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Vice-Chancellor’s Message 

The Distance Learning Centre is building on a solid tradition of over two decades of service 

in the provision of External Studies Programme and now Distance Learning Education in 

Nigeria and beyond. The Distance Learning mode to which we are committed is providing 

access to many deserving Nigerians in having access to higher education especially those who 

by the nature of their engagement do not have the luxury of full time education. Recently, it is 

contributing in no small measure to providing places for teeming Nigerian youths who for one 

reason or the other could not get admission into the conventional universities. 

These course materials have been written by writers specially trained in ODL course delivery. 

The writers have made great efforts to provide up to date information, knowledge and skills in 

the different disciplines and ensure that the materials are user-friendly.  

In addition to provision of course materials in print and e-format, a lot of Information 

Technology input has also gone into the deployment of course materials. Most of them can be 

downloaded from the DLC website and are available in audio format which you can also 

download into your mobile phones, IPod, MP3 among other devices to allow you listen to the 

audio study sessions. Some of the study session materials have been scripted and are being 

broadcast on the university’s Diamond Radio FM 101.1, while others have been delivered and 

captured in audio-visual format in a classroom environment for use by our students. Detailed 

information on availability and access is available on the website. We will continue in our 

efforts to provide and review course materials for our courses. 

However, for you to take advantage of these formats, you will need to improve on your I.T. 

skills and develop requisite distance learning Culture. It is well known that, for efficient and 

effective provision of Distance learning education, availability of appropriate and relevant 

course materials is a sine qua non. So also, is the availability of multiple plat form for the 

convenience of our students. It is in fulfilment of this, that series of course materials are being 

written to enable our students study at their own pace and convenience. 

It is our hope that you will put these course materials to the best use. 
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Foreword 

As part of its vision of providing   education for “Liberty and Development” for Nigerians 

and the International Community, the University of Ibadan, Distance Learning Centre has 

recently embarked on a vigorous repositioning agenda which aimed at embracing a holistic 

and all encompassing approach to the  delivery of its Open Distance Learning (ODL) 

programmes. Thus we are committed to global best practices in distance learning provision. 

Apart from providing an efficient administrative and academic support for our students, we 

are committed to providing educational resource materials for the use of our students. We are 

convinced that, without an up-to-date, learner-friendly and distance learning compliant course 

materials, there cannot be any basis to lay claim to being a provider of distance learning 

education. Indeed, availability of appropriate course materials in multiple formats is the hub 

of any distance learning provision worldwide.  

In view of the above, we are vigorously pursuing as a matter of priority, the provision of 

credible, learner-friendly and interactive course materials for all our courses. We 

commissioned the authoring of, and review of course materials to teams of experts and their 

outputs were subjected to rigorous peer review to ensure standard. The approach not only 

emphasizes cognitive knowledge, but also skills and humane values which are at the core of 

education, even in an ICT age. 

The development of the materials which is on-going also had input from experienced editors 

and illustrators who have ensured that they are accurate, current and learner-friendly. They are 

specially written with distance learners in mind. This is very important because, distance 

learning involves non-residential students who can often feel isolated from the community of 

learners.  

It is important to note that, for a distance learner to excel there is the need to source and read 

relevant materials apart from this course material. Therefore, adequate supplementary reading 

materials as well as other information sources are suggested in the course materials.  

Apart from the responsibility for you to read this course material with others, you are also 

advised to seek assistance from your course facilitators especially academic advisors during 

your study even before the interactive session which is by design for revision. Your academic 

advisors will assist you using convenient technology including Google Hang Out, You Tube, 

Talk Fusion, etc. but you have to take advantage of these. It is also going to be of immense 

advantage if you complete assignments as at when due so as to have necessary feedbacks as a 

guide. 

The implication of the above is that, a distance learner has a responsibility to develop 

requisite distance learning culture which includes diligent and disciplined self-study, seeking 

available administrative and academic support and acquisition of basic information 

technology skills. This is why you are encouraged to develop your computer skills by availing 

yourself the opportunity of training that the Centre’s provide and put these into use.  

 

 

 

 

 



In conclusion, it is envisaged that the course materials would also be useful for the regular 

students of tertiary institutions in Nigeria who are faced with a dearth of high quality 

textbooks. We are therefore, delighted to present these titles to both our distance learning 

students and the university’s regular students.  We are confident that the materials will be an 

invaluable resource to all. 

We would like to thank all our authors, reviewers and production staff for the high quality of 

work. 

 

Best wishes. 

 

 

Professor Bayo Okunade 

Director 
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About this course manual 

Algorithm Design and Analysis CSC 236 has been produced by 

University of Ibadan Distance Learning Centre. All course manuals 

produced by University of Ibadan Distance Learning Centreare structured 

in the same way, as outlined below. 

 

How this course manual is 

structured 

The course overview 
The course overview gives you a general introduction to the course. 

Information contained in the course overview will help you determine: 

 If the course is suitable for you. 

 What you will already need to know. 

 What you can expect from the course. 

 How much time you will need to invest to complete the course. 

The overview also provides guidance on: 

 Study skills. 

 Where to get help. 

 Course assignments and assessments. 

 Margin icons. 

We strongly recommend that you read the overview carefully before 

starting your study. 

The course content 
The course is broken down into Study Sessions. Each Study Session 

comprises: 

 An introduction to the Study Session content. 

 Study Session outcomes. 

 Core content of the Study Session with a variety of learning activities. 

 A Study Session summary. 

 Assignments and/or assessments, as applicable. 

 Bibliography 
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Your comments 
After completing Algorithm Design and Analysis we would appreciate it 

if you would take a few moments to give us your feedback on any aspect 

of this course. Your feedback might include comments on: 

 Course content and structure. 

 Course reading materials and resources. 

 Course assignments. 

 Course assessments. 

 Course duration. 

 Course support (assigned tutors, technical help, etc.) 

Your constructive feedback will help us to improve and enhance this 

course. 
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Course Overview 

 

Welcome to Algorithm Design 

and Analysis CSC 2366 

CSC 236 (Algorithm Design and Analysis) is a three [3] credit unit 

course dealing with the fundamentals concepts of Algorithm designing 

and Analysis techniques. Several sorting and searching techniques are 

explored in the course.  

The study material provides adequate background information that is 

relevant for students to understand the concept of algorithms’ analysis. 

The course is divided into two modules. The first module introduces 

students to the algorithm design using sorting and searching techniques. 

The second module is on the analysis of algorithms; how to measure the 

time complexities of algorithms. 

The Course Contents includes abstract data types, design patterns, 

algorithmic issues, Searching and sorting, complexity theory, the 

application and implementation of common data structures in a specific 

programming language. 

This is a 3 Units, Required course. 
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Getting around this course manual 

Margin icons 

While working through this course manual you will notice the frequent 

use of margin icons. These icons serve to “signpost” a particular piece of 

text, a new task or change in activity; they have been included to help you 

to find your way around this course manual. 

A complete icon set is shown below. We suggest that you familiarize 

yourself with the icons and their meaning before starting your study. 

 

 

 

  

Activity Assessment Assignment Case study 

   
 

Discussion Group Activity Help Outcomes 

 

 

 
 

Note Reflection Reading Study skills 

  
 

 

Summary Terminology Time Tip 
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Study Session 1 

Meaning, Importance and Types of 

Algorithms 

Introduction 
In this session, you will be examining the meaning, importance and 

types of Algorithms. You will begin by describing correct 

algorithms. Thereafter, you will discuss the algorithms 

performance. This will lead to the explanation of how algorithms 

work. In addition, you will highlight the different classifications 

and importance of algorithms.  

 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

1.1 define algorithm 

1.2 explain how algorithms work 

1.3 classify algorithms 

1.4 state the importance of algorithm 

Terminology 

Algorithm A process or set of rules to be followed in calculations or 
other problem-solving operations, especially by a 
computer. 

Mergsort In computer science, merge sort (also commonly spelled 
mergesort) is an efficient, general-purpose, comparison-
based sorting algorithm. 

Optimization An act, process, or methodology of making something (as 
a design, system, or decision) as fully perfect, functional, 
or effective as possible 
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1.1 What is an Algorithm? 
Informally, an algorithm is any well-defined computational procedure 

that takes some value, or set of values, as input and produces some value, 

or set of values, as output. An algorithm is thus a sequence of 

computational steps that transform the input into the output. We can also 

view an algorithm as a tool for solving a well-specified computational 

problem. The following are the requirements for an algorithm:  

1. An algorithm is a finite set of instructions that, if followed, 

accomplishes a particular task.  

2. All algorithms must satisfy the following criteria:  

3. Zero or more input values  

4. One or more output values  

5. Clear and unambiguous instructions  

6. Atomic steps that take constant time  

7. No infinite sequence of steps (help, the halting problem)  

8. Feasible with specified computational device  

An algorithm can be specified in English, as a computer program, or even 

as a hardware design. The only requirement is that the specification must 

provide a precise description of the computational procedure to be 

followed. 

 ITQ 

Question 

What do algorithms require? 

Feedback 

All algorithms must have: input values, output values, finite set of 

instructions. 

1.1.1 Correct Algorithms 

An algorithm is said to be correct if, for every input instance, it halts with 

the correct output. We say that a correct algorithm solves the given 

computational problem. An incorrect algorithm might not halt at all on 

some input instances, or it might halt with an answer other than the 

desired one. Contrary to what one might expect, incorrect algorithms can 

sometimes be useful, if their error rate can be controlled. 

1.1.2 Algorithm’s Performance 

Whether we are designing an algorithm or applying one that is widely 

accepted, it is important to understand how the algorithm will perform. 

There are a number of ways we can look at an algorithm's performance, 

but usually the aspect of most interest is how fast the algorithm will run. 

In some cases, if an algorithm uses significant storage, we may be 

interested in its space requirement as well. Whatever the case, 

determining how an algorithm performs requires a formal and 

deterministic method. 
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There are many reasons to understand the performance of an algorithm. 

For example, we often have a choice of several algorithms when solving 

problems. Understanding how each performs helps us differentiate 

between them. Understanding the burden an algorithm places on an 

application also helps us plan how to use the algorithm more effectively. 

For instance, garbage collection algorithms, algorithms that collect 

dynamically allocated storage to return to the heap, require considerable 

time to run. Knowing this, we can be careful to run them only at 

opportune moments, just as LISP and Java do, for example. 

1.2 How Do Algorithms Work? 
Let's take a closer look at an example.  

A very simple example of an algorithm would be to find the largest 

number in an unsorted list of numbers. If you were given a list of five 

different numbers, you would have this figured out in no time, no 

computer needed. Now, how about five million different numbers? 

Clearly, you are going to need a computer to do this, and a computer 

needs an algorithm.  

Here is what the algorithm could look like. Let's say the input consists of 

a list of numbers, and this list is called L. The number L1 would be the 

first number in the list, L2 the second number, etc. And we know the list 

is not sorted - otherwise the answer would be really easy. So, the input to 

the algorithm is a list of numbers, and the output should be the largest 

number in the list.  

The algorithm would look something like this:  

Step 1: Let Largest = L1 

This means you start by assuming that the first number is the largest 

number.  

Step 2: For each item in the list: 

This means you will go through the list of numbers one by one.  

Step 3: If the item Largest: 

If you find a new largest number, move to step four. If not, go back to 

step two, which means you move on to the next number in the list.  

Step 4: Then Largest = the item 

This replaces the old largest number with the new largest number you just 

found. Once this is completed, return to step two until there are no more 

numbers left in the list.  

Step 5: Return Largest 

This produces the desired result.  

Notice that the algorithm is described as a series of logical steps in a 

language that is easily understood. For a computer to actually use these 

instructions, they need to be written in a language that a computer can 

understand, known as a programming language.  
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 ITQ 

Question 

In which language is an algorithm written in? 

Feedback 

An algorithm is written in programming language. That is the only 

language the computer understands. 

1.3 Classifications / Types of Algorithms 
There is no one “correct” classification for algorithms. However, 

algorithms are classified based on certain attributes. 

Algorithms that use a similar problem-solving approach can be grouped 

together. This classification scheme is neither exhaustive nor disjoint. 

The purpose is not to be able to classify an algorithm as one type or 

another, but to highlight the various ways in which a problem can be 

attacked. 

A short list of categories is given below: 

1. Simple recursive algorithms 

2. Backtracking algorithms 

3. Divide and conquer algorithms 

4. Dynamic programming algorithms 

5. Greedy algorithms 

6. Branch and bound algorithms 

7. Brute force algorithms 

8. Randomized algorithms 

1.3.1 Simple Recursive Algorithms 

A simple recursive algorithm: 

1. Solves the base cases directly 

2. Recurs with a simpler sub-problem  

3. Does some extra work to convert the solution to the simpler sub-

problem into a solution to the given problem 

They are “simple” because several of the other algorithm types are 

inherently recursive 

Example recursive algorithms: 

1. To count the number of elements in a list: 

– If the list is empty, return zero; otherwise, 

– Step past the first element, and count the remaining 

elements in the list 

– Add one to the result 

2. To test if a value occurs in a list: 

– If the list is empty, return false; otherwise, 

– If the first thing in the list is the given value, return true; 

otherwise 
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– Step past the first element, and test whether the value 

occurs in the remainder of the list 

1.3.2 Backtracking Algorithms 

Backtracking algorithms are based on a depth-first recursive search 

A backtracking algorithm Example: 

Tests to see if a solution has been found, and if so, returns it; otherwise 

For each choice that can be made at this point do 

1. Make that choice 

2. Recur 

3. If the recursion returns a solution, return it 

4. End do 

5. If no choices remain, return failure 

Second Example: 

1. To color a map with no more than four colors: 

– color(Country n) 

2. If all countries have been colored (n > number of countries) 

return success; otherwise 

3. For each color c of four colors, 

4. If country n is not adjacent to a country that has been colore 

 Color country n with color c 

 recursivly color country n+1  

 If successful, return success 

 Return failure (if loop exits) 

1.3.3 Divide and Conquer 

A divide and conquer algorithm consists of two parts: 

1. Divide the problem into smaller subproblems of the same type, 

and solve these subproblems recursively 

2. Combine the solutions to the subproblems into a solution to the 

original problem 

Traditionally, an algorithm is only called divide and conquer if it contains 

two or more recursive calls 

Examples: 

1. Quicksort: 

– Partition the array into two parts, and quicksort each of 

the parts 

– No additional work is required to combine the two sorted 

parts 

2. Mergesort:  

– Cut the array in half, and mergesort each half 

– Combine the two sorted arrays into a single sorted array 

by merging them 

3. Binary tree lookup 

Here’s how to look up something in a sorted binary tree: 
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1. Compare the key to the value in the root 

2. If the two values are equal, report success 

3. If the key is less, search the left subtree  

4. If the key is greater, search the right subtree  

This is not a divide and conquer algorithm because, although there are 

two recursive calls, only one is used at each level of the recursion 

1.3.4 Dynamic programming algorithms 

A dynamic programming algorithm remembers past results and uses them 

to find new results 

Dynamic programming is generally used for: 

1. optimization problems 

2. Multiple solutions exist, need to find the “best” one 

3. Requires “optimal substructure” and “overlapping subproblems” 

4. Optimal substructure: Optimal solution contains optimal 

solutions to subproblems  

5. Overlapping subproblems: Solutions to subproblems can be 

stored and reused in a bottom-up fashion 

This differs from Divide and Conquer, where subproblems generally need 

not overlap 

Example: Fibonacci numbers 

To find the nth Fibonacci number: 

1. If n is zero or one, return one; otherwise, 

2. Compute, or look up in a table, fibonacci(n-1) and fibonacci(n-2 

3. Find the sum of these two numbers 

4. Store the result in a table and return it 

Since finding the nth Fibonacci number involves finding all smaller 

Fibonacci numbers, the second recursive call has little work to do. The 

table may be preserved and used again later. 

 ITQ 

Question 

Algorithms are classified based on_______ 

Feedback 

As earlier stated in the text, algorithm are classified based on ‘certain 

attributes’. For instance, algorithms that use a similar problem-solving 

approach can be grouped together.  

1.3.5 Greedy algorithms 

An optimization problem is one in which we want to find, not just a 

solution, but the best solution. 

A “greedy algorithm” sometimes works well for optimization problems. 

A greedy algorithm works in phases: At each phase: 
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1. We take the best we can get right now, without regard for future 

consequences 

2. We hope that by choosing a local optimum at each step, we will 

end up at a global optimum 

Example: Counting money 

Suppose we want to count out a certain amount of money, using the 

fewest possible bills and coins, a greedy algorithm that would do this 

would be: At each step, take the largest possible bill or coin that does not 

overshoot. 

Example: To make N6.39, you can choose: 

 a N5 bill 

 a N1 bill, to make N 6 

 a 25K coin, to make N 6.25 

 A 10K coin, to make N 6.35 

 four 1K coins, to make N 6.39 

 For the Naira and Kobo money, the greedy algorithm always 

gives the optimum solution 

A failure of the greedy algorithm 

In some (fictional) monetary system, “krons” come in 1 kron, 7 kron, and 

10 kron coins 

Using a greedy algorithm to count out 15 krons, you would get 

1. A 10 kron piece 

2. Five 1 kron pieces, for a total of 15 krons  

3. This requires six coins 

A better solution would be to use two 7 kron pieces and one 1 kron piece. 

This only requires three coins. The greedy algorithm results in a solution, 

but not in an optimal solution 

1.3.6 Branch and bound algorithms 

Branch and bound algorithms are generally used for optimization 

problems. As the algorithm progresses, a tree of sub-problems is formed. 

The original problem is considered the “root problem”. A method is used 

to construct an upper and lower bound for a given problem. At each node, 

apply the bounding methods. If the bounds match, it is deemed a feasible 

solution to that particular sub-problem. If bounds do not match, partition 

the problem represented by that node, and make the two sub-problems 

into children nodes. Continue, using the best known feasible solution to 

trim sections of the tree, until all nodes have been solved or trimmed 

Example branch and bound algorithm 

Travelling sales-man problem: A salesman has to visit each of n cities (at 

least) once each, and wants to minimize total distance travelled. 

1. Consider the root problem to be the problem of finding the 

shortest route through a set of cities visiting each city once 

2. Split the node into two child problems: 

 Shortest route visiting city A first 
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 Shortest route not visiting city A first 

3. Continue subdividing similarly as the tree grows 

1.3.7 Brute force algorithm 

A brute force algorithm simply tries all possibilities until a satisfactory 

solution is found. Such an algorithm can be: 

1 Optimizing: Find the best solution. This may require finding all 

solutions, or if a value for the best solution is known, it may stop 

when any best solution is found.  

Example: Finding the best path for a travelling salesman 

2 Satisfying: Stop as soon as a solution is found that is good 

enough. 

Example: Finding a travelling salesman path that is within 10% 

of optimal 

Often, brute force algorithms require exponential time. Various heuristics 

and optimizations can be used. These are: 

1. Heuristic: A “rule of thumb” that helps you decide which 

possibilities to look at first 

2. Optimization: In this case, a way to eliminate certain possibilities 

without fully exploring them. 

 ITQ 

Question 

What attribute qualifies an algorithm as a divide and conquer type? List 

two examples of divide and conquer algorithm? 

Feedback 

As earlier stated in the text, an algorithm is only called divide and 

conquer if it contains two or more recursive calls. Two examples of 

divide and conquer algorithm are Quicksort and Mergesort. 

1.3.8 Randomized algorithms 

A randomized algorithm uses a random number at least once during the 

computation to make a decision. 

