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Lesson 1: General Introduction 

Computer Science, like every other discipline has its fundamental topics which form the 

foundation for a solid career in the discipline. A collection of these topics has come to be 

regarded as The Foundations of Computer Science and these topics are the focus of this 

manual. Some of these topics include Logic, Program Correctness, Mathematical Induction 

and Data Structures among others. These topics, although usually overlooked today, form the 

basis for all advancements in the field. Innovative solutions arising from research and 

development efforts are often built directly or indirectly from the concepts of these 

fundamentals. Therefore, this is a course you must give uttermost attention as your success in 

the Computer Science discipline is hinged on it. Don’t just cram these concepts to pass, 

ensure you gain mastery of them. 

To get the best out of this course, endeavour to attend all lectures, study all lessons carefully, 

attempt the exercises within the text and make sure you answer all questions in the pre-test 

and post-test. Also, it is important that you promptly submit all your assignments and avoid 

‘dubbing’ assignments in order to avoid implicating yourself and for you to ensure that 

you’ve truly learnt what the assignment intends to teach. I wish you the very best. 

Lesson 2: Course Objectives 

At the end of this course, you should be able to 

1. Understand and write propositional and predicate logic statements 

2. Know the difference between loops and recursion 

3. Find loop invariants and prove program correctness 

4. Understand data structures and the algorithms for manipulating them 

5. Understand the fundamentals of cryptography 
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Contents: 

1. Logic 

2. Sets 

3. Mathematical Induction 

4. Loops and Recursion I 

5. Loops and Recursion II 

6. Program Correctness (Loop invariant, Hoare’s Axiom) 

7. Discrete Probability 

8. Randomized Algorithms 

9. Lists 

10. Graphs 

11. Cryptography 

12. Revision 
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Lesson 1:  Logic 

Introduction 

In this lesson, we will learn about propositional and predicate logic. We will learn how to 

interpret and write sound logical statements. Logic forms the basis of all mathematical and 

automated reasoning with practical applications in the design and specifications of systems, 

artificial intelligence, computer programming and other areas of Computer Science, as well 

as many other fields of study. 

We will study the basic constituents of each type of logic and learn how to use the logical 

connectives to create compound statements. Quite importantly, we will also learn how to 

translate English-like statements into logically correct statements. We will also learn how to 

quantify over logic statements. 

Objectives 

At the ends of this lesson, you should 

1. Understand propositional and predicate logic 

2. Understand logical operations and their respective connectives 

3. Understand quantification over logical statements 

4. Understand logical equivalences 

1.1 Propositional Logic 

The rules of logic give precise meaning to mathematical statements and these rules are used 

to distinguish between valid and invalid mathematical arguments. Besides the importance of 

logic in understanding mathematical reasoning, logic is also highly applicable in several areas 

of Computer Science such as the design of computer circuits, the construction of computer 

programs, the verification of program correctness etc. Let us go on to understand the basic 

constituents of Propositional logic which are propositions. 
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A proposition is a [declarative] statement that is either true or false, but not both and not 

neither. This means a propositional statement declares a fact which must have exactly one 

value – either true or false. Consider the following sentences in Example 1.1: 

Example 1.1: 

1. Will you come? 

2. Nigeria is a country in West Africa 

3. Please, take a seat 

4. 1 + 3 = 3 

5. Get out of this class now! 

6. x > 1 

Of the six (6) statements, only statements 2 and 4 are propositions because one can answer 

true or false to those statements. Statement 6 could have been a proposition too but it’s not, 

because the value of x is unknown (we will later see that this can well be turned into 

propositions via predicate logic). Statement 1 is a question, statement 3 is a request and 

statement 5 is an instruction. Propositions will often be written as propositional variables 

using letters of the English alphabet such as p, q, r, s, … The value of a proposition, either 

true or false is referred to as its truth value. 

