rs = st.executeQuery("SELECT * " + "FROM Student

10. " + "WHERE Matno < 400 " + “ORDER BY Gendar”);

11. System.out.println("Matno \tSurname \tFirst Name \tMiddle

12. Name \tAge \tGendar\n");

13. while (rs.next()) {

14. System.out.println(rs.getInt(1) + "\t" + rs.getString(2) +

15. "\t\t" + rs.getString(3) + "\t" + rs.getString(4) + "\t\t" +

16. rs.getInt(5) + "\t" + rs.getString(6));

17. } // end while

18. st.close();

19. } catch (SQLException s) {

20. System.out.println("SQL error: " + s.toString() + s.getErrorCode() +

21. " " + s.getSQLState());

22. } catch (Exception e) {

23. System.out.println("Error: " + e.toString() + e.getMessage());

24. }

25. }

26. }

151

 ‘

Practical Exercise

Copy the above code into an editor, modify the code such that the output is directed to a file, compile

and finally execute with a Microsoft Access Database set up initially.

12.4.5 ResultSet

An instance of ResultSet is returned from executeQuery(), and one or more instances may be returned

from execute(). A ResultSet is a representation of the data returned by your query, and it allows you

to process the results one row at a time. Before you can process a row, you must move the ResultSet’s

cursor (pointer) to that row, and the row that’s pointed to by the cursor is called the current row.

When a ResultSet is created, the cursor is initially positioned before the first row.

It’s helpful to review some ResultSet properties before describing the methods defined in that

interface, because its properties determine which of a ResultSet’s methods you’re able to use for a

particular instance and how they function.

 Forward-Only vs. Scrollable (Scrollability Type)

Scrollability describes the type of cursor movement that’s allowed, and a forward-only ResultSet

allows the cursor to be moved forward only one row at a time using the next() method. However,

with a scrollable ResultSet, you can use a variety of methods to position the cursor. It can be moved

forward or backward, and it can be moved in those directions by any number of rows. In addition, it’s

possible to move the cursor to a specific row (in other words, to use absolute instead of relative

positioning), including the first and last rows in the ResultSet.

 Read-Only vs. Updatable (Concurrency Mode)

ResultSet defines a large number of getXXX() methods that allow you to read column values from the

current row (for example, getString(), getFloat(), and so on), and it includes a

corresponding updateXXX() method for each getXXX(). While it’s always possible to call the

read/get methods, a ResultSet’s concurrency mode determines whether you can use the write/update

methods. As its name implies, a read-only ResultSet allows you only to read the data, while an

updatable ResultSet allows you both to read the data and to modify it through the ResultSet.

 Update Sensitivity

While you’re using a ResultSet to process the results of a query, it’s usually possible for other

users/applications to modify the rows in the database that were returned by your query. Update

sensitivity indicates whether the ResultSet will reflect changes that are made to the underlying data

after the ResultSet is created. Those updates are known as “changes by others” to distinguish them

from changes made to the data using an updatable ResultSet’s updateXXX() methods.

152

If you call a getXXX() method to read data from the current row, a sensitive ResultSet will return the

data stored in the underlying database even if the data was changed by another user after the ResultSet

was created. However, an insensitive ResultSet doesn’t detect such changes and may return outdated

information.

Update sensitivity doesn’t imply that a ResultSet is sensitive to all types of changes. For example, a

ResultSet might be sensitive to row deletions but not to row updates or insertions.

In addition, a ResultSet’s sensitivity to “changes by others” can be different from its sensitivity to its

own changes (modifications to the data made through the updateXXX() methods). However,

DatabaseMetaData provides methods that allow you to determine which types of changes are visible

for a given ResultSet type.

 Selecting ResultSet Properties

To set the scrollability, concurrency, and sensitivity properties, you must specify the appropriate

values when creating a Statement. The code segments shown earlier used the createStatement()

method that doesn’t accept any parameter values, but another version of createStatement() allows you

to specify two integer values representing ResultSet properties:

int resultSetType, resultSetConcurrency;

// ...

Statement stmt = con.createStatement(resultSetType,

resultSetConcurrency);

The resultSetType parameter represents a combination of the scrollability and sensitivity properties,

and it should be assigned one of the following constants defined in ResultSet:

TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE.

The resultSetConcurrency value represents the concurrency mode for ResultSet instances created by

this statement and should be assigned the value of either CONCUR_READ_ONLY or

CONCUR_UPDATABLE.