Examples:  

1 In Quicksort, using a random number to choose a pivot  

2 Trying to factor a large prime by choosing random numbers as 

possible divisors 

Other Categories of Algorithms are: 

1. Deterministic vs. Randomized: One important (and exclusive) 

distinction one can make is, whether the algorithm is 

deterministic or randomized. Deterministic algorithms produce 

on a given input the same results following the same computation 

steps. Randomized algorithms throw coins during execution. 

Hence either the order of execution or the result of the algorithm 

might be different for each run on the same input. There are 

subclasses for randomized algorithms: Monte Carlo type 
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algorithms and Las Vegas type algorithms. A Las Vegas 

algorithm will always produce the same result on a given input. 

Randomization will only affect the order of the internal 

executions. 

In the case of Monte Carlo algorithms, the result may might 

change, even be wrong. However, a Monte Carlo algorithm will 

produce the correct result with a certain probability. So of course 

the question arises: What are randomized algorithms good for? 

The computation might change depending on coin throws. Monte 

Carlo algorithms do not even have to produce the correct result. 

Why would that be desirable? The answer is twofold: 

i. Randomized algorithms usually have the effect of 

perturbing the input. Or put it differently, the input looks 

random, which makes bad cases very seldom. 

ii. Randomized algorithms are often conceptually very easy to 

implement. At the same time they are in run time often 

superior to their deterministic counterparts. Can you think 

of an obvious example? 

2. Offline vs. Online: Another important (and exclusive) distinction 

one can make is, whether the algorithm is offline or online. 

Online algorithms are algorithms that do not know their input at 

the beginning. It is given to them online, whereas normally 

algorithms know their input beforehand. What seems like a minor 

detail has profound effects on the design of algorithms and on 

their analysis. Online algorithms are usually analyzed by using 

the concept of competitiveness, that is the worst case factor they 

take longer compared to the best algorithm with complete 

information. 

3. Exact vs approximate vs. heuristic vs. operational: Usually 

algorithms have an optimization goal in mind, e.g. compute the 

shortest path or the alignment or minimal edit distance. Exact 

algorithms aim at computing the optimal solution given such a 

goal. Often this is quite expensive in terms of run time or 

memory and hence not possible for large input. In such cases one 

tries other strategies. Approximation algorithms aim at 

computing a solution which is for example only a certain, 

guaranteed factor worse than the optimal solution, that means an 

algorithm yields a c - approximation, if it can guarantee that its 

solution is never worse than a factor c compared to the optimal 

solution. Alternatively, heuristic algorithms try to reach the 

optimal solution without giving a guarantee that they always do. 

Often it is easy to construct a counter example. A good heuristics 

is almost always near or at the optimal value.  

Finally there are algorithms which do not aim at optimizing an objective 

function. Let’s call them operational since they chain a series of 

computational operations guided by expert knowledge but not in 

conjunction with a specific objective function (e.g. ClustalW). 

Example: Approximation algorithm 

As an example think of the Travelling Salesman Problem with triangle 

inequality for n cities. This is an NP-hard problem (no polynomial-time 
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algorithm is known). The following greedy, deterministic algorithm 

yields a 2-approximation for the TSP with triangle inequality in time 

O(n2). 

1. Compute a minimum spanning tree T for the complete graph 

implied by the n cities. 

2. Duplicate all edges of T yielding a Eulerian graph T’ and then 

find an Eulerian path in T’. 

3. Convert the Eulerian cycle into a Hamiltonian cycle by taking 

shortcuts. 

Can you now argue why this is a 2-approximation? 

 ITQ 

Question 

What is an optimization problem? List two examples of algorithms 

generally used in solving optimization problems. 

Feedback 

An optimization problem is one in which we want to find, not just a 

solution but the best solution. Examples of algorithms used in solving 

optimization problem include Dynamic programming algorithms, 

Greedy algorithms, Branch and bound algorithms. 

1.4 The Importance of Knowing Algorithms 
As a computer scientist, it is important to understand all of these types of 

algorithms so that one can use them properly. If you are working on an 

important piece of software, you will likely need to be able to estimate 

how fast it is going to run. Such an estimate will be less accurate without 

an understanding of runtime analysis. Furthermore, you need to 

understand the details of the algorithms involved so that you’ll be able to 

predict if there are special cases in which the software won’t work 

quickly, or if it will produce unacceptable results.  

Of course, there are often times when you’ll run across a problem that has 

not been previously studied. In these cases, you have to come up with a 

new algorithm, or apply an old algorithm in a new way. The more you 

know about algorithms in this case, the better your chances are of finding 

a good way to solve the problem. In many cases, a new problem can be 

reduced to an old problem without too much effort, but you will need to 

have a fundamental understanding of the old problem in order to do this.  

As an example of this, let’s consider what a switch does on the Internet. 

A switch has N cables plugged into it, and receives packets of data 

coming in from the cables. The switch has to first analyze the packets, 

and then send them back out on the correct cables. A switch, like a 

computer, is run by a clock with discrete steps – the packets are sent out 

at discrete intervals, rather than continuously. In a fast switch, we want to 

send out as many packets as possible during each interval so they don’t 

stack up and get dropped. The goal of the algorithm we want to develop 

is to send out as many packets as possible during each interval, and also 
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to send them out so that the ones that arrived earlier get sent out earlier. 

In this case it turns out that an algorithm for a problem that is known as 

"stable matching" is directly applicable to our problem, though at first 

glance this relationship seems unlikely. Only through pre-existing 

algorithmic knowledge and understanding can such a relationship be 

discovered.  

Other examples of real-world problems with solutions requiring advanced 

algorithms abound. Almost everything that you do with a computer relies 

in some way on an algorithm that someone has worked very hard to 

figure out. Even the simplest application on a modern computer would 

not be possible without algorithms being utilized behind the scenes to 

manage memory and load data from the hard drive. 

 ITQ 

Question 

Now I want you to think of other real life examples where algorithms are 

applicable. 

Feedback 

Algorithm are applicable everywhere, in the use of your laptops, mobile 

phones and even in many household appliances. Algorithm are essential 

in the sending of mails and messages over the internet.    

Study Session Summary 

 

Summary 

In this session, you examined algorithms. You began by 

explaining what an algorithm is. Thereafter, you discusses correct 

algorithm and algorithms performance. Moving on, you explained 

how algorithms work. In addition, you noted the different 

classifications of algorithms. Lastly, you discussed why the 

knowledge of algorithms is important. 
 

Assessment 

 

Assessment 

SAQ 1.1 (tests Learning Outcome 1.1) 

What is an algorithm? 

SAQ 1.2 (tests Learning Outcome 1.2) 

Explain how algorithms work 

SAQ 1.3 (Learning Outcome 1.3) 

How do we classify algorithms? 

SAQ 1.4 (Learning Outcome 1.4) 

What do you consider as the importance of knowing algorithm? 
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Study Session 2 

Problem Solving Techniques  

Introduction 
In this study session, you will be discussing the different problem solving 

techniques in programming. You will begin by explaining what a 

recursion is. After this, you will make attempt at comparing recursion and 

iteration techniques. Likewise, you will explain the divide-and-conquer 

approach. Finally, you will look at the backtracking problem solving 

technique. 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to:  

2.1 define recursion 

2.2 discuss the divide-and-conquer approach 

2.3 compare recursion and iteration 

2.4 define backtracking 

Terminology 

Fibonacci The series of numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... The 
next number is found by adding up the two numbers 

2.1 What is Recursion? 
Recursion is a powerful principle that allows something to be 

defined in terms of smaller instances of itself. In computing, 

recursion is supported via recursive functions. A recursive function 

is a function that calls itself. Each successive call works on a more 

refined set of inputs, bringing us closer and closer to the solution of 

a problem. You can express most of the problems in the following 

program by using recursion. We represent the function add by 

using recursion. 

Program 

#include <stdio.h> 

int add(int pk,int pm); 

main( ) 



18 
 

 

 

CSC 236 Algorithm Design and Analysis 

 
{ 

    int k, i, m; 

    m = 2; 

    k = 3; 

    i = add(k, m);. 

    printf("The value of addition is %d\n",i); 

} 

int add(int pk,int pm) 

{ 

    if(pm = = 0)     

          return  pk;          \\ A 

              else  

                return  (1 + add(pk, pm-1));   \\ B 

} 

 

Explanation 

1. The add function is recursive as follows: 

 add (x, y) = 1 + add(x, y-1)      y > 0 

       = x                   y = 0 

for example, 

    add(3, 2) = 1 + add(3, 4) 

    add(3, 1) = 1 + add(3, 0) 

    add(3, 0) = 3 

    add(3, 1) = 1+3 = 4 

    add(3, 2) = 1+4 = 5 

2. The recursive expression is 1+add(pk, pm-1). The 

terminating condition is pm = 0 and the recursive condition 

is pm > 0. 

A function can call itself in a number of times. A recursive method 

is one that calls itself either directly or indirectly through another 

method. 

In recursion, the problems being solved are similar in nature and 

their solutions too are similar. When a recursive method/function is 

called to solve a problem, the method could actually solve the 

simplest case or base case. If the method is called with a base case, 

the method returns a result. However, if the method is called with a 
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complex problem, it divides the problem into two conceptual 

pieces: a piece that the method knows how to solve (the base case) 

and a piece that the method does not know how to solve. The latter 

piece must resemble the original problem but be a slightly simpler 

or slightly smaller version of it. Because this new problem looks 

like the original problem, the method calls a fresh copy of itself to 

work on the small problem. This procedure is called a recursive 

call or recursion step. The recursion step must include a return 

statement because its result will be combined with the portion of 

the problem the method knew how to solve to form a result that 

will passed back to the original caller.  

The recursion step executes while the original call has not finished 

executing. As a matter of fact, there could be many recursion calls, 

as the method divides each new subproblem into two conceptual 

pieces. 

Example 1: Factorial  

The factorial of a number is given as n! = n x (n – 1) x (n – 2)  ….. x 2. 

The function below computes the factorial of n, function fac assumes that 

the factorial of any numbers less or equal to 1 is zero. 

  // The Factorial function  

   long fac(int n) { 

    if (n <= 1) 

      return 1; 

     long f = 1; 

     for (int i = n; i >= 2; i--)  

         f = f*i; 

     return f; 

  } 

The function is implemented recursively below: 

long fac (int n) { 

    // Base case 

     if (n <= 1) 

   return 1; 

      //Recursive step 

  else 

    return n * fac(n – 1); 

 } // End function fac 

Example 2: Recursive Fibonacci Series 

Consider the Fibonacci series: 0, 1, 1, 2, 3, 5, 8, 13, 21, …. 
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The series begins with 0 and 1 and has the property that each subsequent 

Fibonacci number is the sum of the previous two Fibonacci numbers. The 

ratio of successive Fibonacci numbers converges on a constant value 

1.618, a number called the golden ratio or golden mean. The Fibonacci 

model equation is given as: 

Fibonacci(0) = 0 

Fibonacci(1) = 1 

Fibonacci(n) = Fibonacci(n – 1) + Fibonacci(n – 2) 

long fib (int n) { 

  // Base case 

 if (n == 0 || n == 1) 

  return n; 

   // Recursive step 

 else 

  return fib(n – 1) + fib(n – 2); 

 } // End method fib 

Comparing Recursion and Iteration 

We can compare recursion and iteration as follows: 

1. Both iteration and recursion are based on a control statement: 

iteration uses a repetition control (for, while or do- while); 

recursion uses a selection control (if, if – else or switch). 

2. Both involve repetition: Iteration explicitly uses a repetition 

statement, recursion achieves repetition through repeated 

method calls. 

3. Both involve a termination test: Iteration terminates when the 

loop continuation condition fails. Recursion terminates when 

a base case is recognized.  

4. Iteration with counter-controlled repetition and recursion, 

each gradually approach termination: iteration keeps 

modifying a counter until the counter assumes a value that 

makes the loop continuation condition fail, recursion keeps 

producing simpler versions of the original problem until the 

base case is reached. 

5. Both can occur infinitely: an infinite loop occurs with 

iteration if the loop continuation test never becomes false. 

Infinite recursion occurs if the recursion step does not reduce 

the problem each time in a manner that converges on the base 

case. 

2.1.2 Demerits of Recursion 

It repeatedly invokes the mechanism, and consequently, the overhead, of 

method calls. This repetition can be expensive in terms of both processor 

time and memory space. Each recursive call causes another copy of the 

method (actually, only the method’s variables) to be created; this set of 
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copies can consume considerable memory space. Iteration occurs within a 

method, so repeated method calls and extra memory assignment are 

avoided. Therefore, there is no need of choosing recursion. 

 ITQ 

Question 

What are the demerits of Recursion? 

Feedback 

The demerit of recursion is the increase in the overhead cost of calls in 

term of processor time and memory space, as a result of its repetitive 

mechanism. Each recursive call causes another copy of the method to be 

created; this set of copies can consume considerable memory space. 

2.2 The Divide-and-Conquer Approach 
Many useful algorithms are recursive in structure: to solve a given 

problem, they call themselves recursively one or more times to deal 

with closely related subproblems. These algorithms typically 

follow a divide-and-conquer approach: they break the problem into 

several subproblems that are similar to the original problem but 

smaller in size, solve the subproblems recursively, and then 

combine these solutions to create a solution to the original problem. 

The divide-and-conquer paradigm involves three steps at each level 

of the recursion: 

1. Divide the problem into a number of subproblems. 

2. Conquer the subproblems by solving them recursively. If 

the subproblem sizes are small enough, however, just solve 

the subproblems in a straightforward manner. 

3. Combine the solutions to the subproblems into the solution 

for the original problem. 

The merge sort algorithm closely follows the divide-and-conquer 

paradigm. Intuitively, it operates as follows. 

1. Divide: Divide the n-element sequence to be sorted into two 

subsequences of n/2 elements each. 

2. Conquer: Sort the two subsequences recursively using 

merge sort. 

3. Combine: Merge the two sorted subsequences to produce 

the sorted answer. 

The recursion "bottoms out" when the sequence to be sorted has 

length 1, in which case there is no work to be done, since every 

sequence of length 1 is already in sorted order. 
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2.3 Backtracking 
Suppose you have to make a series of decisions, among various choices, 

where: 

1. You don’t have enough information to know what to choose 

2. Each decision leads to a new set of choices 

3. Some sequence of choices (possibly more than one) may be a 

solution to your problem 

Backtracking is a methodical way of trying out various sequences of 

decisions, until you find one that “works”  

Example: Solving a puzzle 

 

   

1. In this puzzle, all holes but one are filled with white pegs 

2. You can jump over one peg with another 

3. Jumped pegs are removed 

4. The object is to remove all but the last peg 

5. You don’t have enough information to jump correctly 

6. Each choice leads to another set of choices 

7. One or more sequences of choices may (or may not) lead to a 

solution 

8. Many kinds of puzzle can be solved with backtracking 
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 ITQ 

Question 

In your own words, can you illustrate what backtracking is? 

Feedback 

Interestingly, backtracking is like playing a chess game on your laptop 

with an undo function. Lets say you are at the endgame, and you are 

looking for a way to checkmate your opponent. If you try a move and it 

doesn’t work, you click on undo and you have the opportunity to redo 

that move, if you keep clicking “undo” till you finally checkmate your 

opponent. You’ve successfully backtracked!!! 

Study Session Summary 

 

Summary 

In this study session, you discussed the different problem solving 

technique. You started by explaining what a recursion technique is. 

Subsequently, you made attempt at comparing recursion and iteration 

techniques. Likewise, you will highlight the different demerits of 

recursion. Furthermore, you will explained the divide-and-conquer 

approach of problem solving technique. Lastly, you will describe the 

backtracking technique of problem solving. 

 

Assessment 

 

Assessment 

SAQ 2.1 (tests Learning Outcome 2.1) 

What is recursion? 

SAQ 2.2 (tests Learning Outcome 2.2) 
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Discuss divide and conquer approach? 

SAQ 2.3 (tests Learning Outcome 2.3) 

Define backtracking. 
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Study Session 3 

Sorting Techniques 1  

Introduction 
In this study session, you will be discussing sorting technique. You 

will start by explaining why sorting technique is necessary. After 

this, you will describe the bubble sort and selection sort. 

 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

3.1 discuss the reasons for sorting 

3.2 explain bubble sort 

3.3 discuss selection sorting 

Terminology 

Subroutine In computer programming, a subroutine is a sequence of 
program instructions that perform a specific task, 
packaged as a unit. 

3.1 Why Sorting? 
Many computer scientists consider sorting to be the most fundamental 

problem in the study of algorithms. There are several reasons: 

1. Sometimes the need to sort information is inherent in an 

application. For example, in order to prepare customer 

statements, banks need to sort checks by check number. 

2. Algorithms often use sorting as a key subroutine. For example, a 

program that renders graphical objects that are layered on top of 

each other might have to sort the objects according to an "above" 

relation so that it can draw these objects from bottom to top. We 

shall see numerous algorithms in this text that use sorting as a 

subroutine. 

3. There is a wide variety of sorting algorithms, and they use a rich 

set of techniques. In fact, many important techniques used 

throughout algorithm design are represented in the body of 

sorting algorithms that have been developed over the years. In 

this way, sorting is also a problem of historical interest. 



26 
 

 

 

CSC 236 Algorithm Design and Analysis 

 
4. Sorting is a problem for which we can prove a nontrivial lower 

bound. Our best upper bounds match the lower bound 

asymptotically, and so we know that our sorting algorithms are 

asymptotically optimal. Moreover, we can use the lower bound 

for sorting to prove lower bounds for certain other problems. 

5. Many engineering issues come to the fore when implementing 

sorting algorithms. The fastest sorting program for a particular 

situation may depend on many factors, such as prior knowledge 

about the keys and satellite data, the memory hierarchy (caches 

and virtual memory) of the host computer, and the software 

environment. Many of these issues are best dealt with at the 

algorithmic level, rather than by "tweaking" the code. 

3.2 Sorting Techniques 
Some of the important sorting techniques are discussed here. 

3.2.1 Bubble Sort 

Bubble sort is a popular sorting algorithm. It works by repeatedly 

swapping adjacent elements that are out of order. 

Version 1: 

BUBBLESORT(A) 

1 for i ← 1 to length[A] do 

2     for j ← i + 1  to length[A]  

3           if A[j] < A[i] 

4              then exchange A[j] ↔ A[j - 1] 

Version 2: 

BUBBLESORT(A) 

1 for i ← 1 to length[A] do 

2     for j ← length[A] downto i + 1  do 

3           if A[j] < A[j - 1] 

4              then exchange A[j] ↔ A[j - 1] 

 

Bubble sorting is a simple sorting technique in which we arrange the 

elements of the list by forming pairs of adjacent elements. That means we 

form the pair of the ith
 and (i+1)th

 element. If the order is ascending, we 

interchange the elements of the pair if the first element of the pair is 

greater than the second element. That means for every pair 

(list[i],list[i+1]) for i :=1 to (n−1) if list[i] > list[i+1], we need to 

interchange list[i] and list[i+1].  

Carrying this out once will move the element with the highest value to the 

last or n
th
 position. Therefore, we repeat this process the next time with 

the elements from the first to (n−1)th positions. This will bring the 

highest value from among the remaining (n−1) values to the (n−1)
th
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position. We repeat the process with the remaining (n−2) values and so 

on.  

 

Finally, we arrange the elements in ascending order. This requires to 

perform (n−1) passes. In the first pass we have (n−1) pairs, in the second 

pass we have (n−2) pairs, and in the last (or (n−1)
th
) pass, we have only 

one pair. Therefore, the number of probes or comparisons that are 

required to be carried out is: 

 

and the order of the algorithm is O(n
2
). 