Just as new numbers can be obtained from other numbers using arithmetic operations; new 

(compound) propositions can be obtained from other propositions using logical operations or 

connectives represented by arithmetic operators. Table 1.1 gives a list of the logical operators 

and their meanings. 

Table 1.1: Logical connectives and their meanings 

Connective Symbol Usage example English translation 

Negation ¬ or ~ ¬ p not p 

Disjunction ˅ p ˅ q p or q 

Conjunction ˄ p ˄ q p and q 

Implication → p → q if p then q 

Bi-conditional ↔ p ↔ q p if and only if q 

 

To better appreciate these connectives, their operations on propositions at all possible 

combinations of truth values is shown in what is called a Truth table. Table 1.2 shows the 
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truth table for Negation which is the only unary connective and table 1.3 shows the truth table 

for disjunction, conjunction, implication and bi-conditional. These tables indicate the manner 

of operation of the logical connectives. Disjunctions are always true except both propositions 

are false, Conjunctions are always false except both propositions are true bi-conditionals are 

only true when both propositions have the same truth value. An implication is only false 

when the condition is true and the conclusion is false. This indicates that the required 

condition is fulfilled by the expected conclusion from the conclusion is not fulfilled; this is 

the only time an implication is false. In an implication statement p → q, p is called condition, 

hypothesis, premise or antecedent while q is referred to as the conclusion or consequence. 

The precedence of these operators is as shown in table 1.4 with the negation having the 

highest precedence and the bi-conditional having the lowest. 

Table 1.2: Truth table for negation (¬) 

p ¬ p 

T F 

F T 

 

Table 1.3: truth table for Disjunction (˅), Conjunction (˄), Implication (→) and Bi-

conditional (↔) 

p q p ˅ q p ˄ q p → q p ↔ q 

T T T T T T 

T F T F F F 

F T T F T F 

F F F F T T 

 

Table 1.4: Precedence of logical connectives 

Logical Connective Precedence 

¬ 1 

˄ 2 

˅ 3 

→ 4 
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↔ 5 

 

Translating English Statements 

A major reason for translating English statements into logical statements is to remove the 

ambiguity in English (as common to all human language). This may often involve making a 

set of reasonable assumptions based on the intended meaning of the sentence. However, once 

we have translated sentences from English into logical expressions, then we can analyse these 

logical expressions to determine their truth values, we can manipulate them, and we can use 

rules of inference to reason about them. Examples 1.2 and 1.3 illustrate the process of 

translating an English sentence into a logical expression. 

Examples 1.2: How can this English statement be translated into a logical expression? 

“You can access the Internet from campus only if you are a Computer Science major or you 

are not a fresher.” 

Solution: There are a number of ways to translate this sentence into a logical expression. 

Although it is possible to represent the sentence by a single propositional variable, such as p, 

this would not be useful when analysing its meaning or reasoning with it. Instead, we will use 

identify different parts of the sentence and use propositional variables to represent each part 

then we will determine the appropriate logical connectives to use between them. 

Suppose we let p, q, and r represent “You can access the Internet from campus,” “You are a 

Computer Science major,” and “You are a fresher,” respectively. Note that “only if” is one 

way a conditional statement can be expressed, this sentence can be represented as 

p → (q ∨ ¬r) 

Example 1.3: How can this English statement be translated into a logical expression? 

“You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 

years old.” 

Solution: Let q, r, and s represent “You can ride the roller coaster,” “You are under 4 feet 

tall,” 

and “You are older than 16 years old,” respectively. Then the sentence can be translated to 

(r ∧ ¬s) → ¬q 
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Of course, there are other ways to represent the original sentence as a logical expression, but 

the one we have used should meet our needs. 