You can use these constants and the createStatement() method shown previously to create a

Statement that will produce ResultSet instances with the desired properties. For example, you can use

code similar to the following to create a Statement and request that the ResultSet instances it creates

be scrollable, sensitive to others’ changes, and updatable:

Statement stmt = connect.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

Note that if you specify a type of ResultSet that’s not supported by the driver, it won’t generate an

error when createStatement() is called. Instead, the Statement will produce ResultSet instances that

match the type you requested as closely as possible. In this case, for example, if the driver supports

updatable ResultSet instances but not scrolling, it will create forward-only instances that are

updatable.

12.4.6 PreparedStatement

When you call one of Statement’s execute() methods, the SQL statement specified is “compiled” by

the JDBC driver before being sent to the DBMS. In many cases, you’ll want to execute multiple

statements that are similar and may differ only by a single parameter value. For example, you might

execute SQL statements like these:

153

Statement stmt = connect.createStatement();

stmt.executeUpdate(

"UPDATE MYTABLE SET FNAME = 'Jacob' WHERE CUSTID = 123");

stmt.executeUpdate(

"UPDATE MYTABLE SET FNAME = 'Jordan' WHERE CUSTID = 456");

stmt.executeUpdate(

"UPDATE MYTABLE SET FNAME = 'Jeffery' WHERE CUSTID = 789");

Compiling each SQL statement can result in poor performance if a large number of statements are

executed. However, this example illustrates the usefulness of PreparedStatement, which is a subclass

of Statement. PreparedStatement allows you to compile a statement one time and use substitution

parameters to modify the final SQL statement that’s executed. In this case, for example, you might

create a PreparedStatement using code like this:

PreparedStatement pstmt = connect.prepareStatement(

"UPDATE MYTABLE SET FNAME = ? WHERE CUSTID = ?");

The two question marks (?) in the statement represent substitution parameters, and you can use the

setXXX() methods defined in PreparedStatement to specify values for those fields.

For example, the following code is functionally equivalent to the group of statements used earlier:

PreparedStatement pstmt = connect.prepareStatement(

"UPDATE MYTABLE SET FNAME = ? WHERE CUSTID = ?");

pstmt.setString(1, "Jacob");

pstmt.setInt(2, 123);

pstmt.executeUpdate();

pstmt.setString(1, "Jordan");

pstmt.setInt(2, 456);

pstmt.executeUpdate();

pstmt.setString(1, "Jeffery");

pstmt.setInt(2, 789);

pstmt.executeUpdate();

This approach is much more efficient because the statement is compiled only once, but it’s executed

several times. Note that the substitution field index values are one-based instead of zero-based,

meaning that the first question mark corresponds to field 1, the second to field 2, and so on.

Another advantage of using a PreparedStatement instead of a Statement is that it partially insulates

your application from the details of creating a valid SQL statement.

The next example program add more data into the Student table:

Example Program: Inserting Data into a Database Table

1. import java.sql.*;

2. import java.util.*;

3. class database2 {

4. public static void main(String[] args) {

5. Scanner input = new Scanner(System.in);

6. try {

7. Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

8. Connection con = DriverManager.get

 9. Connection ("jdbc:odbc:Studs","","");

10.

11. PreparedStatement st = con.prepareStatement("INSERT INTO " +

154

12. "Student(Matno, Surname, FirstName, MiddleName, Age,

13. Gendar)" + "VALUES(?, ?, ?, ?, ?, ?)");

14. L1: //Label for a case when data is not correct

15. while (true) { // to continuously add records

16.

17. System.out.println("Enter the new matric number (e.g. 234: ");

18. String a = input.next();

19. st.setString(1, a);

20.

21. System.out.println("Enter the new Surname: ");

22. String b = input.next();

23. st.setString(2, b);

24.

25. System.out.println("Enter the new First name: ");

26. String c = input.next();

27. st.setString(3, c);

28.

29. System.out.println("Enter the new Middle name: ");

30. String d = input.next();

31. st.setString(4, d);

32.

33. System.out.println("Enter the new Age: ");

34. String e = input.next();

35. st.setString(5, e);

36.

37. System.out.println("Enter the new Gendar: ");

38. String f = input.next();

39. st.setString(6, f);

40

41. // Check if there is no error in the data captured

42. System.out.println(“No Mistakes, add records to the

43. databse (Y/N)?”);

44. String reply1 = input.next();

45. if (reply1.equalsIgnoreCase(“n”))

46. break L1; //Move to label L1 if no problem

47.

48. //update the database table

49.

50. st.executeUpdate();

51.

52. System.out.println("Add more records (Y/N)?");

53. String reply = input.next();

54. if (reply.equalsIgnoreCase("n"))

55. break; // go out of loop to close database

56. } // loop for more record update

57. con.close(); // close database connection

58. } catch (SQLException s) {

59. System.out.println("SQL error: " + s.toString() +

60. s.getErrorCode() + " " + s.getSQLState());

61. } catch (ClassNotFoundException cnfe) {

62. System.out.println("Error: " + cnfe.getMessage());

63. }

64. } // end method main

65. } // end class database2

155

The structure of the Table Student after several data insertions is shown below.