A Java - Program Implementation 

import java.util.Scanner; 

public class bubblesort { 

  //Method to sort the data using bubble sort 

    public static void Bsort(int A[ ]) { 

     for (int i = 0; i < A.length; i++) { 

      for (int j = (i + 1); j < A.length; j++) { 

       if (A[i] > A[j]) { 

        int temp = A[j]; 

        A[j] = A[i]; 

        A[i] = temp; 

       } //end if 

                 }  next j 

      } // next i 

     //Printing the sorted array 

     System.out.print("The final sorted list is shown below \n\n"); 

     for (int i = 0; i < A.length; i++) 

      System.out.print(A[i] + "\t");  

        } //Ending Method Bsort 

   

    public static void main(String[ ] args) { 

     Scanner input = new Scanner(System.in); 

     System.out.println("How many data to sort?"); 

        int n = input.nextInt(); 

         

        // Declaring the array 
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        int A[ ] = new int[n]; 

         

        //Inserting data into the array 

        for (int i = 0; i < A.length; i++){ 

         System.out.println("Enter data at location " + (i+1)); 

         A[i] = input.nextInt( ); 

        } 

         

        //Calling the Bsort function 

        bubblesort.Bsort(A); 

         

        System.out.print("\nThanks for using this program"); 

    } 

} 

 

Sample run of the program 

 

How many data to sort? 

5 

Enter data at location 1 

3 

Enter data at location 2 

1 

Enter data at location 3 

5 

Enter data at location 4 

4 

Enter data at location 5 

2 

 

The final sorted list is shown below  

 

1   2   3   4   5    

Thanks for using this program 
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3.2.2 Selection Sort 

Consider sorting n numbers stored in array A by first finding the smallest 

element of A and exchanging it with the element in A[1]. Then find the 

second smallest element of A, and exchange it with A[2]. Continue in this 

manner for the first n - 1 elements of A. This technique is known as 

selection sort. The pseudocode below gives the Selection Sort Algorithm. 

Select_Sort(A) 

Select_Sort(A) 

(1)  for (i = 0; i < n-1; i++) { 

(2)       small = i; 

(3)       for (j = i+1; j < n; j++)  { 

(4)   if (A[j] < A[small]) 

(5)        small = j; 

        } // next j 

(6)        temp = A[small]; 

(7)       A[small] = A[i]; 

(8)             A[i] = temp; 

              }  //next i 

          } // end select_sort 

Practical Work: Attempt to implement the Selection sort in any 

programming language of your choice 

3.2.3 Insertion Sort 

Insertion sort is one of the simplest sorting algorithms. It works like the 

approach we might use to systematically sort a pile of cancelled checks 

by hand. We begin with a pile of unsorted checks and space for a sorted 

pile, which initially contains no checks. One at a time, we remove a 

check from the unsorted pile and, considering its number, insert it at the 

proper position among the sorted checks.  

More formally, insertion sort takes one element at a time from an 

unsorted set and inserts it into a sorted one by scanning the set of sorted 

elements to determine where the new element belongs.  

Although at first it may seem that insertion sort would require space for 

both the sorted and unsorted sets of data independently, it actually sorts in 

place. 

Example 1. A C Implementation of Insertion Sort  

#include <stdio.h> 

 

// The Insertion Sort function... 

void insert(int A[], int n)    {     
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  int i, j, key;                      

  for (j = 1; j < n; j++)  { 

        key = A[j];                          

        i = j - 1;                           

        while ((i > -1) && (A[i] > key)) {                  

              A[i + 1] = A[i];                       

              i = i - 1;             

          }   //end while                     

          A[i + 1] = key;                      

      } //next j 

}  // end function insert 

 

main( ) { 

  int i, A[10]; 

 

  // Getting the original array 

  printf(" Sorting Program using Insertion Sorting technique \n \n"); 

  printf("Enter only integer numeric data please\n\n"); 

 

  for (i = 0; i < 10; i++) { 

      printf("Enter data %d ", i + 1); 

   scanf("%d", &A[i]); 

   } // next data 

 

// printing the Original unsorted data 

 printf("\nThe original unsorted data here:\n\n"); 

 for (i = 0; i < 10; i++)  

     printf("%d\t", A[i]); 

 

  // Call the insert insertion sort routine 

 

  insert(A, 10); 

  printf("\n "); 

   // printing the sorted data 

 printf("\n\nThe sorted data here:\n\n\n"); 
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 for (i = 0; i < 10; i++)  

     printf("%d\t", A[i]); 

 

} // end main 

 

 

 ITQ 

Question 

What is insertion sorting? 

Feedback 

Insertion sort is one of the simplest sorting algorithms. Insertion sort 

takes one element at a time from an unsorted set and inserts it into a 

sorted one by scanning the set of sorted elements to determine where the 

new element belongs. 

Study Session Summary 

 

Summary 

In this study session, you discussed the sorting technique. You 

started by explaining why sorting technique is important. In 

addition, you described the different sorting techniques. 

Specifically, the techniques include bubble sort, selection sort and 

insertion sort. 
 

Assessment 

 

Assessment 

SAQ 3.1 (tests Learning Outcome 3.1) 

i. Define Sorting 

ii. Outline the reasons for sorting 

SAQ 3.2 (tests Learning Outcome 3.2) 
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i. Explain Bubble sort. 

ii. Define selection sorting. 

Bibliography 
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https://www.cs.cmu.edu/~adamchik/15-
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Study Session 4 

Sorting Techniques 2 

Introduction 
In the last study session, you discussed the sorting technique. In 

this study session, you will continue with the sorting technique by 

describing the quick sort. In order to do this, you will describe what 

quick sorting is. You will also describe how to partition the array 

and also discuss the other version of the partitioning algorithms. 

Finally, you will evaluate the merge sort. 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

4.1 define quick sort 

4.2 explain merge sort 

Terminology 

Initialize Set to the value or put in the condition appropriate to the 
start of an operation. 

Subsists Maintain or support oneself, especially at a minimal level. 

Merge sort (also commonly spelled mergesort) is an efficient, 
general-purpose, comparison-based sorting algorithm 

sub arrays In computer science, merge sort (also commonly spelled 
mergesort) is an efficient, general-purpose, comparison-
based sorting algorithm 

4.1 Quick Sort 
In the quick sort method, an array a[1],…..,a[n] is sorted by selecting 

some value in the array as a key element. We then swap the first element 

of the list with the key element so that the key will be in the first position. 

We then determine the key's proper place in the list. The proper place for 

the key is one in which all elements to the left of the key are smaller than 

the key, and all elements to the right are larger. 
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To obtain the key's proper position, we traverse the list in both directions 

using the indices i and j, respectively. We initialize i to that index that is 

one more than the index of the key element. That is, if the list to be sorted 

has the indices running from m to n, the key element is at index m, hence 

we initialize i to (m+1). The index i is incremented until we get an 

element at the i
th
 position that is greater than the key value. Similarly, we 

initialize j to n and go on decrementing j until we get an element with a 

value less than the key's value. 

We then check to see whether the values of i and j have crossed each 

other. If not, we interchange the elements at the key (m
th
)position with 

the elements at the j
th
 position. This brings the key element to the j

th
 

position, and we find that the elements to its left are less than it, and the 

elements to its right are greater than it. Therefore we can split the list into 

two sublists. The first sublist is composed of elements from the m
th
 

position to the (j–1)
th
 position, and the second sublist consists of elements 

from the (j+1)
th
 position to the n

th
 position. We then repeat the same 

procedure on each of the sublists separately. 

 ITQ 

Question 

Briefly summarize the Quick Sort Method 

Feedback 

The quick sort method is a sorting algorithm that sorts element in a list 

into a particular order based on the position of the key element. In quick 

sort method, an array a[1],…..,a[n] is sorted by selecting some value in 

the array as a key element. The key element is swap with the first 

element on the list so that the key element will be in the first position. 

We then determine the key element's proper place in the list. The proper 

place for the key is one in which all elements to the left of the key are 

smaller than the key, and all elements to the right are larger. 

4.1.1 Description of Quicksort 

Quicksort, like merge sort, is based on the divide-and-conquer paradigm. 

Here is the three-step divide-and-conquer process for sorting a typical 

subarray A[p ‥ r]. 

 Divide: Partition (rearrange) the array A[p ‥ r] into two 

(possibly empty) subarrays A[p ‥ q - 1] and A[q + 1 ‥ r] such 

that each element of A[p ‥ q - 1] is less than or equal to A[q], 

which is, in turn, less than or equal to each element of A[q + 1 ‥ 

r]. Compute the index q as part of this partitioning procedure. 

 Conquer: Sort the two subarrays A[p ‥ q -1] and A[q +1 ‥ r] 

by recursive calls to quicksort. 

 Combine: Since the subarrays are sorted in place, no work is 

needed to combine them: the entire array A[p ‥ r] is now sorted. 

 

The following procedure implements quicksort. 
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QUICKSORT(A, p, r) 

1 if p < r 

2    then q = PARTITION(A, p, r) 

3         QUICKSORT(A, p, q - 1) 

4         QUICKSORT(A, q + 1, r) 

 

To sort an entire array A, the initial call is QUICKSORT(A, 1, 

length[A]). 

 

 ITQ 

Question 

Describe the Quick Sort Method. 

Feedback 

The Quick sort is a divide and conquer algorithm. It divides an array into 

subarray: the low elements and the high elements. For example, you 

have an array A. This quick sort method partitions the array A[p ‥ r] 

into two subarrays A[p ‥ q - 1] and A[q + 1 ‥ r] such that each 

element of A[p ‥ q - 1] is less than or equal to A[q], which is, in turn, 

less than or equal to each element of A[q + 1 ‥ r]. This method 

compute the index q as part of this partitioning procedure. Then sort the 

two subarrays A[p ‥ q -1] and A[q +1 ‥ r] by recursive calls to 

quicksort. Lastly, since the subarrays are sorted in place, no work is 

needed to combine them: the entire array A[p ‥ r] is now sorted. 

4.1.2 Partitioning the Array 

The key to the algorithm is the PARTITION procedure, which rearranges 

the subarray A[p ‥ r] in place. 

PARTITION(A, p, r) 

1  x ← A[r] 

2  i ← p - 1 

3  for j ← p to r - 1 

4       do if A[j] ≤ x 

5             then i ← i + 1 

6                  exchange A[i] ↔ A[j] 

7  exchange A[i + 1] ↔ A[r] 

8  return i + 1 
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Figure 4.1 shows the operation of PARTITION on an 8-element array. 

PARTITION always selects an element x = A[r] as a pivot element 

around which to partition the subarray A[p ‥ r]. As the procedure runs, 

the array is partitioned into four (possibly empty) regions. At the start of 

each iteration of the for loop in lines 3-6, each region satisfies certain 

properties, which we can state as a loop invariant: 

 

Figure 4.1: The operation of PARTITION on a sample array. 

Lightly shaded array elements are all in the first partition with values no 

greater than x. Heavily shaded elements are in the second partition with 

values greater than x. The un-shaded elements have not yet been put in 

one of the first two partitions, and the final white element is the pivot.  

(a) The initial array and variable settings. None of the elements have been 

placed in either of the first two partitions.  

(b) The value 2 is "swapped with itself" and put in the partition of smaller 

values.  

(c)-(d) The values 8 and 7 are added to the partition of larger values.  

(e) The values 1 and 8 are swapped, and the smaller partition Grows.  

(f) The values 3 and 8 are swapped, and the smaller partition grows.  

(g)-(h) The larger partition grows to include 5 and 6 and the loop 

terminates.  

(i) In lines 7-8, the pivot element is swapped so that it lies between the 

two partitions.  

At the beginning of each iteration of the loop of lines 3-6, for any array 

index k, 

If p ≤ k ≤ i, then A[k] ≤ x. 

If i + 1 ≤ k ≤ j - 1, then A[k] > x. 

If k = r, then A[k] = x. 
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4.1.3 Another Version of the Partitioning 

Algorithm 

QUICKSORT(A, p, r) 

1 if p < r 

2    then q = PARTITION(A, p, r) 

3         QUICKSORT(A, p, q - 1) 

4         QUICKSORT(A, q + 1, r) 

HOARE-PARTITION(A, p, r) 

 1  x ← A[p]   //Taking A[p] as the pivot/key element 

 2  i ← p - 1 

 3  j ← r + 1 

 4  while TRUE 

 5      do {  

  j ← j - 1 

 6           } while  A[j] ≤ x    // j counts backwards until A[j] ≤ x 

 7         do { 

  i ← i + 1 

 8           } while  A[i] ≥ x    // j counts forwards until A[j] ≥   x 

 9         if i < j 

10            then exchange A[i] ↔ A[j] 

11            else return j 

4.1.4 Choice of the key 

We can choose any entry in the list as the key. The choice of the first 

entry is often a poor choice for the key, since if the list has already been 

sorted, there will be no element less than the first element selected as the 

key. So, one of the sublists will be empty. So we choose a key near the 

centre of the list in the hope that our choice will partition the list in such a 

manner that about half of the elements will end up on one side of the key, 

and half will end up on the other. Therefore the function getkeyposition 

is 

int getkeyposition(int i,j) 

{ 

   return(( i+j )/ 2); 

} 

 

The choice of the key near the center is also arbitrary, so it is not 

necessary to always divide the list exactly in half. It may also happen that 

one sublist is much larger than the other. So some other method of 
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selecting a key should be used. A good way to choose a key is to use a 

random number generator to choose the position of the next key in each 

activation of quick sort. Therefore, the function getkeyposition is: 

 

int getkeyposition(int i,j) 

{ 

   return(random number in the range of i to j); 

} 

 

The following C implementation (qicksort.c) below uses the first element 

in the array as the pivot/key  

 

#include <stdio.h>  

#include <conio.h> 

// HOARE-PARTITION(A, p, r) 

 

void interchange(int A[ ],int k, int m) { 

 int temp;     //line 6 

 temp = A[k]; 

 A[k] = A[m]; 

 A[m] = temp; 

} // end interchange   Line 10  

 

 int partition(int A[ ], int p, int r) {    

  int x, i, j; 

   x = A[p];    //Taking A[p] as the pivot/key 

element  

   i = p;     //Line 15 

   j = r;      

    

   while (i < j) { 

    while (A[j] > x)  {  

        j = j - 1;   //Line 20 

       }     // j counts backwards until A[j] <= x   

       

     while (A[i] <= x) { 

        i = i + 1;    
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    }   // i counts forwards until A[i] >=   x     Line 25 

 

      if (i < j) {     //then exchange A[i] and A[j] 

  

  interchange(A,i,j); 

               i++; 

               j--;   //line 30 

        } //end if 

   

  } //end while (i <= j) 

   

  interchange(A, p, j);   //Line 35 

   return j;     

 }  // end partition 

 

   void quicksort(int A[ ], int p, int r) {  //Line 39 

   int q; 

   if (p < r)  {  

   q = partition(A, p, r); 

         quicksort(A, p, q - 1);  //Line 43 

         quicksort(A, q + 1, r); 

 } //end if     

 } //end quicksort     line 44 

 

void main( ) { 

   int A[10];    //Line 45 

    int p, r, i; 

 

   // Reading data into the array line 48 

    for (i = 0; i < 10; i++) { 

    printf("Enter data into location %d \n", i + 1); 

    scanf("%d", &A[i]); 

    } // next location    // Line 52 

  

 p = 0;     //Line 55 

 r = 9; 
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 // Call the quicksort routine 

 

 quicksort(A, p, r);   //Line 60 

 

 //print out the sorted array 

 printf("Data in sorted order using quicksort algorithm\n");  

 

    for (i = 0; i < 10; i++)  //Line 66 

    printf("%d \t ",A[i]); 

 getch(); 

     // return 0; 

} // end main   Line  71 

 

 

 ITQ 

Question 

Why is the first entry, a poor choice for the key element in Quick sort? 

Feedback 

The first entry is a poor choice for the key because there will be no 

element less than the first element so one of the sublists will be empty. 

will partition the list in such a manner that about half of the elements 

will end up on one side of the key, and half will end up on the other. 

4.2 Merge Sort 
The merge sort algorithm closely follows the divide-and-conquer 

paradigm. Intuitively, it operates as follows. 

1. Divide: Divide the n-element sequence to be sorted into two 

subsequences of n/2 elements each. 

2. Conquer: Sort the two subsequences recursively using merge 

sort. 
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3. Combine: Merge the two sorted subsequences to produce the 

sorted answer. 

The recursion "bottoms out" when the sequence to be sorted has length 1, 

in which case there is no work to be done, since every sequence of length 

1 is already in sorted order. The key operation of the merge sort 

algorithm is the merging of two sorted sequences in the "combine" step.  

To perform the merging, we use an auxiliary procedure MERGE(A, p, q, 

r), where A is an array and p, q, and r are indices numbering elements of 

the array such that p ≤ q < r. The procedure assumes that the subarrays 

A[p _ q] and A[q + 1 _ r] are in sorted order. It merges them to form a 

single sorted subarray that replaces the current subarray A[p _ r]. 

Our MERGE procedure takes time Θ(n), where n = r - p + 1 is the 

number of elements being merged, and it works as follows. Returning to 

our card-playing motif, suppose we have two piles of cards face up on a 

table. Each pile is sorted, with the smallest cards on top. We wish to 

merge the two piles into a single sorted output pile, which is to be face 

down on the table. 

Our basic step consists of choosing the smaller of the two cards on top of 

the face-up piles, removing it from its pile (which exposes a new top 

card), and placing this card face down onto the output pile. We repeat this 

step until one input pile is empty, at which time we just take the 

remaining input pile and place it face down onto the output pile. 

Computationally, each basic step takes constant time, since we are 

checking just two top cards. Since we perform at most n basic steps, 

merging takes Θ(n) time. 

The following pseudocode implements the above idea, but with an 

additional twist that avoids having to check whether either pile is empty 

in each basic step. The idea is to put on the bottom of each pile a sentinel 

card, which contains a special value that we use to simplify our code. 

Here, we use ∞ as the sentinel value, so that whenever a card with ∞ is 

exposed, it cannot be the smaller card unless both piles have their sentinel 

cards exposed. But once that happens, all the nonsentinel cards have 

already been placed onto the output pile. Since we know in advance that 

exactly r - p + 1 cards will be placed onto the output pile, we can stop 

once we have performed that many basic steps.  

MERGE(A, p, q, r) 

1 n1 ← q - p + 1 

2 n2 ← r - q 

3 create arrays L[1 _ n1 + 1] and R[1 _ n2 + 1] 

4 for i ← 1 to n1 do 

5    L[i] ← A[p + i - 1] 

6   for j ← 1 to n2 do 

7      R[j] ← A[q + j] 

8     L[n1 + 1] ← ∞ 

9 R[n2 + 1] ← ∞ 
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10 i ← 1 

11 j ← 1 

12 for k ← p to r 

13 do if L[i] ≤ R[j] 

14 then A[k] ← L[i] 

15 i ← i + 1 

16 else A[k] ← R[j] 

17 j ← j + 1 

In detail, the MERGE procedure works as follows. Line 1 computes the 

length n1 of the subarray A[p _ q], and line 2 computes the length n2 of 

the subarray A[q + 1 _ r]. We create arrays L and R ("left" and "right"), of 

lengths n1 + 1 and n2 + 1, respectively, in line 3. The for loop of lines 4-

5 copies the subarray A[p _ q] into L[1 _ n1], and the for loop of lines 6-7 

copies the subarray A[q + 1 _ r] into R[1 _ n2]. Lines 8-9 put the sentinels 

at the ends of the arrays L and R. Lines 10-17, illustrated in Figure 2.3, 

perform the r - p + 1 basic steps by maintaining the following loop 

invariant: 

• At the start of each iteration of the for loop of lines 12-17, the subarray 

A[p _ k - 1] contains the k - p smallest elements of L[1 _ n1 + 1] and R[1 

_ n2 + 1], in sorted order. Moreover, L[i] and R[j] are the smallest 

elements of their arrays that have not been copied back into A. 