Of all the logical connectives, the implication can be particularly difficult to translate from 

English language because of the many possible ways in which it can be expressed in English 

language. Some of the common English expressions used to mean p → q are: 

“if p, then q”   “p implies q”  “if p, q”   “p only if 

q”  

“p is sufficient for q” “a sufficient condition for q is p”   “q 

if p” 

“q whenever p”  “q when p”      “q is necessary 

for p” 

“a necessary condition for p is q”   “q follows from p” “q unless 

￢p” 

Compound Logical Expressions 

Using the logical connectives, we will now learn how to determine the truth values of 

compound propositions. Compound propositions are formed from two or more propositions 

combined with logical connectives. Compound propositions can be classified according to 

their truth values as tautology, contradiction or contingency. A compound proposition that is 

always true irrespective of the truth values of the constituent propositions is called a 

tautology. A compound proposition that is always false irrespective of the truth values of the 

constituent propositions is called a contradiction. A compound proposition that is neither a 

tautology nor a contradiction is called a contingency. p ˅ ¬p and p ˄ ¬p are examples of 

tautology and contradiction respectively. 

Two compound propositions are said to be logically equivalent if they both have the same 

truth values in all possible cases. Formally, two compound propositions p and q are logically 

equivalent (written as p ≡ q) if p ↔ q is a tautology. One way to verify the equivalence of 

two compound propositions is to use the truth table. However, with some common 

equivalences, the equivalence of any two compound propositions can be verified without the 

use of truth tables. Some of the common propositional equivalences are shown in tables 1.5, 

1.6 and 1.7. Examples 1.4 and 1.5 are used to show how these equivalences can be used to 

determine the equivalence of any two compound propositions without the use of truth tables. 

Example 1.4: Show that ¬(p → q) and p ˄ ¬q are logically equivalent. 

Solution: 

¬(p → q) ≡ ¬(¬p ˅ q) (by the 1
st
 equivalence of implications) 
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 ≡ ¬(¬p) ˄ ¬q (by De Morgan’s law) 

 ≡ p ˄ ¬q (by double negation law) 

 

Example 1.5: Show that ¬(p ˅ (¬p ˄ q)) and ¬p ∧ ¬q are logically equivalent 

Solution: 

 ¬(p ˅ (¬p ˄ q)) ≡ ¬p ˄ ¬(¬p ˄ q) (by De Morgan’s law) 

   ≡ ¬p ˄ (¬(¬p) ˅ ¬q) (by De Morgan’s law) 

   ≡ ¬p ˄ (p ˅ ¬q) (by double negation law) 

   ≡ (¬p ˄ p) ˅ (¬p ˄ ¬q) (by distributive law) 

   ≡ F ˅ (¬p ˄ ¬q) (by the 2
nd

 negation law) 

   ≡ (¬p ˄ ¬q) ˅ F (by commutative law) 

   ≡ (¬p ˄ ¬q) (by the 2
nd

 identity law) 

1.2 Predicate Logic 

Propositional logic, studied so far, cannot adequately express the meaning of all statements in 

Mathematics and natural language. For example, suppose that we know that 

Table 1.5: Logical equivalences 

 

Table 1.6: Logical equivalences of 

implication 
 

Table 1.7: Logical equivalences of 

bi-conditionals 
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“Every computer connected to the university network is functioning properly.” 

No rules of propositional logic allow us to conclude the truth of the statement 

“MATH3 is functioning properly,” 

Where MATH3 is one of the computers connected to the university network. Likewise, we 

cannot use the rules of propositional logic to conclude from the statement 

“CS2 is under attack by an intruder,” 

where CS2 is a computer on the university network, to conclude the truth of 

“There is a computer on the university network that is under attack by an intruder.” 

In this section we will introduce a more powerful type of logic called Predicate logic. We will 

see how predicate logic can be used to express the meaning of a wide range of statements in 

Mathematics and Computer Science in ways that permit us to reason and explore 

relationships between objects. To understand predicate logic, we first need to introduce the 

concept of a predicate. Afterward, we will introduce the notion of quantifiers, which enable 

us to reason with statements that assert that a certain property holds for all objects of a certain 

type and with statements that assert the existence of an object with a particular property. 

Predicates 

Statements involving variables such as 

x ≤ 4, x = y – 2, x > 3, “computer x is faulty”. “computer y is functioning properly” 

often occur in mathematical assertions, computer programs and system specifications. 