Student

Matno Surname FirstName MiddleName Age Gendar

1 Bamgbade Joseph Adeolu 41 M

2 Mohammed Abdulkareem Sheu 27 M

4 Ado Bayero Audu 67 M

56 Ajala Olaoluwa Omooluwa 45 m

100 Chukwu Ann Mary 23 F

104 Michael Janet Tommy 21 F

106 Balogun Adeolu Ibukun 21 M

111 Augustine Nnena Abigael 34 F

123 Akinola Olalekan Solomon 20 M

124 Michael Sandra mary 24 F

333 Amodu Usman Muhammed 25 M

345 John Josephine Eunice 23 F

456 Samson Jonathan Azikwe 50 M

675 Kazeem Bright James 54 M

789 Usman Momodu Karim 30 M

An attempt to insert a record with the same matric number to the table would result into an error. This

is because duplication of records is not allowed with the use of primary key in a table. The sample

output obtained for this observation is shown below:

156

It is easier to send Microsoft Access strings and let the database program converts them automatically

into the correct format as in Matno and Age which are integer data in the database, but string are used

for them in the program above (Lines 17 – 19 and 33 – 35).

17. System.out.println("Enter the new matric number (e.g. 234: ");

18. String a = input.next();

19. st.setString(1, a);

33. System.out.println("Enter the new Age: ");

34. String e = input.next();

35. st.setString(5, e);

However, level of SQL support varies based on the product and ODBC driver involved.

After the prepared statement has been prepared and all the placeholders are filled, the statement’s

executeUpdate() method is called (Line 50). This either adds the quote data to the database or throws

an SQL error.

50. st.executeUpdate();

The while (true) loop assists the user of the program to add more records into the database at a go.

Note lines 41 – 46, the lines check the data to be inserted into the database for correctness.

41. // Check if there is no error in the data captured

42. System.out.println(“No Mistakes, add records to the

43. databse (Y/N)?”);

44. String reply1 = input.next();

45. if (reply1.equalsIgnoreCase(“n”))

46. break L1; //Move to label L1 if no problem

If the user has made a mistake in entering one of the data, the entire record will not be inserted into

the database. This however could be painful especially if a large data entry is involved. How can you

validate the data as they are being entered so that not all the data will be discarded at once?

After a successful insertion of a record or not, the program still asks the user if he wants to insert more

records. This is achived in Lines 52 – 56. if the reply is yes, the user is asked to enter his new record

fields.

52. System.out.println("Add more records (Y/N)?");

53. String reply = input.next();

54. if (reply.equalsIgnoreCase("n"))

55. break; // go out of loop to close database

157

56. } // loop for more record update

12.4.7 Moving Through Resultsets

The default behaviour of resultsets permits one trip through the set using its next() method to retrieve

each record. By changing how statements and prepared statements are created, one can produce

resultsets that support these additional methods:

 afterLast() - Moves to a place immediately after the last record in the set

 beforeFirst() - Moves to a place immediately before the last record in the set

 first() - Moves to the first record in the set

 last() – Moves to the last record in the set

 previous() – Moves to the previous record in the set.

These actions are possible when the resultset’s policies have been specified as arguments to a

database connection’s createStatement() and prepareStatement() methods.

For a more flexible resultset, call createStatement () with three integer arguments that set up how it

can be used. Here is an example:

Statement st = con.CreateStatement (

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY,

 ResultSet.CLOSE_CURSORS_AT_COMMIT);

The same three arguments can be used in the prepareStatement(String, int, int, int) method after the

text of the statement.

12.4.8 Dealing With Multiple Tables (Joins)

Sometimes you need to use two or more tables to get the data you want. A join is a database operation

that relates two or more tables by means of values that they share in common. In our example

database, the tables STUDENT and STUDENT_COUSE both have the column Matno, which can be

used to join them.

You need some way to distinguish to which Matno column you are referring. This is done by

preceding the column name with the table name, as in "Student.Matno" to indicate that you mean the

column Matno in the table Student. The example program below illustrates the concept of Join. Learn

more of SQL in a database textbook in order to get the logic of joins in databases.