 

 

Figure 4.2: The operation of lines 10-17 in the call MERGE(A, 9, 12, 16), 

when the subarray A[9 _ 16] contains the sequence _2, 4, 5, 7, 1, 2, 3, 6_. 

After copying and inserting sentinels, the array L contains _2, 4, 5, 7, ∞_, 

and the array R contains _1, 2, 3, 6, ∞_. 

Lightly shaded positions in A contain their final values, and lightly 

shaded positions in L and R contain values that have yet to be copied 

back into A. Taken together, the lightly shaded positions always comprise 

the values originally in A[9 _ 16], along with the two sentinels.  

Heavily shaded positions in A contain values that will be copied over, and 

heavily shaded positions in L and R contain values that have already been 

copied back into A. (a)-(h) The arrays A, L, and R, and their respective 
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indices k, i, and j prior to each iteration of the loop of lines 12-17. (i) The 

arrays and indices at termination. At this point, the subarray in A[9 _ 16] 

is sorted, and the two sentinels in L and R are the only two elements in 

these arrays that have not been copied into A. 

We must show that this loop invariant holds prior to the first iteration of 

the for loop of lines 12-17, that each iteration of the loop maintains the 

invariant, and that the invariant provides a useful property to show 

correctness when the loop terminates. 

• Initialization: Prior to the first iteration of the loop, we have k = p, so 

that the subarray A[p _ k - 1] is empty. This empty subarray contains the k 

- p = 0 smallest elements of L and R, and since i = j = 1, both L[i] and R[j] 

are the smallest elements of their arrays that have not been copied back 

into A. 

 

• Maintenance: To see that each iteration maintains the loop invariant, 

let us first suppose that L[i] ≤ R[j]. Then L[i] is the smallest element not 

yet copied back into A. Because A[p _ k - 1] contains the k - p smallest 

elements, after line 14 copies L[i] into A[k], the subarray A[p _ k] will 

contain the k - p + 1 smallest elements. Incrementing k (in the for loop 

update) and i (in line 15) reestablishes the loop invariant for the next 

iteration. If instead L[i] > R[j], then lines 16-17 perform the appropriate 

action to maintain the loop invariant. 

• Termination: At termination, k = r + 1. By the loop invariant, the 

subarray A[p _ k - 1], which is A[p _ r], contains the k - p = r - p + 1 

smallest elements of L[1 _ n1 + 1] and R[1 _ n2 + 1], in sorted order. The 

arrays L and R together contain n1 + n2 + 2 = r - p + 3 elements. All but 

the two largest have been copied back into A, and these two largest 

elements are the sentinels. 

To see that the MERGE procedure runs in Θ(n) time, where n = r - p + 1, 

observe that each of lines 1-3 and 8-11 takes constant time, the for loops 

of lines 4-7 take Θ(n1 + n2) = Θ(n) time,[6] and there are n iterations of 

the for loop of lines 12-17, each of which takes constant time. 
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We can now use the MERGE procedure as a subroutine in the merge sort 

algorithm. The procedure MERGE-SORT(A, p, r) sorts the elements in 

the subarray A[p _ r]. If p ≥ r, the subarray has at most one element and is 

therefore already sorted. Otherwise, the divide step simply computes an 

index q that partitions A[p _ r] into two subarrays: A[p _ q], containing  

n/2 elements, and A[q + 1 _ r], containing n/2 elements. 

MERGE-SORT(A, p, r) 

1 if p < r 

2 then q ← (p + r)/2 

3 MERGE-SORT(A, p, q) 

4 MERGE-SORT(A, q + 1, r) 

5 MERGE(A, p, q, r) 

To sort the entire sequence A = _A[1], A[2], . . . , A[n]_, we make the 

initial call MERGESORT(A, 1, length[A]), where once again length[A] = 

n. Figure 4.3 illustrates the operation of the procedure bottom-up when n 

is a power of 2. The algorithm consists of merging pairs of 1-item 

sequences to form sorted sequences of length 2, merging pairs of 

sequences of length 2 to form sorted sequences of length 4, and so on, 

until two sequences of length n/2 are merged to form the final sorted 

sequence of length n. 

 

Figure 4.3: The operation of merge sort on the array A = _5, 2, 4, 7, 1, 3, 

2, 6_. The lengths of the sorted sequences being merged increase as the 

algorithm progresses from bottom to top. 

The following is a snippet for implementing Merge Sort in Java 

/** 

     * The Merge Sort algorithm implementation to sort an array 

     * 

     * @param theData Pass an integer array as argument into the method 

for sorting 

     * @param lo Lowest Index 
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     * @param mid Middle Index 

     * @param hi Highest Index 

     * @return Returns a sorted array using Merge Sort Algorithm 

     */ 

    public static int[ ] mergeSorted (int[ ] theData, int lo, int mid, int hi) {  

 

     // Merge a[lo..mid] with a[mid+1..hi]. 

 

        int i = lo, j = mid + 1; 

 

        for (int k = lo; k <= hi; k++) // Copy a[lo..hi] to auxArray[lo..hi]. 

        { 

            auxArray[k] = theData[k]; 

        } 

 

        for (int k = lo; k <= hi; k++) // Merge back to a[lo..hi]. 

        { 

            if (i > mid) { 

                theData[k] = auxArray[j++]; 

            } else if (j > hi) { 

                theData[k] = auxArray[i++]; 

            } else if (auxArray[j] < auxArray[i]) { 

                theData[k] = auxArray[j++]; 

            } else { 

                theData[k] = auxArray[i++]; 

            }         

        } 

     

        return theData; 

    } 

     

    private static int[ ] auxArray; // auxiliary array for merges 

     

    public static void mSort(int[] a) { 

        auxArray = new int[a.length]; // Allocate space just once. 

        mSort(a, 0, a.length - 1); 
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    } 

    private static void mSort(int[] a, int lo, int hi) { 

        // Sort a[lo..hi]. 

        if (hi <= lo) { 

            return; 

        } 

        int mid = lo + (hi - lo) / 2; 

        mSort(a, lo, mid); // Sort left half. 

        mSort(a, mid + 1, hi); // Sort right half. 

        mergeSorted(a, lo, mid, hi); // Merge results  

 } 

 ITQ 

Question 

Differentiate between merge sort and quick sort methods. 

Feedback 

The Quick sort picks an element, called the key element, from the array 

and reorder the array so that all elements on the left of the key are less 

than the key, while all elements to the right are higher than the key. 

After this partitioning, the key is in its final position. It sorts the two 

subarrays by recursive calls to quicksort and finally combine the 

subarrays. However, The merge sort algorithm closely follows the 

divide-and-conquer paradigm. Intuitively, it operates as follows: it 

divide the n-element sequence to be sorted into two subsequences of n/2 

elements each and the sort the two subsequences recursively using 

merge sort. Finally, it merge the two sorted subsequences to produce the 

sorted answer. 

Study Session Summary 

 

Summary 

In this session, you furthered the discussion from the last session 

by explaining quick sort technique. In doing so, you described the 

quick sort technique of problem solving technique. Thereafter, you 

discussed how to partition the array. You ended the session with 

an explanation on merge sort.  
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Assessment 

 

Assessment 

SAQ 4.1 (tests Learning Outcome 4.1) 

Define quick sort 

SAQ 4.2 (tests Learning Outcome 4.2) 

Explain merge sort 

Bibliography 

Reading 

https://betterexplained.com/articles/sorting-algorithms/ retrieved 

January 2017 

http://cs.stackexchange.com/questions/3/why-is-quicksort-better-than-

other-sorting-algorithms-in-practice retrieved January 2017 
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Study Session 5 

Searching Techniques  

Introduction 
In this study session, you will explain the searching techniques. You will 

start by describing the linear or sequential search. Likewise, you will 

discuss the binary search.  

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

5.1 define linear or sequential search 

5.2 explain binary search 

Terminology 

Prerequisites a thing that is required as a prior condition for something 
else to happen or exist. 

5.1 Linear or Sequential Search 
In linear searching, the search proceeds by sequentially comparing the 

key with elements in the list, and continues until either we find a match or 

the end of the list is encountered. If we find a match, the search 

terminates successfully by returning the index of the element in the list 

which has matched. If the end of the list is encountered without a match, 

the search terminates unsuccessfully. 

The following C code implements a linear search technique: 

 

#include <stdio.h> 

int main( ) { 

int score[10],  i, search, found = 0; 

 

/* Inserting data into the array */ 

for( i = 0; i < 10; i++) { 

 printf("Enter data at location %d ", i + 1); 

 scanf("%d", &score[i]); 

 } 
 

printf("\n  Searching for a value\n Enter the value to search for: "); 
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scanf("%d", &search); 
 

for( i = 0; i < 10; i++) { 

 if (score[i] = = search) { 

  printf("Data occurs in the array at position %d \n",i + 1); 

  found = 1; 

  break; 

 } // end if 

} // next i 

 

if (found = = 0) 

    printf("Data does not exist in the array\n"); 

 

return 0; 

} // end program 

 ITQ 

Question 

What is another name for Linear searching? 

Feedback 

Linear search is also known as Sequential search. 
 

 

Explanation 

1 In the best case, the search procedure terminates after one 

comparison only, whereas in the worst case, it will do n 

comparisons. 

2 On average, it will do approximately n/2 comparisons, since the 

search time is proportional to the number of comparisons required 

to be performed. 

3 The linear search requires an average time proportional to O(n) to 

search one element. Therefore to search n elements, it requires a 

time proportional to O(n
2
). 

4 We conclude that this searching technique is preferable when the 

value of n is small. The reason for this is the difference between n 

and n
2
 is small for smaller values of n. 
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 ITQ 

Question 

Linear searching is preferable when the value of n is large? True OR 

False. Give a reason for your answer. 

Feedback 

False. Linear searching is preferable when the value of n is small. It is 

not preferable when the value of n is large because the difference 

between n and n2 is large for smaller values of n. 

5.2 Binary Search 
The prerequisite for using binary search is that the list must be a sorted 

one. We compare the element to be searched with the element placed 

approximately in the middle of the list. If a match is found, the search 

terminates successfully. Otherwise, we continue the search for the key in 

a similar manner either in the upper half or the lower half. If the elements 

of the list are arranged in ascending order, and the key is less than the 

element in the middle of the list, the search is continued in the lower half. 

If the elements of the list are arranged in descending order, and the key is 

greater than the element in the middle of the list, the search is continued 

in the upper half of the list. The recursive algorithm for the binary search 

is given below 

function search (A : array; start, finish, x : integer) 

   return integer is  middle : integer; 

   begin 

      middle := (start+finish)/2; 

      if A[middle]==x then 

          return A[middle]; 

      elsif (x < A[middle]) then 

          return search(A,start,middle-1, x); 

      else  // x > A[middle] 

          return search(X,middle+1,finish, x); 

      end if; 

   end search; 

 

 The non-recursive procedure for the binary search is given in the 

following program. 
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Program 

 

#include <stdio.h>   //Line 1 

#include <conio.h> 

 

void bsearch(int A[ ], int x,  int n) { 

 int L, u, mid, flag  =  0; //Line 5 

 L = 0;     // Lower index 

 u = n - 1;  // Upper index 

while(L <= u) 

   { 

      mid = (L+u)/2;   //Line 10 

      if( A[mid] == x) 

      { 

        printf(" The element whose value is %d is present at position %d in 

list\n", x,mid + 1); 

                 flag  = 1; 

                 break;   //Line 15 

      } 

      else 

            if(A[mid] < x) 

                   L =  mid + 1; 

            else   //Line 20 

                   u = mid - 1; 

   }//end while 

   if( flag == 0) 

   printf("The element whose value is %d is not present in the list\n",x);  

}    //Line 25 

 

void main() { 

   int A[10];      

    int  n, i,x; 

    // Reading data into the array        Line 30 

    for (i = 0; i < 10; i++) { 

    printf("Enter data into location %d \n", i + 1); 

    scanf("%d", &A[i]); 
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    } // next location     

    //Line 35 

   n = 10; 

   printf("\nEnter data to search for in the array "); 

   scanf("%d", &x);      

     

    bsearch(A,x,n); 

    

   printf("\n\nProgram ends\n");  //Line 41 

   getch( );       

      

  } //end main 

 

 

In the binary search, the number of comparisons required to search one 

element in the list is no more than log n, where n is the size of the list and 

log is to base 2. Therefore, the binary search algorithm has a time 

complexity of O(n *( log n)) 

Practical Exercise: Attempt to implement the recursive binary search 

algorithm in any language of your choice 

 

 ITQ 

Question 

What is the prerequisite for a binary search? 

Feedback 

For a binary search, the list has to be a sorted list. 
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Study Session Summary 

 

Summary 

In this study session, you discussed the searching technique. In doing so, 

you described the linear or sequential search. Thereafter, you explored 

the binary search technique. 

 

Assessment 

 

Assessment 

SAQ 5.1 (tests Learning Outcome 5.1) 

Define linear or sequential search. 

SAQ 5.2 (tests Learning Outcome 5.2) 

Explain binary search. 

Bibliography 

Reading 

http://spector.io/computer-science-fundamentals-searching-and-sorting/ 

retrieved January 2017 

http://www.cprogramming.com/discussionarticles/sorting_and_searchin

g.html retrieved January 2017 

https://en.wikipedia.org/wiki/Binary_search_algorithm retrieved 

January 2017 
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Study Session 6 

Analysis of Algorithms  

Introduction 
In this study session, you will be looking at the analysis of 

algorithms. You will start the session by discussing the run time 

analysis and running time. Likewise, you will explain time and 

space complexity of algorithms. Subsequently, you will discuss the 

worst-case analysis. The session will end by giving reasons for 

worst-case analysis. 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

6.1 define runtime analysis 

6.2 explain running time 

6.3 define time and space complexity of algorithm 

6.4 define worst-case analysis 

Terminology 

Bandwidth The amount of data that can be transmitted in a fixed 
amount of time. 

6.1 Runtime Analysis 
Analyzing an algorithm has come to mean predicting the resources that 

the algorithm requires. Occasionally, resources such as memory, 

communication bandwidth, or computer hardware are of primary 

concern, but most often it is computational time that we want to measure. 

Generally, by analyzing several candidate algorithms for a problem, a 

most efficient one can be easily identified. Such analysis may indicate 

more than one viable candidate, but several inferior algorithms are 

usually discarded in the process. 

To analyze a program, we begin by grouping inputs according to size. 

What we choose to call the size of an input can vary from program to 

program. For a sorting program, a good measure of the size is the number 

of elements to be sorted. For a program that solves n linear equations in n 

unknowns, it is normal to take n to be the size of the problem. Other 

programs might use the value of some particular input, or the length of a 
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list that is an input to the program, or the size of an array that is an input, 

or some combination of quantities such as these. 

 ITQ 

Question 

Which factor is often measure in algorithm analysis? 

A. Memory    C. Computational Time 

B. Communication Bandwith  D. Computer Hardware 

Feedback 

C. Computational time. 

A, B and D are all factors that are measured during an algorithm analysis 

but Computational time is the one that is measured most OFTEN. 

6.2 Running Time 
It is convenient to use a function T (n) to represent the number of units of 

time taken by a program or an algorithm on any input of size n. We shall 

call T (n) the running time of the program. For example, a program may 

have a running time T (n) = cn, where c is some constant. Put another 

way, the running time of this program is linearly proportional to the size 

of the input on which it is run. Such a Linear-time program or algorithm 

is said to be linear time, or just linear.  

We can think of the running time T (n) as the number of C statements 

executed by the program or as the length of time taken to run the program 

on some standard computer. Most of the time we shall leave the units of 

T (n) unspecified. In fact, it makes sense to talk of the running time of a 

program only as some (unknown) constant factor times T (n). Quite often, 

the running time of a program depends on a particular input, not just on 

the size of the input. In these cases, we define T (n) to be the worst-case 

running time, that is, the maximum running time on any input among all 

inputs of Worst and size n. 

Another common performance measure is Tavg(n), the average running 

time of the program over all inputs of size n. The average running time is 

sometimes a more realistic measure of what performance one will see in 

practice, but it is often much harder to compute than the worst-case 

running time. The notion of an “average” running time also implies that 

all inputs of size n are equally likely, which may or may not be true in a 

given situation. 

We need to attach some function to each algorithm which would specify 

its efficiency (time and space) in terms of the size of the input used, and 

therefore to compare different algorithms and their trade offs in time and 

space at a more abstract level. 

The search algorithms covered already signify that the binary search is 

more efficient than ordinary linear search method especially as the size N 

of the array gets larger. 
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 ITQ 

Question 

Which of these is a more realistic measure of algorithm performance? 

A. Running Time   B. Average Running Time  

C. Worst Case Running Time 

Feedback 

B. Average Running Time. As stated in the text, average running time is 

a more realistic measure of algorithm performance, though it is harder to 

compute. A and B are also measures of ascertaining algorithm 

performance but C is more realistic. 

6.3 Time and Space Complexity of 

Algorithms 
The computer being used determines the actual time in second and 

memory in bytes required by a program. These depend on the facts of the 

computer architectural design, instruction sets and operational speed of 

the computer. 

Thus, a slightly more simplified and abstract notion of computing time 

and space which is more or less independent of any real computer is used. 

Such an abstract model can then be used as the basis for comparing 

different algorithms. 
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6.3.1 Basic Concepts Under Time and Space 

Complexity  

1. n-size: This is a measure of the quantity of input data for an 

algorithm. E.g. N-size array. When deciding on input size, we 

must ensure that the behaviour of the algorithm will depend on it. 

To be precise, total number of bits or bytes which are needed to 

represent the n must be taken as the size of the input. 

Therefore, for the binary search problem, n is actually (loga1 + loga2 + … 

+ logan) bits, ais are the elements, logs are to base 2. 

For the ordinary search, n would be N. for the binary-search however, it 

is not satisfactory to take the size of the input as one number since the 

behaviour of the algorithm is not a function of the upper bound for n, but 

is a function of the actual number of bits in the binary representation of n. 

This is of course (Log n) bits. But naturally the actual size is n. 

ii. T(n)- Time Complexity: This is the time needed by an 

algorithm to complete execution as a function of size of input 

n. 

iii. S(n)-Space Complexity: Space/memory needed  by an 

algorithm to complete execution as a function of size of input 

n.  

Because S(n) and T(n) are similar, we  shall restrict ourselves to T(n) 

for the moment.  

For many algorithms T(n) = f (n and size of the data n) e.g. the search 

function depends on N, the size of the array and the search value c. If 

A[1] = c then the function search would be approximately 100 times 

faster than if A[100] = c or if c were not in the array at all; assuming N= 

100 for the array. Therefore, we distinguish between best case, worst case 

and average case time complexities. 

i. Tmax(n) = Worst-case time complexity, maximum over all input 

of size n. 

ii. Tmin(n)- Best-case time complexity; minimum over all input of 

size n. 

iii. Tavg(n)- average-case time complexity; average over an input of 

size n. 

The time complexity T(n) is also referred to as “running time” of an 

algorithm on a particular input and it is the number of primitive 

operations or “steps” executed.  

The notion of steps needs be clarified, and we therefore adopt the 

following: 

A constant amount of time is required to execute each line of our 

pseudocode. One line may take a different amount of time than another 

line, but we assume that each execution of the i
th
 line takes time Ci, where 

Ci is a constant. 
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 ITQ 

Question 

What do the terms Tmax (n), Tmin (n) and Tavg (n) stand for? 