However, it is impossible to establish the truth values of such statements without knowing the 

values of the variables in them. This kind of statements can be made into propositions and 

given truth values by using predicates. 

Consider the statement 

“x is greater than 3” 

The statement has two parts. The first part, the variable x, is the subject of the statement. The 

second part—the predicate, “is greater than 3”—refers to a property that the subject of the 

statement can have. We can denote the statement “x is greater than 3” by P(x), where P 

denotes the predicate “is greater than 3” and x is the variable. The statement P(x) is also said 

to be the value of the propositional function P at x. Once a value has been assigned to the 
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variable x, the statement P(x) becomes a proposition and has a truth value. Consider 

Examples 1.6 and 1.7. A predicate is also known as a propositional function. 

Example 1.6: 

Let P(x) denote the statement “x > 3.” What are the truth values of P(4) and P(2)? 

Solution: We obtain the statement P(4) by setting x = 4 in the statement “x > 3.” Hence, 

P(4), which is the statement “4 > 3,” is true. However, P(2), which is the statement “2 > 3,” 

is false. 

Example 1.7: 

Let Q(x, y) denote the statement “x = y + 3.” What are the truth values of the propositions 

Q(1, 2) and Q(3, 0)? 

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is the 

statement “1 = 2 + 3,” which is false. The statement Q(3, 0) is the proposition “3 = 0 + 3,” 

which is true. 

In general, a statement involving n variables x1, x2, . . . , xn can be denoted by P(x1, x2, . . . , 

xn). A statement of the form P(x1, x2, . . . , xn) is the value of the propositional function P at 

the n-tuple (x1, x2, . . . , xn), and P is also called an n-place predicate or a n-ary predicate. 

Quantifiers 

When the variables in a propositional function are assigned values, the resulting statement 

becomes a proposition with a certain truth value. However, there is another important way, 

called quantification, to create a proposition from a propositional function. Quantification 

expresses the extent to which a predicate is true over a range of elements. In English, the 

words all, some, many, none, and few are used in quantifications. We will focus on two types 

of quantification: universal quantification, which tells us that a predicate is true for every 

element under consideration, and existential quantification, which tells us that there is one or 

more element under consideration for which the predicate is true. The area of logic that deals 

with predicates and quantifiers is called Predicate Calculus. 

The universal quantification of P(x) is the statement 

“P(x) for all values of x in the domain.” 
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The notation ∀xP(x) denotes the universal quantification of P(x). Here ∀ is called the 

universal quantifier. ∀xP(x) is read as “for all x P(x)” or “for every x P(x).” An element for 

which P(x) is false is called a counterexample of ∀xP(x). 

Example 1.8: 

Let P(x) be the statement “x + 1 > x.” What is the truth value of the quantification ∀xP(x), 

where the domain consists of all real numbers? 

Solution: Because P(x) is true for all real numbers x, the quantification ∀xP(x) is true. 

Note: The truth value of ∀xP(x) always depends on the domain, so it is important to know the 

domain or universe of discourse under consideration and to treat the proposition under the 

specified domain. Apart from “for all” and “for every”, other ways of representing universal 

quantification include “for each”, “all of”, “given any”, “for arbitrary”, “for any”. 

Example 1.9: Suppose that P(x) is “x
2
 > 0.” To show that the statement ∀xP(x) is false where 

the universe of discourse consists of all integers, we will need to find a counterexample. We 

see that x = 0 is a counterexample because x
2
 = 0 when x = 0, so that x

2
 is not greater than 0 

when x = 0. 

Looking for counterexamples to universally quantified statements is an important activity in 

the study of mathematics. When all the elements in the domain can be listed—say, x1, x2, . . ., 

xn—it follows that the universal quantification ∀xP(x) is the same as the conjunction 

P(x1) ˄ P(x2) ˄ · · · ˄ P(xn), 

because this conjunction is true if and only if P(x1), P(x2), . . . , P(xn) are all true. 