Example Program: Retrieving Data from Two Tables
1. import java.sql.*;

2. public class database3 {

3. public static void main(String[] args) {

4. try {

5. Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

6. Connection con = DriverManager.getConnection

7. ("jdbc:odbc:Studs","","");

8. Statement st = con.createStatement();

9. ResultSet rs = st.executeQuery("SELECT

10. Student_Course.Matno,

11. Student_Course.CosCode, Session, Score " +

12. "FROM Student, Course,

13. Student_Course " + "WHERE Student.Matno

14. = Student_Course.matno

15. and Course.CosCode =

158

16. Student_Course.CosCode");

17. System.out.println("Matno \tCourse Code \t

18. Session \tScore\n");

19. while (rs.next()) {

20. System.out.println(rs.getInt(1) + "\t" +

21. rs.getString(2) + "\t\t" + rs.getString(3) +

22. "\t\t" + rs.getString(4));

23. } // end while

24. st.close();

25. } catch (SQLException s) {

26. System.out.println("SQL error: " + s.toString() +

27. s.getErrorCode() + " " + s.getSQLState());

28. } catch (Exception e) {

29. System.out.println("Error: " + e.toString() +

30. e.getMessage());

31. }

32. }

33. }

12.4.9 Database Search

Sometimes we may be interested in searching a record or group of records from a table in a database.

Prepared statement is useful in this case for handling the query. The example below is a program that

searches for a particular student in the Student table in our database. The program firstly asks for the

Matric number of the student being searched for. If the Matric number is found, the program prints

out his/her Matric number, Surname, Age and Gender. But if the number is not found in the database

table, an empty record is printed.

Example Program: Searching for a record
1. import java.sql.*;

2. import java.util.*;

3. public class database4 {

4. public static void main(String[] args) {

5. // searching for a record

6. Scanner input = new Scanner(System.in);

7. boolean found = true;

8. try {

9. Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

10. Connection con = DriverManager.getConnection

11. ("jdbc:odbc:Studs","","");

12. L1: while (true){

13. System.out.println("Enter the Student's matric number: ");

14. String mat = input.next(); // get matric no of the student

15.

16. // prepare the query statement

17 PreparedStatement st = con.prepareStatement("SELECT

18. * " + "FROM Student " + "WHERE Matno = ? ");

19.

20. // Set the place holder ? with a value

21. st.setString(1, mat);

159

22.

23. // Execute the query

24. ResultSet rs = st.executeQuery();

25.

26. boolean g = rs.next(); // Set next record pointer to g

27. while (true) {

28. if (g != false) {

29.

30. System.out.println("\nMatno \tSurname \t Age

31. \tGendar\n"); // Heading Titles

32.

33. // Printing record found

34. System.out.println(rs.getString("Matno") + "\t"

35. + rs.getString("Surname") + "\t\t" + rs.get

36. String("Age") + "\t" + rs.getString("Gendar"));

37.

38. break L1;

39.

40. } else {

41. System.out.println("The record you search for is

42. not found \nDo you want to try again (Y/N)?");

43. String reply = input.next();

44. if (reply.equalsIgnoreCase("y"))

45. continue L1;

46. else

47. System.exit(0);

48. System.out.println("Good Bye");

49. }// end outer else

50. st.close();

51. }// end inner while

52.

53. } // end L1 while

54.

55. } catch (SQLException s) {

56. System.out.println("SQL error: " + s.toString() +

57. s.getErrorCode() + " " + s.getSQLState());

58. } catch (Exception e) {

59. System.out.println("Error: " + e.toString() + e.getMessage());

60. }

61. System.out.println();

62. } // End method main

63. } // End class database4

Sample Outputs:

160

The query for searching for a record in the database is implemented with the use of

PreparedStatement (Lines 17 – 18). In Line 21, the place holder (?) in the query is assigned with the

Matno (mat) of the student earlier captured in Lines 13 – 14. The query is finally executed in Line

24. At the point, the record set pointer rs would be assigned to the first record in the table.

Note that rs.next() specified in Line 26 only tests if there is any ‘next record’ in the table and so it

returns a true or false boolean value.

27. L2: while (true) {

Line 27 while loop is labeled as L2 for the program to be able to repeat the code again in case the

record being searched for is not found and the user of the program still wants to search for another

matric number. This is achieved with lines Lines 44 – 45 with the use of continue with label

statement.

44. if (reply.equalsIgnoreCase("y"))

45. continue L1;

However, Line 27 is also used to terminate the entire program if what we looked for has been found

and reported. This is achieved with the use of break with label in Line 38.

38. break L1;

With this introduction to database handling in Java, powerful database-driven programs could be

developed by you with no stress.

161

Post Test

1. Think of an information system for a school library, implement a Java program that can be

used for monitoring borrowing and returning of books in the library.

Perform a system analysis study of how your results are computed in your school. Write a java-based

information system for computing final year results in your department.

Summary

In this Chapter, you have been introduced to Java Database Connectivity (JDBC).

You were taken through a database concept as seen with Microsoft Access. Codes

implementations with Java were demonstrated with JDBC. JDBC can also be used on

any other database engine like Oracle and MySQL. Find out!