Feedback 

Tmax (n) stands for worst case time complexity which is the maximum 

over all input of size n. 

Tmin (n) stands for best case time complexity which is the minimum 

over all input of size n. 

Tavg (n) stands for average-case time complexity which is the average 

over an input of size n. 

6.4 Worst-Case Analysis 
Most algorithms do not perform the same in all cases; normally an 

algorithm's performance varies with the data passed to it. Typically, three 

cases are recognized: the best case, worst case, and average case. For any 

algorithm, understanding what constitutes each of these cases is an 

important part of analysis because performance can vary significantly 

between them. Consider even a simple algorithm such as linear search. 

Linear search is a natural but inefficient search technique in which we 

look for an element simply by traversing a set from one end to the other. 

In the best case, the element we are looking for is the first element we 

inspect, so we end up traversing only a single element. In the worst case, 

however, the desired element is the last one we inspect, in which case we 

end up traversing all of the elements. On average, we can expect to find 

the element somewhere in the middle. 

6.4.1 Reasons for Worst-Case Analysis 

A basic understanding of how an algorithm performs in all cases is 

important, but usually we are most interested in how an algorithm 

performs in the worst case. There are four reasons why algorithms are 

generally analyzed by their worst case: 

1. Many algorithms perform to their worst case a large part of the 

time. For example, the worst case in searching occurs when we 

do not find what we are looking for at all. Imagine how 

frequently this takes place in some database applications. 

2. The best case is not very informative because many algorithms 

perform exactly the same in the best case. For example, nearly all 

searching algorithms can locate an element in one inspection at 

best, so analyzing this case does not tell us much 

3. Determining average-case performance is not always easy. Often 

it is difficult to determine exactly what the "average case" even 

is. Since we can seldom guarantee precisely how an algorithm 

will be exercised, usually we cannot obtain an average-case 

measurement that is likely to be accurate. 

4. The worst case gives us an upper bound on performance. 

Analyzing an algorithm's worst case guarantees that it will never 
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perform worse than what we determine. Therefore, we know that 

the other cases must perform at least as well. 

Although worst-case analysis is the metric for many algorithms, it is 

worth noting that there are exceptions. Sometimes special circumstances 

let us base performance on the average case. For example, randomized 

algorithms such as quicksort use principles of probability to virtually 

guarantee average-case performance. 

 ITQ 

Question 

Why would you be interested in the worst case analysis of an algorithm? 

Feedback 

There are so many reasons why you would be interested in the worst 

case analysis. A few of them include:  

 The worst case analysis is very informative, it tells you the 

algorithm performance in its worst case. 

 It can be used instead of the average case analysis which is more 

realistic but hard to compute. 

 

Study Session Summary 

 

Summary 

In this study session, you examined the analysis of algorithms. 

You began with an explanation of runtime analysis and running 

time. You further discussed the time and space complexity of 

algorithms. Finally, you concluded the session by describing the 

worst-case analysis and reasons for such. 
 

Assessment 

 

Assessment 

SAQ 6.1 (tests Learning Outcome 6.1) 

Define runtime analysis 

SAQ 6.2 (tests Learning Outcome 6.2) 

Explain running time 

SAQ 6.3 (tests Learning Outcome 6.3) 

Define time and space complexity of algorithm 

SAQ 6.4 (tests Learning Outcome 6.4) 

Define worst-case analysis 
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Study Session 7 

The Big ‘O’ Notation  

Introduction 
In this session, you will be exploring the big ‘O’ notation. You will start 

the session by explaining the simple rules for ‘O’ notation. Likewise, you 

will consider the overview of ‘O’ notation and how it works. Moving on, 

you will analyze the divide-and-rule algorithms and computational 

complexity. You will end the session by explaining the basic algorithm 

analysis.  

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

7.1 define O-notations 

7.2 highlight simple rules for O-notation 

7.3 analyze divide-and-conquer algorithms 

7.4 discuss computational complexity 

7.5 explain basic algorithm analysis 

Terminology 

Iteration Repetition of a mathematical or computational procedure 
applied to the result of a previous application, typically as a 
means of obtaining successively closer approximations to 
the solution of a problem. 

7.1 O-Notation 
Formally, O -notation expresses the upper bound of a function within a 

constant factor. Specifically, if g (n) is an upper bound of f (n), then for 

some constant c it is possible to find a value of n, call it n0, for which any 

value of  n    n0 will result in f (n)    cg (n). 

Normally we express an algorithm's performance as a function of the size 

of the data it processes. That is, for some data of size n, we describe its 

performance with some function f (n). However, while in many cases we 

can determine f exactly, usually it is not necessary to be this precise. 

Primarily we are interested only in the growth rate of f, which describes 

how quickly the algorithm's performance will degrade as the size of the 

data it processes becomes arbitrarily large. An algorithm's growth rate, or 
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order of growth, is significant because ultimately it describes how 

efficient the algorithm is for arbitrary inputs. O -notation reflects an 

algorithm's order of growth. 

 ITQ 

Question 

What is O-notation? 

Feedback 

O-notation is a function that expresses the upper bound of a function 

within a constant factor. 

7.2.1 Overview of O-Notation Rules 

When we look at some function f (n) in terms of its growth rate, a few 

things become apparent. First, we can ignore constant terms because as 

the value of n becomes larger and larger, eventually constant terms will 

become insignificant.  For example, if T (n) = n + 50 describes the 

running time of an algorithm, and n, the size of the data it processes, is 

only 1024, the constant term in this expression already constitutes less 

than 5% of the running time.  

Second, we can ignore constant multipliers of terms because they too will 

become insignificant as the value of n increases. For example, if T1(n) = 

n
2
 and T2(n) = 10n describe the running times of two algorithms for 

solving the same problem, n only has to be greater than 10 for T1 to 

become greater than T2.  

Finally, we need only consider the highest-order term because, again, as n 

increases, higher-order terms quickly outweigh the lower-order ones. For 

example, if T (n) = n
2
 + n describes the running time of an algorithm, and 

n is 1024, the lesser-order term of this expression constitutes less than 

0.1% of the running time.  

These ideas are formalized in the following simple rules for expressing 

functions in O -notation. 

 Constant terms are expressed as O (1). When analyzing the 

running time of an algorithm, apply this rule when you have a 

task that you know will execute in a certain amount of time 

regardless of the size of the data it processes. Formally stated, for 

some constant c: 

 O(c) = O(1) 

 Multiplicative constants are omitted. When analyzing the running 

time of an algorithm, apply this rule when you have a number of 

tasks that all execute in the same amount of time. For example, if 

three tasks each run in time T (n) = n, the result is O (3n), which 

simplifies to O (n). Formally stated, for some constant c: O(cT) = 

cO(T) = O(T) 

 Addition is performed by taking the maximum. When analyzing 

the running time of an algorithm, apply this rule when one task is 

executed after another. For example, if T1(n) = n and T2(n) = n
2
 

describe two tasks executed sequentially, the result is O (n) + O 
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(n
2
), which simplifies to O (n

2
). Formally stated: O(T1)+O(T1+T2) 

= max (O(T1), O(T2)) 

 Multiplication is not changed but often is rewritten more 

compactly. When analyzing the running time of an algorithm, 

apply this rule when one task causes another to be executed some 

number of times for each iteration of itself. For example, in a 

nested loop whose outer iterations are described by T1 and whose 

inner iterations by T2, if T1(n) = n and T2(n) = n, the result is O 

(n)O (n), or O (n
2
). Formally stated: O(T1)O(T2) = O(T1 T2) 

7.2.2 O-Notation Example and Why It Works 

The next section discusses how these rules help us in predicting an 

algorithm's performance. For now, let's look at a specific example 

demonstrating why they work so well in describing a function's growth 

rate. Suppose we have an algorithm whose running time is described by 

the function T (n) = 3n2 + 10n + 10. Using the rules of O -notation, this 

function can be simplified to: 

O(T(n)) = O(3n2 + 10n + 10) = O(3n2) = O(n2) 

This indicates that the term containing n2 will be the one that accounts 

for most of the running time as n grows arbitrarily large. We can verify 

this quantitatively by computing the percentage of the overall running 

time that each term accounts for as n increases. For example, when n = 

10, we have the following: 

Running time for 3n2: 3(10)2/(3(10)2 + 10(10) + 10) = 73.2%  

Running time for 10n: 10(10)/(3(10)2 + 10(10) + 10) = 24.4%  

Running time for 10: 10/(3(10)2 + 10(10) + 10) = 2.4%  

Already we see that the n2 term accounts for the majority of the overall 

running time. Now consider when n = 100: 

Running time for 3n2: 3(100)2/(3(100)2 + 10(100) + 10) = 96.7% 

(Higher)  

Running time for 10n: 10(100)/(3(100)2 + 10(100) + 10) = 3.2% (Lower)  

Running time for 10: 10/(3(100)2 + 10(100) + 10) < 0.1% (Lower)  

Here we see that this term accounts for almost all of the running time, 

while the significance of the other terms diminishes further. Imagine how 

much of the running time this term would account for if n were 106!  

BIG-OH  INFORMAL NAME 

O(1)   constant 

O(log n)  logarithmic 

O(n)   linear 

O(n log n)  n log n 

O(n2)  quadratic 

O(n3)   cubic 

O(2n)  exponential 
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 ITQ 

Question 

O-notations work well when the n is small; where n is the term that 

accounts for majority of running time (T) of an algorithm. True or False. 

Feedback 

False. O-notations works well when the term with majority of the 

running time (T) of an algorithm is arbitrarily large. 

7.2 Analyzing Divide-and-Conquer 

Algorithms 
When an algorithm contains a recursive call to itself, its running time can 

often be described by a recurrence equation or recurrence, which 

describes the overall running time on a problem of size n in terms of the 

running time on smaller inputs. We can then use mathematical tools to 

solve the recurrence and provide bounds on the performance of the 

algorithm. 

A recurrence for the running time of a divide-and-conquer algorithm is 

based on the three steps of the basic paradigm. As before, we let T (n) be 

the running time on a problem of size n. If the problem size is small 

enough, say n ≤ c for some constant c, the straightforward solution takes 

constant time, which we write as Θ(1). Suppose that our division of the 

problem yields a subproblems, each of which is 1/b the size of the 

original. (For merge sort, both a and b are 2, but we shall see many 

divide-and-conquer algorithms in which a ≠ b.) If we take D(n) time to 

divide the problem into subproblems and C(n) time to combine the 

solutions to the subproblems into the solution to the original problem, we 

get the recurrence 

7.3 Computational Complexity 
When speaking of the performance of an algorithm, usually the aspect of 

interest is its complexity, which is the growth rate of the resources 

(usually time) it requires with respect to the size of the data it processes. 

O -notation describes an algorithm's complexity. Using O -notation, we 

can frequently describe the worst-case complexity of an algorithm simply 

by inspecting its overall structure. Other times, it is helpful to employ 

techniques involving recurrences and summation formulas (see the 

related topics at the end of the chapter), and statistics. 

To understand complexity, let's look at one way to surmise the resources 

an algorithm will require. It should seem reasonable that if we look at an 

algorithm as a series of k statements, each with some cost (usually time) 

to execute, ci , we can determine the algorithm's total cost by summing 

the costs of all statements from c1 to ck in whatever order each is 

executed. Normally statements are executed in a more complicated 

manner than simply in sequence, so this has to be taken into account 
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when totaling the costs. For example, if some subset of the statements is 

executed in a loop, the costs of the subset must be multiplied by the 

number of iterations. Consider an algorithm consisting of k = 6 

statements. If statements 3, 4, and 5 are executed in a loop from 1 to n 

and the other statements are executed sequentially, the overall cost of the 

algorithm is: 

T(n) = c1 + c2 + n(c3 + c4 + c5) + c6 

Using the rules of O -notation, this algorithm's complexity is O (n) 

because the constants are not significant. Analyzing an algorithm in terms 

of these constant costs is very thorough. However, recalling what we 

have seen about growth rates, remember that we do not need to be so 

precise. When inspecting the overall structure of an algorithm, only two 

steps need to be performed: we must determine which parts of the 

algorithm depend on data whose size is not constant, and then derive 

functions that describe the performance of each part. All other parts of the 

algorithm execute with a constant cost and can be ignored in figuring its 

overall complexity. 

Assuming T (n) in the previous example represents an algorithm's 

running time, it is important to realize that O (n), its complexity, says 

little about the actual time the algorithm will take to run. In other words, 

just because an algorithm has a low growth rate does not necessarily 

mean it will execute in a small amount of time. In fact, complexities have 

no real units of measurement at all. They describe only how the resource 

being measured will be affected by a change in data size. For example, 

saying that T (n) is O (n) conveys only that the algorithm's running time 

varies proportionally to n, and that n is an upper bound for T (n) within a 

constant factor. Formally, we say that T (n)  cn, where c is a constant 

factor that accounts for various costs not associated with the data, such as 

the type of computer on which the algorithm is running, the compiler 

used to generate the machine code, and constants in the algorithm itself. 

Many complexities occur frequently in computing, so it is worthwhile to 

become familiar with them. Table 7.1 lists some typical situations in 

which common complexities occur. Table 2 lists these common 

complexities along with some calculations illustrating their growth rates. 

Figure 1 presents the data of Table 7.2 in a graphical form. 

Table 7.1 Some Situations Wherein Common Complexities Occur  

 

Complexity Example 

O(1) Fetching the first element from a set of data 

O(lg n) 
Splitting a set of data in half, then splitting the halves in 

half, etc. 

O(n) Traversing a set of data 
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Table 7.1 Some Situations Wherein Common Complexities Occur  

 

Complexity Example 

O(n lg n) 
Splitting a set of data in half repeatedly and traversing each 

half 

O(n
2
) 

Traversing a set of data once for each member of another 

set of equal size 

O(2
n
) 

Generating all possible subsets of a set of data (The power 

set of a set) 

O (n!) Generating all possible permutations of a set of data 

 

Table 7.2. The Growth Rates of the Complexities in Table 7.1  

 

  n = 1 n = 16 n = 256 n = 4K n = 64K n = 1M 

O(1

) 

1.000E+0

0 

1.000E+0

0 

1.000E+0

0 

1.000E+0

0 

1.000E+0

0 

1.000E+0

0 

O 

(lg 

n) 

0.000E+0

0 

4.000E+0

0 

8.000E+0

0 

1.200E+0

1 

1.600E+0

1 

2.000E+0

1 

O 

(n) 

1.000E+0

0 

1.600E+0

1 

2.560E+0

2 

4.096E+0

3 

6.554E+0

4 

1.049E+0

6 

O 

(n 

lg 

n) 

0.000E+0

0 

6.400E+0

1 

2.048E+0

3 

4.915E+0

4 

1.049E+0

6 

2.097E+0

7 

O 

(n
2
) 

1.000E+0

0 

2.560E+0

2 

6.554E+0

4 

1.678E+0

7 

4.295E+0

9 

1.100E+1

2 

O 

(2n) 

2.000E+0

0 

6.554E+0

4 

1.158E+7

7 
— — — 
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Table 7.2. The Growth Rates of the Complexities in Table 7.1  

 

  n = 1 n = 16 n = 256 n = 4K n = 64K n = 1M 

O 

(n!) 

1.000E+0

0 

2.092E+1

3 
— — — — 

 

 

Figure 1. A graphical depiction of the growth rates in Tables 1and Table 

2 

Just as the complexity of an algorithm says little about its actual running 

time, it is important to understand that no measure of complexity is 

necessarily efficient or inefficient. Although complexity is an indication 

of the efficiency of an algorithm, whether a particular complexity is 

considered efficient or inefficient depends on the problem. Generally, an 

efficient algorithm is one in which we know we are doing the best we can 

do given certain criteria. Typically, an algorithm is said to be efficient if 

there are no algorithms with lower complexities to solve the same 

problem and the algorithm does not contain excessive constants. Some 

problems are intractable, so there are no "efficient" solutions without 

settling for an approximation. This is true of a special class of problems 

called NP-complete problems. 

Although an algorithm's complexity is an important starting point for 

determining how well it will perform, often there are other things to 

consider in practice. For example, when two algorithms are of the same 

complexity, it may be worthwhile to consider their less significant terms 

and factors. If the data on which the algorithms' performances depend is 

small enough, even an algorithm of greater complexity with small 

constants may perform better in practice than one that has a lower order 
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of complexity and larger constants. Other factors worth considering are 

how complicated an algorithm will be to develop and maintain, and how 

we can make the actual implementation of an algorithm more efficient. 

An efficient implementation does not always affect an algorithm's 

complexity, but it can reduce constant factors, which makes the algorithm 

run faster in practice. 

 ITQ 

Question 

What is the relationship between Computational complexity and O-

notations? 

Feedback 

Computational complexity is the growth rate of the resources, an 

algorithm requires with respect to the size of the data it processes. O -

notation help you to describe an algorithm's complexity. 

7.5 Basic Algorithm Analysis 
Questions 

 How does one calculate the running time of an algorithm?  

 How can we compare two different algorithms?  

 How do we know if an algorithm is `optimal'?  

1. Count the number of basic operations performed by the algorithm on 

the worst-case input  

A basic operation could be:  

 An assignment  

 A comparison between two variables  

 An arithmetic operation between two variables. The worst-case 

input is that input assignment for which the most basic operations 

are performed.  

 

Simple Example:  

n := 5; 

loop 

    get(m); 

    n := n -1; 

until (m=0 or n=0) 

 

Worst-case: 5 iterations  

 

Usually we are not concerned with the number of steps for a single fixed 

case but wish to estimate the running time in terms of the `input size'.  



 

Study Session 7  The Big ‘O’ Notation 

 

 
69 

 
 

 

get(n); 

loop 

    get(m); 

    n := n -1; 

until (m=0 or n=0) 

 

Worst-case: n iterations  

 

Examples of `input size': Sorting:  

 

n == The number of items to be sorted;  

Basic operation: Comparison.  

 

Multiplication (of x and y):  

n == The number of digits in x plus the number of digits in y.  

Basic operations: single digit arithmetic.  

 

Graph `searching':  

n == the number of nodes in the graph or the number of edges in the 

graph.  

 

Counting the Number of Basic Operations  

Sequence: P and Q are two algorithm sections:  

 

Time( P ; Q )  =  Time( P ) + Time( Q ) 

 

Iteration:  

while < condition > loop 

     P; 

end loop; 

 

or  

 

for i in 1..n loop 

    P; 
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end loop 

 

Time  =  Time( P ) * ( Worst-case number of iterations ) 

 

Conditional  

if < condition > then 

    P; 

else 

    Q; 

end if; 

 

Time  =  Time(P)   if  < condition > =true 

         Time( Q ) if  < condition > =false 

 

We shall consider recursive procedures later in the course.  

 

Example:  

for i in 1..n loop 

    for j in 1..n loop 

       if i < j then 

          swop (a(i,j), a(j,i)); -- Basic operation 

       end if; 

    end loop; 

end loop; 

 

Time  <  n*n*1 

       =  n^2 

 

 ITQ 

Question 

Why do we analyze Algorithms? 

Feedback 

Algorithm analysis are done to ascertain its running time and to compare 

its efficiency with other algorithms in basic operations. 
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Study Session Summary 

 

Summary 

In this session, you examined the big ‘O’ notation. You also studied 

simple rules of ‘O’ notations, ‘o’ notation examples and why it works. 

You continued the session by analysing the divide-and conquer 

algorithms and computational complexity. The session ended with a 

description of basic algorithms analysis.  