Example 1.10: What is the truth value of ∀xP(x), where P(x) is the statement “x
2
 < 10” and 

the domain consists of the positive integers not exceeding 4? 

Solution: The statement ∀xP(x) is the same as the conjunction 

P(1) ˄ P(2) ˄ P(3) ˄ P(4), 

because the domain consists of the integers 1, 2, 3, and 4. Because P(4), which is the 

statement 

“4
2
 < 10,” is false, it follows that ∀xP(x) is false. 
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Apart from the universal quantifier is the existential quantifier which tells us that there is at 

least one element in the domain under consideration for which a given predicate is true. 

The existential quantification of P(x) is the proposition 

“There exists an element x in the domain such that P(x).” 

We use the notation ∃xP(x) for the existential quantification of P(x) and ∃ is called the 

existential quantifier. 

A domain must always be specified when a statement ∃xP(x) is used, as the meaning of 

∃xP(x) changes when the domain changes. Thus, without specifying the domain, the 

statement ∃xP(x) has no meaning. 

Besides the phrase “there exists,” we existential quantification can also be expressed using 

phrases like “for some,” “for at least one,” or “there is.” The existential quantification ∃xP(x) 

is read as “There is an x such that P(x),” “There is at least one x such that P(x),” or “For some 

xP(x)”. 

The next three examples illustrate the interpretation of the existential quantifier and a 

summary of bot quantifiers discussed so far is shown in table 1.8. 

Example 1.11: Let P(x) denote the statement “x > 3.” What is the truth value of the 

quantification ∃xP(x), where the domain consists of all real numbers? 

Solution: Because “x > 3” is sometimes true—for instance, when x = 4—the existential 

quantification of P(x), which is ∃xP(x), is true. 

Example 1.12: Let Q(x) denote the statement “x = x + 1.” What is the truth value of the 

quantification ∃xQ(x), where the domain consists of all real numbers? 

Solution: Because Q(x) is false for every real number x, the existential quantification of Q(x), 

which is ∃xQ(x), is false. 

 

When all elements in the domain can be listed—say, x1, x2, . . . , xn—the existential 

quantification ∃xP(x) is the same as the disjunction 

P(x1) ˅ P(x2) ˅ · · · ˅ P(xn), 

because this disjunction is true if and only if at least one of P(x1), P(x2), . . . , P(xn) is true 
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Example 1.13: What is the truth value of ∃xP(x), where P(x) is the statement “x
2
 > 10” and 

the universe of discourse consists of the positive integers not exceeding 4? 

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃xP(x) is the same as the 

disjunction 

P(1) ˅ P(2) ˅ P(3) ˅ P(4). 

Because P(4), which is the statement “4
2
 > 10,” is true, it follows that ∃xP(x) is true. 

Table 1.8: Summary of the Quantifiers 

Statement When True? When False? 

∀xP(x) P(x) is true for every x. There is an x for which P(x) is false. 

∃xP(x) There is an x for which P(x) is true. P(x) is false for every x. 

 

Translating English Statements 

Earlier in this lesson, we learnt how to translate English language statements to logic 

statements and vice versa using propositional logic. However, now that we understand 

predicate logic and that it is more expressive than propositional logic statements, let’s learn 

how to translate English statements into predicate logic statements. There are no hard and fast 

rules for doing this as there can even be more than one way of translating a particular natural 

language sentence into a logical statement. However, with the aid of the simple examples 

provided in this section, you should be able to handle some other such tasks. 

Example 1.14: Express the statement “Every student in this class has studied calculus” using 

predicates and quantifiers. 

Solution: First, we rewrite the statement so that we can clearly identify the appropriate 

quantifiers to use. Thus, we have  

“For every student in this class, that student has studied calculus.” 

Next, we introduce a variable x so that our statement becomes 

“For every student x in this class, x has studied calculus.” 

Then, we introduce a predicate C(x), which is the statement “x has studied calculus.” 