 

Assessment 

 

Assessment 

SAQ 7.1 (tests Learning Outcome 7.1) 

Define O-notations 

SAQ7.2 (tests Learning Outcome 7.2) 

Highlight simple rules for O-notation 

SAQ 7.3 (tests Learning Outcome 7.3) 

Analyze divide-and-conquer algorithms 

SAQ 7.4 (tests Learning Outcome 7.4) 

Discuss computational complexity 

SAQ 7.5 (tests Learning Outcome 7.5) 

Explain basic algorithm analysis 

Bibliography 
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Study Session 8 

Run Time Analysis of Insertion 

Sort  

Introduction 
In this session, you will examine the run time analysis of insertion sort. In 

addition, you will discuss the running time of insertion sort and the order 

of growth. 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

8.1 explain running time of insertion sort 

8.2 describe the order of growth 

8.1 Running Time of Insertion Sort 
We start by presenting the insertion sort procedure with the time “cost” of 

each statement and the number of times each statement is executed. For 

each j = 2,3…n, where n = Length [A], we let tj, be the number of times 

the while loop test in line 5 is executed for that values of j. We assume, 

comments are not executable statements and so they take no time. 

The running time of the algorithm is the sum of running  times for each 

statement executed, a statement that takes Ci steps to execute and is 

executed n times will contribute Cin to the total running time. 
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Note: The symbol for comments in algorithm analysis is a delta symbol 

inverted  

To compute T(n), the running time of insertion sort, we sum the products 

of the cost and times columns, obtaining. 

T(n)=Cin + C2(n-1)+ C4(n- –

(tj –1) + C8 (n-1) 

                        
 

   
        

 

   
   

          
 

   
         

The best case occurs if the array is already sorted. For each j =2,3..n, we 

then find that A[i] ≤ key in line 5 when i has its initial value of j-1. Thus, 

tj =1 for j = 2, 3 .. n and the best-case running time is  

Tmin(n) = C1n + C2(n – 1) + C4(n – 1) + C5(n – 1) + C8(n – 1) 

          = (C1 + C2 + C4 + C5 + C8) n – (C2 + C4 + C5 + C8) 

T(n) can be expressed as an + b for constants a and b that depend on the 

statement costs Ci; it is thus a linear function of n. That is, T(n) = an + c = 

 (n) (Order of n) 

If the array is in reverse sorted order, i.e., in decreasing order, the worst-

case results. We must compare each element A[j] with each element in 

the entire sorted subarray A[1--j – 1) and so tj = j for j = 2,3 .., n 

Note that in Mathematics: 

   
      

 
  

 

   

 

and 

       
      

 

 

   

 

                             
      

 
   

    
      

 
      

      

 
           

 

  
  
 
 
  
 
 
  
 
                

  
 
 
  
 
 
  
 
      

 

This worst case can be expressed as T(n) = an
2
 + bn + C, i.e. it is a 

quadratic function of n. 

The average case when computed is of the order of n
2
 like in the worst 

case. One problem with performing average case analysis, however, is 

that it may not be apparent what constitutes an “average” input for a 
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particular problem. Often, we shall assume that all inputs of a given size 

are equally likely.  

8.2 Order of Growth 
So far, we ignored the actual cost of each statement, using the constants 

Ci to represent these costs, and we discovered that the worst-case running 

time is an
2
 + bn + c for some constants a, b and c that depend on the 

statement costs Ci. Thus, we ignored not only the actual statement costs 

but also the abstract costs Ci. 

We shall make one more abstraction. It is the rate of growth, or order of 

growth of the running time that really interest us. We therefore consider 

only the leading term of a formula (e.g. an
2
) since the lower order terms 

are relatively insignificant for large n. also, we ignore the leading term’s 

constant coefficient, since constant factors are less significant than the 

rate of growth in determining computational efficiency for large inputs. 

Thus, we write that insertion sort,  for example, has a worst case running 

time of θ(n
2
) (pronounced “theta of n-squared”)θ is going to be defined 

formally later. 

We usually consider one algorithm to be more efficient than another if its 

worst case running time has a lower order of growth. This evaluation may 

be wrong for small inputs, but for large enough inputs, a θ(n
2
) algorithm 

will run more quickly in the worst case than a θ(n
3
) algorithm. 

 

 ITQ 

Question 

An algorithm is considered more efficient if its worst case running time 

has a higher rate of growth. True or False 

Feedback 

False. An algorithm is considered more efficient if its worst case running 

time has a lower rate of growth. 

Study Session Summary 

 

Summary 

In this session, you exploreded the run time analysis of insertion sort. 

Likewise, you explored running time of insertion sort and the order of 

growth. 
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Assessment 

 

Assessment 

SAQ 8.1 (tests Learning Outcome8.1) 

Explain running time of insertion sort 

SAQ 8.2 (tests Learning Outcome 8.2) 

Define Order of Growth 
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Study Session 9 

Analysing Divide and Conquer 

Algorithms  

Introduction 
In this study session, you will be analysing the divide and conquer 

algorithms. You will start by exploring the analysis of merge sort 

algorithms and quicksort algorithms. This will lead to an explanation of 

worst case, best case and average case partitioning.  

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

9.1 analyze divide and conquer algorithms 

9.2 explain analysis of merge sort algorithm 

9.3 discuss the analysis of quicksort algorithm 

9.1 Analyzing Divide and Conquer 

Algorithms 
Mathematical tools such as induction or others are then used to solve the 

recurrence and provide bounds on the performance of the algorithm. The 

D and C algorithm has 3 steps and therefore the recurrence for the 

running time is based on these 3 steps. If the problem size is small 

enough, say n ≤ c for some constant C, the solution takes constant time, 

which we write as θ(1). Suppose we divide the problem into ‘a’ sub 

problems, each of which is 1/b the size of the original. If we take D(n) 

time to divide the problem into sub problems and C(n) time to combine 

the solutions to the  sub problem into the solution to the original problem, 

we get the recurrence. 

T(n) =   θ(1)         if n ≤ c  

    aT(n/b) + D(n) + C (n)    Otherwise  

On solving, the recurrence, the following results are obtained 

i. If a<b, then T(n) = θ(n) 

ii. If a=b then T(n)= θ(nLgn) 

iii. If a > b then T(n)= θ (n
Lga

) 

When lg = log2  i.e. Log to base 2 
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 ITQ 

Question 

For a divide and conquer algorithm, the solution takes constant time if 

the problem size is small enough. True or False 

Feedback 

True. As stated in the text, the solution takes constant time if the 

problem size is small. 

9.2 Analysis of Merge Sort Algorithm 
Although the merge soft algorithm works correctly when the number of 

elements is not even, our recurrence-based analysis is simplified if the 

original problem size is a power of two. 

 

Initial Sequence 

Each divide step then yields two subsequence of size exactly n/2. 

Mergesort on just one element takes constant time. With n>1 elements, 

the running time is broken down as follows: 

Divide:  This step just computes the middle of the subarray, which takes 

constant time 

Thus D(n) = θ (1) 

Conquer: Recursively, we solve 2 sub problems each of size n/2 which 

contributes 2T (n/2) to the running time (a=2) 

Combine: The merge procedure on an element sub array takes time θ(n), 

so C(n) = θ(n). Adding functions D (n) and C (n) for the merge sort 

analysis means we are adding a functions that are θ(n) and θ(1), which is 

a linear function of n, i.e. θ(n). Adding it to the 2T(n/2) term of the 

conquer step gives the  recurrence for the worst-case running the time 

Tmax(n) of merge sort: 

  

   T(n)   =  θ(1)     if n =1 

           2T(n/2) + θ(n)  if n>1 

 

Solving this recurrence equation by mathematical induction,       T(n)= 

θ(nLgn). Lgn stands for log2
n
. For large enough inputs, merge sort, with 

its θ(nLgn) running time, out performs insertion sort whose running time 

is θ(n
2
) in the worst case. 
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 ITQ 

Question 

For Large inputs, Merge sort outperforms insertion sort. True or False 

Give the reason for your answer. 

Feedback 

True. Merge sort has a running time of θ(n
Lgn

) which out performs 

insertion sort whose running time is θ(n2) in the worst case so with large 

input, merge sort running time is better than insertin sort. 

9.3 Analysis of Quicksort Algorithm 
The running time of partition on an array A[p..r] is θ(n),  where n=r-p+1]. 

The running time performance of quicksort depends on whether the 

partitioning is balanced or not. If balanced, the algorithm runs 

asymptotically as fast as merge sort; if not, it runs asymptotically as slow 

as insertion sort. 

9.3.1 Worst Case Partitioning  

The worst case behaviour occurs when the partitioning routine produces 

one region with n-1 elements, and one with only 1 element. Since 

partitioning costs θ(n) time and T(1) = θ(1) the recurrence for the running 

time is T(n) = T(n-1) + θ(n) 

On solving,  T(n)= θ(n
2
)  

Thus, if the partitioning is maximally unbalanced at every recursive step 

of the algorithm, the running time is θ(n
2
), which is not better than the 

worst case of insertion sort. Moreover, the θ(n
2
) running time occurs 

when the input array is already sorted, a common situation in which 

insertion sort runs in O(n) time. 
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9.3.2 Best-Case Partitioning 

If the partitioning procedure produces 2 regions of size n/2, quicksort 

runs much faster.  

The recurrence is then T(n) =2T(n/2)+ θ(n)  with solution θ(nLgn) 

 

9.3.3 Average Case Partitioning 

The average case running time of quicksort is much closer to the best 

case than to the worst case if suppose, for example, that the partitioning 

algorithm always produces a 9-to-1 proportional split, which may seem 

unbalanced to us. 

T(n) = T(9n/10) + T(n/10) + n,  

Note: 

Θ (n) is replaced by n for convenience  

T(n) = θ (nLgn) 
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 ITQ 

Question 

In Quick sort, the average case running time is much closer to ……. 

A. The best case running time  

B. The worst case running time 

Feedback 

A.The best case running time.  

Study Session Summary 

 

Summary 

In this study session, you explained how to analyse divide and conquer 

algorithms. Likewise, you looked at how to analyse the merge sort and 

quicksort algorithms. In doing so, you evaluated the worst case, best 

case and average case partitioning. 

 

Assessment 

 

Assessment 

SAQ 9.1 (tests Learning Outcome 9.1) 

Analyze divide and conquer algorithms 

SAQ 9.2 (tests Learning Outcome 9.2) 

Explain analysis of merge sort algorithm 

SAQ 9.3 (tests Learning Outcome 9.3) 

Explain analysis of quicksort algorithm 
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Study Session 10 

Growth of Functions 

Introduction 
In this study session, you will be looking at the different growth 

functions. You will begin with an illustration of θ-notation. Likewise, you 

will examine the big ‘O’ notation, the Ω-notation and the small ‘o’ 

notation. The session will end with a discussion on the small omega  

notation. 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to 

10.1 define big and small O-notations 

10.2 discuss small omega notation 

Terminology 

Notations A series or system of written symbols used to represent 
numbers, amounts, or elements in something such as 
music or mathematics. 

10.1 θ-notation 
For a given function g(n), we denote by θ(g(n) the set of functions       

θ(g(n) = {f(n): there exist positive constants C1, C2 and no  

          such that 0 ≤ C1g(n) ≤f (n) ≤C2g(n) for all n ≥ no 

A function f(n) belongs to the set θ(g(n) if there exists positive constants 

C1 and C2 such that it can be “sandwiched” between C1g(n) and C2g(n) 

for sufficiently large n. Note: f(n) = θ(g(n) means f(n) is a member of 

θ(g(n) 
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no is the minimum possible value of n. 

For all values of n to the right of no, the value of f(n) lies at or below 

C2(g(n). In other words, for all n ≥no, the function f(n) is equal to g(n) to 

within a constant factor. We say that g(n) is an a asymptotically tight 

bound for f(n).  The informal notion of θ-notation is that lower order 

terms are thrown away and the coefficient of the leading term or the 

highest order term is discarded.  

10.1.1 Big O-notation 

O-notation means asymptotic upper bound of a function compared to θ-

notation which asymptotically bounds a function from above and below.  

O(g(n)) = {f(n):  positive constants C and no,  

                  such that 0≤f(n)≤Cg(n)  n ≥ no}.  

Note that  means “There exists…”, and means  “For all …” 

O-notation gives an upper bound on a function to within a constant factor. 

Note that f(n) = θ(g(n)) implies f(n) = O(g(n)) since θ- notation is a 

stronger notion than O-notation. 

 θ(g(n)) ≤ O(g(n)) 

Thus, any quadratic function an
2
 + bn + c, where a >0, is in θ(n

2
) also 

shows that any quadratic function is in O(n
2
). 

Surprisingly any linear function an + b is in O(n
2
), which is easily 

verified by taking C = a+ /b/ and no = 1. 

O- notation is used to bound the worst case running time of an algorithm. 

10.1.2 Ω- notation 

Just as O-notation provides an asymptotic upper bound on a function, Ω-

notation provides an asymptotic lower bound for a given function g(n), 

we denote by Ω(g(n)) the set of functions 

Ω(g(n)) = { f(n):  positive constants c and no  

                 such that O ≤ Cg(n) ≤ f(n),   n ≥ no}.    
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 values n to the right of no, the value of f(n) is on or above g(n). 

Intuitively, Ω- notation gives the best case analysis of an algorithm. 

10.1.3 Small o-notation 

Big O-notation may or may not be asymptotically tight. The bound 2n
2
 = 

O(n
2
) is asymptotically tight, but the bound 2n = O(n

2
) is not. We use o-

notation to denote an upper bound that is not asymptotically tight. 

o(g(n)) = {f(n): for any positive constant C>0,  a constant no > 0  

     such that 0≤f(n)<(g(n)  n ≥ no} 

e.g. 2n = o(n
2
) but 2n

2
  o(n

2
) 

The definition of O- and o-notations are similar. The main difference is 

that in f(n) = O(g(n)), the bound 0≤f(n)≤Cg(n) for some constants C>0, 

but in f(n)=o(g(n)), the bound 0≤f(n)<Cg(n) holds for all constants C>O. 

Intuitively in the small o-notation, the function f(n) becomes insignificant 

relative to g(n) as n approaches infinity 

 i.e. Lim   f (n)     = 0 

      n  g(n) 

 ITQ 

Question 

One of the following asymptotically bounds a function from above and 

below. 

A. θ-notation       B. O-notation          C. o-notation 

Feedback 

Option A 

θ-notation asymptotically bounds a function from above and below. O-

notation (B) denotes asymptotic tight upper bound of a function and o-

notation (C) is used to denote an upper bound that is not asymptotically 

tight. 

10.2 Small omega  -notation 
The small omega is used to denote a lower bound that is not 

asymptotically tight. 

f(n) є (g(n) iff g(n) є o(f(n) 

Formally,  

(g(n)) = {f(n): for any positive constant c>0, there exists a constant  

   no>0 such that 0≤Cg(n)<f(n)  n ≥no} 

e.g. n
2
/n = (n) but n

2
/2 ≠ (n

2
) 

f(n) = (g(n))    Lim   f(n) =    
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                        n   g(n) 

i.e. f(n) becomes arbitrarily large relative to g(n) as n approaches infinity. 

 ITQ 

Question 

One of the following bounds the best case analysis of an algorithm 

A. θ-notation       B. O-notation          C. Ω- notation 

Feedback 

Option C 

Ω- notation gives the best case analysis of an algorithm. 

Examples  

1. Is 2
n+1

 = O(2
n
)? Yes, for any n, 2

n
 is always smaller than 2

n+1
,     

         therefore 2
n
 is the upper bound of  2

n+1
. 

2. Is 2
2n

 = O(2
n
)?   No 2

2n
 = (2

n
)

2
, for any constant, the value of  

(2
n
)

2
 is always  

increasing astronomically more than 2
n
. Therefore 2

n
 is not an upper 

bound of 2
n
. 

 ITQ 

Question 

One of the following bounds the worst case analysis of an algorithm 

A. θ-notation       

B.  O-notation          

C.  Ω- notation 

Feedback 

Option B 

O-notation is used to bound the worst case running time of an algorithm. 

Study Session Summary 

 

Summary 

In this session, you examined the growth functions. In order to examine 

this, you will discuss the θ-notation, the Ω-notation and the small ‘o’ 

notation. The session will end with a description of the small omega 

notation. 
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Assessment 

 

Assessment 

SAQ 10.1 (tests Learning Outcome 10.1) 

Define big and small O-notations. 

SAQ 10.2 (tests Learning Outcome 10.2) 

Discuss small omega notation  
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Study Session 11 

Recurrences: An Overview 

Introduction 
In this study session, you will examine an overview of recurrences. You 

will begin by explaining what recurrence means. Thereafter, you discuss 

technicalities and substitution method. Moving on, you will discuss how 

to make a good guess. Likewise, you will explain subtleties, how to avoid 

pitfalls, and changing variables.  

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

11.1 define recurrence 

11.2 explain technicalities 

11.3 discuss the substitution method 

11.4 discuss about making a good guess 

11.5 define subtleties 

11.6 explain how to avoid pitfalls 

11.7 change variables 

11.1 What is Recurrence? 
A recurrence is an equation or inequality that describes a function in 

terms of its value on smaller inputs. For example, we saw previously that 

the worst-case running time T (n) of the MERGE-SORT procedure could 

be described by the recurrence 

   ………(11.1) 

whose solution was claimed to be T (n) = Θ(n lg n). 

This section offers three methods for solving recurrences-that is, for 

obtaining asymptotic "Θ" or "O" bounds on the solution. In the 

substitution method, we guess a bound and then use mathematical 

induction to prove our guess correct. The recursion-tree method converts 

the recurrence into a tree whose nodes represent the costs incurred at 

various levels of the recursion; we use techniques for bounding 

summations to solve the recurrence. The master method provides bounds 

for recurrences of the form 
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T (n) = aT (n/b) + f (n), 

where a ≥ 1, b > 1, and f (n) is a given function; it requires memorization 

of three cases, but once you do that, determining asymptotic bounds for 

many simple recurrences is easy. 

 ITQ 

Question 

What are the 3 methods used for solving recurrence? 

Feedback 

The three methods used in solving recurrences include the substitution 

method, the recursion tree method and the Master method. 

11.2 Technicalities 
In practice, we neglect certain technical details when we state and solve 

recurrences. A good example of a detail that is often glossed over is the 

assumption of integer arguments to functions. Normally, the running time 

T (n) of an algorithm is only defined when n is an integer, since for most 

algorithms, the size of the input is always an integer. For example, the 

recurrence describing the worst-case running time of MERGE-SORT is 

really 

 

Boundary conditions represent another class of details that we typically 

ignore. Since the running time of an algorithm on a constant-sized input 

is a constant, the recurrences that arise from the running times of 

algorithms generally have T(n) = Θ(1) for sufficiently small n. 

Consequently, for convenience, we shall generally omit statements of the 

boundary conditions of recurrences and assume that T (n) is constant for 

small n. For example, we normally state recurrence as 

T(n) = 2T(n/2) + (n) ........     (11.3) 

without explicitly giving values for small n. The reason is that although 

changing the value of T (1) changes the solution to the recurrence, the 

solution typically doesn't change by more than a constant factor, so the 

order of growth is unchanged. 

When we state and solve recurrences, we often omit floors, ceilings, and 

boundary conditions. We forge ahead without these details and later 

determine whether or not they matter. They usually don't, but it is 

important to know when they do. Experience helps, and so do some 

theorems stating that these details don't affect the asymptotic bounds of 

many recurrences encountered in the analysis of algorithms. In this 

chapter, however, we shall address some of these details to show the fine 

points of recurrence solution methods. 
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 ITQ 

Question 

In solving recurrences, the following are omitted: floors, ceilings and 

boundary conditions. True or False. 

Feedback 

True. As stated in the text, when recurrences are being stated or solved, 

the floors, ceilings, and boundary conditions is omitted. Their 

importance is determined later. 

11.3 The Substitution Method 
The substitution method for solving recurrences entails two steps: 

1. Guess the form of the solution. 

2. Use mathematical induction to find the constants and show that 

the solution works. 

 

The name comes from the substitution of the guessed answer for the 

function when the inductive hypothesis is applied to smaller values. This 

method is powerful, but it obviously can be applied only in cases when it 

is easy to guess the form of the answer. 

The substitution method can be used to establish either upper or lower 

bounds on a recurrence. As an example, let us determine an upper bound 

on the recurrence 

T(n) = 2T(n/2) + (n) ........     (11.4) 

which is similar to recurrences (11.2) and (11.3). We guess that the 

solution is T (n) = O(n lg n). Our method is to prove that T (n) ≤ cn lg n 

for an appropriate choice of the constant c > 0. We start by assuming that 

this bound holds for n/2, that is, that T (n/2) ≤ c n/2 lg(n/2). 

Substituting into the recurrence yields 

T(n) ≤  2(c n/2 lg(n/2 )) + n  

  ≤  cn lg(n/2) + n  

  = cn lg n - cn lg 2 + n  

  = cn lg n - cn + n  

  ≤  cn lg n, 

where the last step holds as long as c ≥ 1. 

Mathematical induction now requires us to show that our solution holds 

for the boundary conditions. Typically, we do so by showing that the 

boundary conditions are suitable as base cases for the inductive proof. 
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For the recurrence (11.4), we must show that we can choose the constant 

c large enough so that the bound T(n) = cn lg n works for the boundary 

conditions as well. This requirement can sometimes lead to problems. Let 

us assume, for the sake of argument, that T (1) = 1 is the sole boundary 

condition of the recurrence. Then for n = 1, the bound T (n) = cn lg n 

yields T (1) = c1 lg 1 = 0, which is at odds with T (1) = 1. Consequently, 

the base case of our inductive proof fails to hold. 

This difficulty in proving an inductive hypothesis for a specific boundary 

condition can be easily overcome. For example, in the recurrence (11.4), 

we take advantage of asymptotic notation only requiring us to prove T (n) 

= cn lg n for n ≥ n0, where n0 is a constant of our choosing. The idea is to 

remove the difficult boundary condition T (1) = 1 from consideration in 

the inductive proof. Observe that for n > 3, the recurrence does not 

depend directly on T (1). Thus, we can replace T (1) by T (2) and T (3) as 

the base cases in the inductive proof, letting n0 = 2. Note that we make a 

distinction between the base case of the recurrence (n = 1) and the base 

cases of the inductive proof (n = 2 and n = 3). We derive from the 

recurrence that T (2) = 4 and T (3) = 5. The inductive proof that T (n) ≤ cn 

lg n for some constant c ≥ 1 can now be completed by choosing c large 

enough so that T (2) ≤ c2 lg 2 and T (3) ≤ c3 lg 3. As it turns out, any 

choice of c ≥ 2 suffices for the base cases of n = 2 and n = 3 to hold. For 

most of the recurrences we shall examine, it is straightforward to extend 

boundary conditions to make the inductive assumption work for small n. 

 ITQ 

Question 

1. What are the two steps entailed in the substitution method? 

2. What is the importance of step 2? 

Feedback 

1. The substitution method entails the following steps: 

i. You have to guess the form of the solution. 

ii. You then use mathematical induction to find the constants and 

show that the solution works. 

2. Step is the use of mathematical induction to find the constants and 

prove our solution. Mathematical induction show that our solution 

holds for the boundary conditions. This is done by showing that the 

boundary conditions are suitable as base cases for the inductive 

proof. 

11.4 Making a Good Guess 
Unfortunately, there is no general way to guess the correct solutions to 

recurrences. Guessing a solution takes experience and, occasionally, 

creativity. Fortunately, though, there are some heuristics that can help 

you become a good guesser. You can also use recursion trees to generate 

good guesses.  

If a recurrence is similar to one you have seen before, then guessing a 

similar solution is reasonable. As an example, consider the recurrence 
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T (n) = 2T (n/2 + 17) + n , 

which looks difficult because of the added "17" in the argument to T on 

the right-hand side. Intuitively, however, this additional term cannot 

substantially affect the solution to the recurrence. When n is large, the 

difference between T ( n/2 ) and T ( n/2 + 17) is not that large: both 

cut n nearly evenly in half. Consequently, we make the guess that T (n) = 

O(n lg n), which you can verify as correct by using the substitution 

method. 

Another way to make a good guess is to prove loose upper and lower 

bounds on the recurrence and then reduce the range of uncertainty. For 

example, we might start with a lower bound of T (n) = Ω(n) for the 

recurrence (4.4), since we have the term n in the recurrence, and we can 

prove an initial upper bound of T (n) = O(n
2
). Then, we can gradually 

lower the upper bound and raise the lower bound until we converge on 

the correct, asymptotically tight solution of T (n) = Θ(n lg n). 

 ITQ 

Question 

Experience helps in making a good guess? True or False. 

Briefly outline the reason for your answer. 

Feedback 

Experience helps in making a good guess. If you’ve seen a similar 

recurrence before, guessing a similar solution is quite reasonable. 

11.5 Subtleties 
There are times when you can correctly guess at an asymptotic bound on 

the solution of a recurrence, but somehow the math doesn't seem to work 

out in the induction. Usually, the problem is that the inductive assumption 

isn't strong enough to prove the detailed bound. When you hit such a 

snag, revising the guess by subtracting a lower-order term often permits 

the math to go through. 

Consider the recurrence 

T (n) = T ( n/2 ) + T ( n/2 ) + 1. 

We guess that the solution is O(n), and we try to show that T (n) ≤ cn for 

an appropriate choice of the constant c. Substituting our guess in the 

recurrence, we obtain 

T (n) ≤  c n/2 + c n/2 + 1 

  = cn + 1 , 

which does not imply T (n) ≤ cn for any choice of c. It's tempting to try a 

larger guess, say T (n) = O(n
2
), which can be made to work, but in fact, 

our guess that the solution is T (n) = O(n) is correct. In order to show this, 

however, we must make a stronger inductive hypothesis. 
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Intuitively, our guess is nearly right: we're only off by the constant 1, a 

lower-order term. Nevertheless, mathematical induction doesn't work 

unless we prove the exact form of the inductive hypothesis. We overcome 

our difficulty by subtracting a lower-order term from our previous guess. 

Our new guess is T (n) ≤ cn - b, where b ≥ 0 is constant. We now have 

T (n) ≤  (c n/2 - b) + (c n/2 - b) + 1 

  = cn - 2b + 1 

  ≤  cn - b , 

as long as b ≥ 1. As before, the constant c must be chosen large enough to 

handle the boundary conditions. 

Most people find the idea of subtracting a lower-order term 

counterintuitive. After all, if the math doesn't work out, shouldn't we be 

increasing our guess? The key to understanding this step is to remember 

that we are using mathematical induction: we can prove something 

stronger for a given value by assuming something stronger for smaller 

values. 

11.6 Avoiding Pitfalls 
It is easy to err in the use of asymptotic notation. For example, in the 

recurrence (11.4) we can falsely "prove" T (n) = O(n) by guessing T (n) ≤ 

cn and then arguing 

T (n) ≤  2(c n/2 ) + n  

  ≤  cn + n  

  = O(n) ,  wrong!!  

11.7 Changing Variables 
Sometimes, a little algebraic manipulation can make an unknown 

recurrence similar to one you have seen before. As an example, consider 

the recurrence 

T(n) = 2T(n) +lg n 

which looks difficult. We can simplify this recurrence, though, with a 

change of variables. For convenience, we shall not worry about rounding 

off values, such as , to be integers. Renaming m = lg n yields 

T (2
m
) = 2T (2

m/2
) + m. 

We can now rename S(m) = T(2
m
) to produce the new recurrence 

S(m) = 2S(m/2) + m, 
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which is very much like recurrence (4.4). Indeed, this new recurrence has 

the same solution: S(m) = O(m lg m). Changing back from S(m) to T (n), 

we obtain T (n) = T (2
m
) = S(m) = O(m lg m) = O(lg n lg lg n).  

Study Session Summary 

 

Summary 

In this study session, you looked at recurrences. You started by 

explaining what recurrence means. Thereafter, you described 

technicalities and substitution methods. Likewise, you explained how to 

make a good guess. Furthermore, you described subtleties, how to avoid 

pitfalls and changing variables.  

 

Assessment 

 

Assessment 

SAQ 11.1 (tests Learning Outcome 11.1) 

Define recurrence 

SAQ 11.2 (tests Learning Outcome 11.2) 

Explain technicalities  

SAQ 11.3 (tests Learning Outcome 11.3) 

Discuss the substitution method 

SAQ 11.4 (tests Learning Outcome 11.4) 

Discuss about making a good guess 
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Study Session 12 

Recurrences: Recursion-Tree 

Method  

Introduction 
In the last session, you discussed an overview of recurrence. In this study 

session, you will further the discussion by describing the recursion-tree 

method. You will note that when an algorithm contains a recursive call to 

itself, its running time can often be described by a recurrence. This 

session will present a method of solving the recurrence equations with 

recursion tree method. 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

12.1 describe the recursion-tree method 

12.1 The Recursion-tree Method 
Although the substitution method can provide a succinct proof that a 

solution to a recurrence is correct, it is sometimes difficult to come up 

with a good guess. Drawing out a recursion tree, as we did in our analysis 

of the merge sort recurrence, is a straightforward way to devise a good 

guess. In a recursion tree, each node represents the cost of a single 

subproblem somewhere in the set of recursive function invocations. We 

sum the costs within each level of the tree to obtain a set of per-level 

costs, and then we sum all the per-level costs to determine the total cost 

of all levels of the recursion. Recursion trees are particularly useful when 

the recurrence describes the running time of a divide-and-conquer 

algorithm. 

A recursion tree is best used to generate a good guess, which is then 

verified by the substitution method. When using a recursion tree to 

generate a good guess, you can often tolerate a small amount of 

"sloppiness," since you will be verifying your guess later on. If you are 

very careful when drawing out a recursion tree and summing the costs, 

however, you can use a recursion tree as a direct proof of a solution to a 

recurrence. In this section, we will use recursion trees to generate good 

guesses, we will use recursion trees directly to prove the theorem that 

forms the basis of the master method. 
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For example, let us see how a recursion tree would provide a good guess 

for the recurrence T (n) = 3T ( n/4 ) + Θ(n
2
). We start by focusing on 

finding an upper bound for the solution. Because we know that floors and 

ceilings are usually insubstantial in solving recurrences (here's an 

example of sloppiness that we can tolerate), we create a recursion tree for 

the recurrence T (n) = 3T(n/4) + cn
2
, having written out the implied 

constant coefficient c > 0. 

Figure 12.1 shows the derivation of the recursion tree for T (n) = 3T (n/4) 

+ cn
2
. For convenience, we assume that n is an exact power of 4 (another 

example of tolerable sloppiness). Part (a) of the figure shows T (n), which 

is expanded in part (b) into an equivalent tree representing the recurrence. 

The cn
2
 term at the root represents the cost at the top level of recursion, 

and the three subtrees of the root represent the costs incurred by the 

subproblems of size n/4. Part (c) shows this process carried one step 

further by expanding each node with cost T (n/4) from part (b). The cost 

for each of the three children of the root is c(n/4)
2
. We continue 

expanding each node in the tree by breaking it into its constituent parts as 

determined by the recurrence. 
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Figure 12.1: The construction of a recursion tree for the recurrence T(n) = 

3T(n/4) + cn
2
. Part (a) shows T(n), which is progressively expanded in 

(b)-(d) to form the recursion tree. The fully expanded tree in part (d) has 

height log4 n (it has log4 n + 1 levels).  

Because subproblem sizes decrease as we get further from the root, we 

eventually must reach a boundary condition. How far from the root do we 

reach one? The subproblem size for a node at depth i is n/4
i
. Thus, the 

subproblem size hits n = 1 when n/4
i
 = 1 or, equivalently, when i = log4 n. 

Thus, the tree has log 4n + 1 levels (0, 1, 2,..., log4 n). 

Next we determine the cost at each level of the tree. Each level has three 

times more nodes than the level above, and so the number of nodes at 

depth i is 3
i
. Because subproblem sizes reduce by a factor of 4 for each 

level we go down from the root, each node at depth i, for i = 0, 1, 2,..., 

log4 n - 1, has a cost of c(n/4
i
)

2
. Multiplying, we see that the total cost 

over all nodes at depth i, for i = 0, 1, 2,..., log4 n - 1, is 3
i
 c(n/4

i
)

2
 = (3/16)

i
 

cn
2
. The last level, at depth log4 n, has 3

log
4

n 
= n

log
4

3
 nodes, each 

contributing cost T (1), for a total cost of, n
log

4
3 
T(1) which is  (n

log
4

3
). 

Now we add up the costs over all levels to determine the cost for the 

entire tree: 

 

This last formula looks somewhat messy until we realize that we can 

again take advantage of small amounts of sloppiness and use an infinite 

decreasing geometric series as an upper bound. Backing up one step and 

applying equation (A.6) shown below 

 

(A.6)  

 

we have: 
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Thus, we have derived a guess of T (n) = O(n
2
) for our original recurrence 

T (n) = 3T ( n/4 ) + Θ(n
2
). In this example, the coefficients of cn

2
 form a 

decreasing geometric series and, by equation (A.6), the sum of these 

coefficients is bounded from above by the constant 16/13. Since the root's 

contribution to the total cost is cn
2
, the root contributes a constant fraction 

of the total cost. In other words, the total cost of the tree is dominated by 

the cost of the root. 

In fact, if O(n
2
) is indeed an upper bound for the recurrence (as we shall 

verify in a moment), then it must be a tight bound. Why? The first 

recursive call contributes a cost of Θ(n
2
), and so Ω (n

2
) must be a lower 

bound for the recurrence. 

Now we can use the substitution method to verify that our guess was 

correct, that is, T (n) = O(n
2
) is an upper bound for the recurrence T (n) = 

3T ( n/4 )+Θ(n
2
). We want to show that T (n) ≤ dn

2
 for some constant d 

> 0. Using the same constant c > 0 as before, we have 

T(n) ≤  3T( n/4 ) + cn
2
  

  ≤  3d  n/4
2
 + cn

2
  

  ≤  3d(n/4)
2
 + cn

2
  

  = 3/16 dn
2
 + cn

2
  

  ≤  dn
2
, 

where the last step holds as long as d ≥ (16/13)c. 

As another, more intricate example, Figure 12.2 shows the recursion tree 

for T (n) = T(n/3) + T(2n/3) + O(n). 

 

Figure 12.2: A recursion tree for the recurrence T(n) = T (n/3) + T (2n/3) 

+ cn.  

(Again, we omit floor and ceiling functions for simplicity.) As before, we 

let c represent the constant factor in the O(n) term. When we add the 
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values across the levels of the recursion tree, we get a value of cn for 

every level. The longest path from the root to a leaf is n → (2/3)n → 

(2/3)
2
n → ··· → 1. Since (2/3)

k
n = 1 when k = log3/2 n, the height of the 

tree is log3/2 n. 

Intuitively, we expect the solution to the recurrence to be at most the 

number of levels times the cost of each level, or O(cn log3/2 n) = O(n lg 

n). The total cost is evenly distributed throughout the levels of the 

recursion tree. There is a complication here: we have yet to consider the 

cost of the leaves. If this recursion tree were a complete binary tree of 

height log3/2 n, there would be 2
log

3/2
 n

  = n
log

3/2
 2 

leaves. Since the cost of 

each leaf is a constant, the total cost of all leaves would then be ( n
log

3/2
 2 

), which is ω(n lg n). This recursion tree is not a complete binary tree, 

however, and so it has fewer than n
log

3/2
 2 

leaves. Moreover, as we go 

down from the root, more and more internal nodes are absent. 

Consequently, not all levels contribute a cost of exactly cn; levels toward 

the bottom contribute less. We could work out an accurate accounting of 

all costs, but remember that we are just trying to come up with a guess to 

use in the substitution method. Let us tolerate the sloppiness and attempt 

to show that a guess of O(n lg n) for the upper bound is correct. 

Indeed, we can use the substitution method to verify that O(n lg n) is an 

upper bound for the solution to the recurrence. We show that T (n) ≤ dn 

lg n, where d is a suitable positive constant. We have .... 

T(n) ≤  T(n/3) + T(2n/3) + cn  

  ≤  d(n/3)lg(n/3) + d(2n/3)lg(2n/3) + cn  

  = (d(n/3)lgn - d(n/3)lg 3) + (d(2n/3) lg n - d(2n/3)lg(3/2)) + cn  

  = dn lg n - d((n/3) lg 3 + (2n/3) lg(3/2)) + cn  

  = dn lg n - d((n/3) lg 3 + (2n/3) lg 3 - (2n/3)lg 2) + cn  

  = dn lg n - dn(lg 3 - 2/3) + cn  

  ≤  dn lg n, 

as long as d ≥ c/(lg 3 - (2/3)). Thus, we did not have to perform a more 

accurate accounting of costs in the recursion tree. 

 
ITQ 

 

Question 

When the recurrence describes the running time of a divide and conquer 

algorithm, which one is most useful? 

A. Recursion tree   

B. Substitution method  
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Feedback 

Option A is correct. 

As stated in the text, recursion trees are particularly useful when the 

recurrence describes the running time of a divide-and-conquer algorithm. 

Indeed, we can use the substitution method to verify that O(n lg n) is an 

upper bound for the solution to the recurrence. We show that T (n) ≤ dn 

lg n, where d is a suitable positive constant. We have .... 

T(n) ≤  T(n/3) + T(2n/3) + cn  

  ≤  d(n/3)lg(n/3) + d(2n/3)lg(2n/3) + cn  

  = (d(n/3)lgn - d(n/3)lg 3) + (d(2n/3) lg n - d(2n/3)lg(3/2)) + 

cn  

  = dn lg n - d((n/3) lg 3 + (2n/3) lg(3/2)) + cn  

  = dn lg n - d((n/3) lg 3 + (2n/3) lg 3 - (2n/3)lg 2) + cn  

  = dn lg n - dn(lg 3 - 2/3) + cn  

  ≤  dn lg n, 

as long as d ≥ c/(lg 3 - (2/3)). Thus, we did not have to perform a more 

accurate accounting of costs in the recursion tree. 

 

Study Session Summary 

 

Summary 

Sequel to our discussion in the last session, we continued this session 

with a discussion on the recursion tree method. You noted that when an 

algorithm contains a recursive call to itself, its running time can often be 

described by a recurrence. Hence, you presented a method for solving 

the recurrence equations with recursion tree method.  

 

Assessment 

 

Assessment 

SAQ 12.1 (tests Learning Outcome 12.1) 

Describe the recursion-tree method  
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Study Session 13 

Recurrences: The Master Method  

Introduction 
In continuation of the last two study sessions, you will be looking at the 

master method under recurrences. You will also describe the master 

theorem. You will end the session with an explanation on how to use the 

master method. 

Learning Outcomes 

 

Outcomes 

When you have studied this session, you should be able to: 

13.1 explain the master method 

13.2 solve the recurrence equation using the master method 

13.1 The Master Method 
The master method provides a "cookbook" method for solving 

recurrences of the form 

 T(n) = aT(n/b) + f(n)       (13.1) 

 where a ≥ 1 and b > 1 are constants and f (n) is an asymptotically 

positive function. The master method requires memorization of three 

cases, but then the solution of many recurrences can be determined quite 

easily, often without pencil and paper. 

The recurrence (13.1) describes the running time of an algorithm that 

divides a problem of size n into a subproblems, each of size n/b, where a 

and b are positive constants. The a subproblems are solved recursively, 

each in time T (n/b). The cost of dividing the problem and combining the 

results of the subproblems is described by the function f (n).  

(That is, using the notation from f(n) = D(n)+C(n).) For example, the 

recurrence arising from the MERGE-SORT procedure has a = 2, b = 2, 

and f (n) = Θ(n). 

As a matter of technical correctness, the recurrence isn't actually well 

defined because n/b might not be an integer. Replacing each of the a 

terms T (n/b) with either T ( n/b ) or T ( n/b ) doesn't affect the 

asymptotic behaviour of the recurrence, however. (We'll prove this in the 

next section.) We normally find it convenient, therefore, to omit the floor 

and ceiling functions when writing divide-and-conquer recurrences of 

this form. 
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13.2 The Master Theorem 
The master method depends on the following theorem. 

Theorem 12.1: (Master theorem)  

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let T (n) be 

defined on the nonnegative integers by the recurrence 

T(n) = aT(n/b) + f(n), 

where we interpret n/b to mean either n/b or n/b. Then T (n) can be 

bounded asymptotically as follows. 

If  f(n) = O(n
log

b
a
 
- 

)for some constant  > 0, then T(n) =  (n
log

b
a
 ) 

If f(n) =  (n
log

b
a
 ), then T(n) =  (n

log
b

a
 lgn). 

If If  f(n) =  (n
log

b
a
 
+ 

)for some constant  > 0, and if a f (n/b) ≤ cf (n) for 

some constant c < 1 and all sufficiently large n, then T (n) = Θ(f (n)). 

Before applying the master theorem to some examples, let's spend a 

moment trying to understand what it says. In each of the three cases, we 

are comparing the function f (n) with the function n
log

b
a
. Intuitively, the 

solution to the recurrence is determined by the larger of the two 

functions. If, as in case 1, the function n
log

b
a
 is the larger, then the solution 

is T(n) =  (n
log

b
a
 ). If, as in case 3, the function f (n) is the larger, then 

the solution is T (n) = Θ(f (n)). If, as in case 2, the two functions are the 

same size, we multiply by a logarithmic factor, and the solution is T(n) = 

 (n
log

b
a
 lgn) =  (f(n)lgn). 

Beyond this intuition, there are some technicalities that must be 

understood. In the first case, not only must f (n) be smaller than n
log

b
a
, it 

must be polynomially smaller. That is, f (n) must be asymptotically 

smaller than n
log

b
a
 by a factor of n


 for some constant  > 0. In the third 

case, not only must f (n) be larger than n
log

b
a
, it must be polynomially 

larger and in addition satisfy the "regularity" condition that af (n/b) ≤ 

cf(n). This condition is satisfied by most of the polynomially bounded 

functions that we shall encounter. 

It is important to realize that the three cases do not cover all the 

possibilities for f (n). There is a gap between cases 1 and 2 when f (n) is 

smaller than n
log

b
a
 but not polynomially smaller. Similarly, there is a gap 

between cases 2 and 3 when f (n) is larger than n
log

b
a
 but not polynomially 

larger. If the function f (n) falls into one of these gaps, or if the regularity 

condition in case 3 fails to hold, the master method cannot be used to 

solve the recurrence. 

Using the master method 

To use the master method, we simply determine which case (if any) of 

the master theorem applies and write down the answer. As a first 

example, consider T (n) = 9T(n/3) + n. 

For this recurrence, we have a = 9, b = 3, f (n) = n, and thus we have that 

n
log

b
a 
=

 
n

log
9

3 
= (n

2
). Since f(n) = O(n

log
9

3 - 
) , where  = 1, we can apply 
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case 1 of the master theorem and conclude that the solution is T (n) = 

Θ(n
2
). 

Now consider T (n) = T (2n/3) + 1, in which a = 1, b = 3/2, f (n) = 1, and 

n
log

b
a 

= n
log

3/2
1
 = n

0
 = 1. Case 2 applies, since f(n) = (n

log
b
a
) = (1), and 

thus the solution to the recurrence is T(n) = Θ(lg n). 

For the recurrence T(n) = 3T(n/4) + n lg n, we have a = 3, b = 4, f (n) = n 

lg n, and n
log

b
a
 = n

log
4
3
 = O(n

0.793
). Since  f(n) =  (n

log
4

3+  
), where  ≈ 

0.2, case 3 applies if we can show that the regularity condition holds for f 

(n). For sufficiently large n, af (n/b) = 3(n/4)lg(n/4) ≤ (3/4)n lg n = cf (n) 

for c = 3/4. Consequently, by case 3, the solution to the recurrence is T(n) 

= Θ(nlg n). 

The master method does not apply to the recurrence T(n) = 2T(n/2) + n lg 

n, 

even though it has the proper form: a = 2, b = 2, f(n) = n lg n, and n
log

b
a 
= 

n . It might seem that case 3 should apply, since f (n) = n lg n is 

asymptotically larger than n
log

b
a 

= n. The problem is that it is not 

polynomially larger. The ratio  f(n) / n
log

b
a
  = (n lg n) /n = lgn is 

asymptotically less than n

 for any positive constant . Consequently, the 

recurrence falls into the gap between case 2 and case 3.  

 ITQ 

Question 

What are the technicalities involved in the use of the master theorm? 

Feedback 

The technicalities involved in the use of the master theorm include 

 In the first case, f (n) must be polynomially smaller than nlogba 

that is, f (n) must be asymptotically smaller than nlogba by a 

 

 In the third case, f (n) must be polynomially larger than nlogba, 

and in addition satisfy the "regularity" condition that af (n/b) ≤ 

cf(n). 

Study Session Summary 

 

Summary 

In this session, you continued your discussion from the two preceding 

sessions by discussing the master method under recurrence. You also 

examined the master theorem. You ended the session with an 

explanation on how to use the master method. 
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Assessment 

 

Assessment 

SAQ 13.1 (tests Learning Outcome 13.1) 

Discuss the master method 

SAQ 13.2 (tests Learning Outcome 13.2) 

State the master theorem  
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An algorithm is a sequence of computational steps that transform the 

input into the output. It is a tool for solving a well-specified 

computational problem.  

 

SAQ 1.2 

To write a program, you have to tell the computer, step by step, exactly 

what you want it to do. This is where algorithms come in, they are series 

of logical steps or instructions written in programming language for the 

computer to use. 

 

SAQ 1.3 

Algorithms are classified based on certain attributes such that algorithms 

that use a similar problem-solving approach can be grouped together. A 

list of the classes include Simple recursive algorithms, Backtracking 

algorithms, Divide and conquer algorithms, Dynamic programming 

algorithms, Greedy algorithms, Branch and bound algorithms, Brute force 

algorithms and Randomized algorithms. 

 

SAQ 1.4 

Knowing an algorithm is very important as it help you to ascertain its 

performance and how best to use the algorithm. Adequate knowledge of 

how an algorithm works, helps to make good predictions about its 

usability. 

 

SAQ 2.1 

Recursion is a powerful principle that allows something to be defined in 

terms of smaller instances of itself. In computing, recursion is supported 

via recursive functions. A recursive function is a function that calls itself. 

Each successive call works on a more refined set of inputs, bringing us 

closer and closer to the solution of a problem. 

 

SAQ 2.2 

The divide and conquer approach is when algorithms typically follow a 

divide and conquer way to solve problems: it is as the name suggests, 

they break the problem into several subproblems that are similar to the 

original problem but smaller in size and solve the subproblems 

recursively, and then combine these solutions to create a solution to the 

original problem. 

 

SAQ 2.3 

Backtracking is a methodical way of trying out various sequences of 

decisions, until you find one that “works”. Backtracking in reality, is a 

way of retracing one’s steps in order to find the right solution, now think 
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of algorithm in that way. Human are not the only one that retrace their 

steps, algorithm do too. 

 

SAQ 3.1 

1. Sorting is a way of arranging items systematically in groups or 

categories based on similar attributes between items in the same 

category. In computing, it is a way of putting elements in a list of 

particular order. 

2. There are many reasons for sorting; one of them is the inherent 

(inborn, natural) need to sort. Also, another reason for sorting is 

that Algorithms often use sorting as a key subroutine. Also, 

sorting is problem of historical interest. Lastly, sorting is a 

problem for which we can prove a nontrivial lower bound. 

 

SAQ 3.2 

1. Bubblesort is a popular sorting algorithm. It works by repeatedly 

swapping adjacent elements that are out of order. Bubble sorting 

is a simple sorting technique in which we arrange the elements of 

the list by forming pairs of adjacent elements. 

2. Selection sorting involves sorting n numbers stored in array A by 

first finding the smallest element of A and exchanging it with the 

element in A[1]. Then find the second smallest element of A, and 

exchange it with A[2]. Sorting with this technique for the first n - 

1 elements of A is known as selection sort. 

 

SAQ 4.1 

The quick sort method is a sorting algorithm that sorts element in a list 

into a particular order based on the position of the key element. The 

Quick sort is a divide and conquer algorithm. It divides an array into 

subarray: the low elements and the high elements. 

 

SAQ 4.2 

The merge sort algorithm closely follows the divide-and-conquer 

paradigm. Intuitively, it operates as follows: it divide the n-element 

sequence to be sorted into two subsequences of n/2 elements each and the 

sort the two subsequences recursively using merge sort. Finally, it merge 

the two sorted subsequences to produce the sorted answer. 

 

 

 

SAQ 5.1 

Linear search, also known as sequential search is a method for finding a 

target value within a list. It sequentially checks each element of the list 

for the target value until a match is found or until all the elements have 
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been searched. In linear searching, the search proceeds by sequentially 

comparing the key with elements in the list, and continues until either we 

find a match or the end of the list is encountered. If we find a match, the 

search terminates successfully by returning the index of the element in 

the list which has matched. If the end of the list is encountered without a 

match, the search terminates unsuccessfully. 

 

SAQ 5.2 

In binary search, the element to be searched is compared with the element 

placed approximately in the middle of the list. If a match is found, the 

search terminates successfully. Otherwise, we continue the search for the 

key in a similar manner either in the upper half or the lower half. If the 

elements of the list are arranged in ascending order, and the key is less 

than the element in the middle of the list, the search is continued in the 

lower half. If the elements of the list are arranged in descending order, 

and the key is greater than the element in the middle of the list, the search 

is continued in the upper half of the list. A sorted list is the prerequisite 

for using binary search. 

 

SAQ 6.1 

The analysis of algorithms is the determination of the amount of 

resources (such as memory, computer hardware, communication 

bandwidth and computational time) an algorithm requires. Most 

algorithms are designed to work with inputs of arbitrary size. Size varies 

with regards to the program. 

 

SAQ 6.2 

Running time is the units of time (T) taken by a program or an algorithm 

on any input of size n. Running time (T) is the length of time taken to run 

the algorithm on some standard computer. The running time of a program 

depends on a particular input, not just on the size of the input. 

 

SAQ 6.3 

Time Complexity is the time needed by an algorithm to complete 

execution as a function of size of input n. The time complexity is  

referred to as “running time” of an algorithm on a particular input and it 

is the number of primitive operations or “steps” executed. 

Space Complexity is the Space/memory needed  by an algorithm to 

complete execution as a function of size of input n.  

 

 

SAQ 6.4 

The worst-case analysis is the performance of the algorithm in its worst 

case. Most algorithms do not perform the same in all cases; normally an 
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algorithm's performance varies with the data passed to it. A basic 

understanding of how an algorithm performs in all cases is important, but 

usually how an algorithm performs in the worst case is of more 

importance. 

 

SAQ 7.1 

O-notation expresses the upper bound of a function within a constant 

factor. It reflects an algorithm's order of growth. The growth rate of 

function (f), which describes how quickly the algorithm's performance 

will degrade as the size of the data it processes becomes arbitrarily large. 

An algorithm's growth rate, or order of growth, is significant because 

ultimately it describes how efficient the algorithm is for arbitrary inputs. 

 

SAQ 7.2 

The simple rules for O-notation are as follows: 

1. Constant terms are expressed as O (1) 

2. Multiplicative constants are omitted. 

3. Addition is performed by taking the maximum 

4. Multiplication is not changed but often is rewritten more 

compactly. 

 

SAQ 7.3 

The Divide and Conquer algorithm has 3 steps and therefore the 

recurrence for the running time is based on these 3 steps. If the problem 

size is small enough, say n ≤ c for some constant C, the solution takes 

constant time, which we write as θ(1). Suppose we divide the problem 

into ‘a’ sub problems, each of which is 1/b the size of the original. If we 

take D(n) time to divide the problem into sub problems and C(n) time to 

combine the solutions to the  sub problem into the solution to the original 

problem, we get the recurrence. 

 

SAQ 7.4 

Computative complexity is the growth rate of the resources, an algorithm 

requires with respect to the size of the data it processes. O -notation 

describes an algorithm's complexity. O –notation helps to describe the 

worst-case complexity of an algorithm simply by inspecting its overall 

structure. 

 

SAQ 7.5 

Basic Algorithm analysis is the calculation of an algorithm’s running 

time. It is also used to compare two different algorithms. It can also be 

used to ascertain if an algorithm is `optimal'. It is carried out by counting 

the number of basic operations performed by the algorithm on the worst-

case input. The basic operation could be an assignment, comparison 

between two variables, an arithmetic operation between two variables. 
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The worst-case input is that input assignment for which the most basic 

operations are performed.  

 

SAQ 8.1 

The running time of insertion sort is the sum of the products of the cost of 

each statements and the times each statement is executed . The running 

time of the algorithm is the sum of running  times for each statement 

executed, a statement that takes Ci steps to execute and is executed n 

times will contribute Cin to the total running time. 

 

SAQ 8.2 

The order of growth of an algorithm simply means the rate at which 

computational increases when the input size, n increases. It is of utmost 

importance when your input size is very large. Hence, only the leading 

term of a formula is used since the lower order terms are relatively 

insignificant for large n. Also, the leading term’s constant coefficient is 

ignored, since constant factors are less significant than the rate of growth 

in determining computational efficiency for large inputs. 

 

SAQ 9.1  

The Divide and Conquer algorithm has 3 steps and therefore the 

recurrence for the running time is based on these 3 steps. If the problem 

size is small enough, say n ≤ c for some constant C, the solution takes 

constant time, which we write as θ(1). Suppose we divide the problem 

into ‘a’ sub problems, each of which is 1/b the size of the original. If we 

take D(n) time to divide the problem into sub problems and C(n) time to 

combine the solutions to the  sub problem into the solution to the original 

problem, we get the recurrence. 

 

SAQ 9.2 

In analyzing a merge sort algorithm, Each divide step yields two 

subsequence of size exactly n/2. Mergesort on just one element takes 

constant time. With n>1 elements, the running time is broken down as 

follows: 

Divide:  This step just computes the middle of the subarray, which takes 

constant time 

Thus D(n) = θ (1) 

Conquer: Recursively, we solve 2 sub problems each of size n/2 which 

contributes 2T (n/2) to the running time (a=2) 

Combine: The merge procedure on an element sub array takes time θ(n), 

so C(n) = θ(n). Adding functions D (n) and C (n) for the merge sort 

analysis means we are adding a functions that are θ(n) and θ(1), which is 

a linear function of n, i.e. θ(n). Adding it to the 2T(n/2) term of the 

conquer step gives the  recurrence for the worst-case running time 

Tmax(n) of merge sort: 
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T(n)   =  θ(1)   if n =1 

           2T(n/2) + θ(n)  if n>1 

 

SAQ 9.3 

The running time of partition on an array A[p..r] is θ(n),  where n=r-p+1]. 

The running time performance of quicksort depends on whether the 

partitioning is balanced or not. If balanced, the algorithm runs 

asymptotically as fast as merge sort; if not, it runs asymptotically as slow 

as insertion sort. 

 

SAQ 10.1 

The O-notation means asymptotic tight upper bound of a function. 

The o-notation is used to denote an upper bound that is not 

asymptotically tight 

 

SAQ 10.2 

Ω-notation expresses an asymptotic lower bound for a given function 

g(n), we denote by Ω(g(n)) the set of functions 

Ω(g(n)) = { f(n):  positive constants c and no  

                 such that O ≤ Cg(n) ≤ f(n),   n ≥ no}. 

 values n to the right of no, the value of f(n) is on or above g(n). 

Intuitively, Ω- notation gives the best case analysis of an algorithm 

 

SAQ 11.1 

A recurrence is an equation or inequality that describes a function in 

terms of its value on smaller inputs. 

 

SAQ 11.2 

Technicalities are certain details which are neglected when recurrences 

are being stated and solved.  A good example of a detail that is often 

neglected  is the assumption of integer arguments to functions. Normally, 

the running time T (n) of an algorithm is only defined when n is an 

integer, since for most algorithms, the size of the input is always an 

integer. 

 

SAQ 11.3 

The substitution method is one of the methods of solving recurrences. 

The name arises from the substitution of the guessed answer for the 

function when the inductive hypothesis is applied to smaller values. This 

method is powerful, but it relies on the ability to make a good guess. This 

method entails two steps: Guessing the form of the solution and the use of 



 

Notes on Self Assessment Questions  Recurrences: The Master Method 

 

 
111 

 
 

mathematical induction to find the constants and show that the solution 

works. 

 

SAQ 11.4 

Making a good guess or guessing a solution takes experience and 

sometimes creativity. The use of heuristics and recursion trees helps to 

generate good guesses. Another way to make a good guess is to prove 

loose upper and lower bounds on the recurrence and then reduce the 

range of uncertainty. 

 

SAQ 12.1 

A recursion tree is a straightforward way to devise a good guess. In a 

recursion tree, each node represents the cost of a single subproblem 

somewhere in the set of recursive function invocations. We sum the costs 

within each level of the tree to obtain a set of per-level costs, and then we 

sum all the per-level costs to determine the total cost of all levels of the 

recursion. Recursion trees are particularly useful when the recurrence 

describes the running time of a divide-and-conquer algorithm. A 

recursion tree is best used to generate a good guess, which is then verified 

by the substitution method. You can also use a recursion tree as a direct 

proof of a solution to a recurrence. 

 

SAQ 13.1 

The master method provides a "cookbook" method for solving 

recurrences of the form 

 T(n) = aT(n/b) + f(n)       

 where a ≥ 1 and b > 1 are constants and f (n) is an asymptotically 

positive function. The recurrence describes the running time of an 

algorithm that divides a problem of size n into a subproblems, each of 

size n/b, where a and b are positive constants. The a subproblems are 

solved recursively, each in time T (n/b). The cost of dividing the problem 

and combining the results of the subproblems is described by the function 

f (n). 

 

SAQ 13.2 

The Master theorem states that let a ≥ 1 and b > 1 be constants, let f (n) 

be a function, and let T (n) be defined on the nonnegative integers by the 

recurrence 

T(n) = aT(n/b) + f(n), 

where we interpret n/b to mean either n/b  or n/b . Then T (n) can 

be bounded asymptotically as follows. 

1. If  f(n) = O(nlogba - )for some constant  > 0, then T(n) =  

(nlogba ) 

2. If f(n) =  (nlogba ), then T(n) =  (nlogba lgn). 
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If If  f(n) =  (nlogba + )for some constant  > 0, and if a f (n/b) ≤ cf 

(n) for some constant c < 1 and all sufficiently large n, then T (n) = Θ(f 

(n)). 