Consequently, if the domain for x consists of the students in the class, we can translate our 

statement as ∀xC(x). However, there are other correct approaches; different domains of 
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discourse and other predicates can be used. The approach we select depends on the 

subsequent reasoning we want to carry out. For example, we may be interested in a wider 

group of people than only those in this class. If we change the domain to consist of all people, 

we will need to express our statement as 

“For every person x, if person x is a student in this class then x has studied calculus.” 

If S(x) represents the statement that person x is in this class, we see that our statement can be 

expressed as ∀x(S(x) → C(x)). [Caution! Our statement cannot be expressed as ∀x(S(x) ∧ 

C(x)) because this statement says that all people are students in this class and have studied 

calculus!] 

Finally, when we are interested in the background of people in subjects besides calculus, we 

may prefer to use the two-variable quantifier Q(x, y) for the statement “student x has studied 

subject y.” Then we would replace C(x) by Q(x, calculus) in both approaches to obtain 

∀xQ(x, calculus) or ∀x(S(x) → Q(x, calculus)). 

Example 1.15: Express the statements “Some student in this class has visited Mexico” and 

“Every student in this class has visited either Canada or Mexico” using predicates and 

quantifiers. 

Solution: The statement “Some student in this class has visited Mexico” means that 

“There is a student in this class with the property that the student has visited Mexico.” 

We can introduce a variable x, so that our statement becomes 

“There is a student x in this class having the property that x has visited Mexico.” 

We introduce M(x), which is the statement “x has visited Mexico.” If the domain for x 

consists 

of the students in this class, we can translate this first statement as ∃xM(x). 

However, if we are interested in people other than those in this class, we look at the statement 

a little differently. Our statement can be expressed as 

“There is a person x having the properties that x is a student in this class and x has visited 

Mexico.” 
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In this case, the domain for the variable x consists of all people. We introduce S(x) to 

represent “x is a student in this class.” Our solution becomes ∃x(S(x) ∧ M(x)) because the 

statement is that there is a person x who is a student in this class and who has visited Mexico. 

[Caution! Our statement cannot be expressed as ∃x(S(x) → M(x)), which is true when there 

is someone not in the class because, in that case, for such a person x, S(x) → M(x) becomes 

either F→T or F→F, both of which are true.] 

Similarly, the second statement can be expressed as 

“For every x in this class, x has the property that x has visited Mexico or x has visited 

Canada.” 

(Note that we are assuming the inclusive, rather than the exclusive, OR here.) We let C(x) be 

“x has visited Canada.” Following our earlier reasoning, we see that if the domain for x 

consists of the students in this class, this second statement can be expressed as ∀x(C(x) ∨ 

M(x)). However, if the domain for x consists of all people, our statement can be expressed as 

“For every person x, if x is a student in this class, then x has visited Mexico or x has visited 

Canada.” 

In this case, the statement can be expressed as ∀x(S(x) → (C(x) ∨ M(x))). Instead of using 

M(x) and C(x) to represent that x has visited Mexico and x has visited Canada, respectively, 

we could use a two-place predicate V(x, y) to represent “x has visited country y.” In this case, 

V(x, Mexico) and V(x, Canada) would have the same meaning as M(x) and C(x) and could 

replace them in our answers. If we are working with many statements that involve people 

visiting different countries, we might prefer to use this two-variable approach. Otherwise, for 

simplicity, we would stick with the one-variable predicates M(x) and C(x). 

 

Summary 

In this lesson, you have learnt 

1. That a proposition is a statement that is either true or false but not neither 

2. About logical connectives and their usage/operations 

3. how to translate English statements to propositional logic statements 
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4. About predicates and quantifiers and how they are used to realize more expressive 

logic statements 

Post-Test 

1. Use truth tables to show whether each of the following compound proposition is a 

tautology, contradiction or contingency 

a. p ˅ ¬p 

b. p ˄ ¬p 

c. (p ˄ q) → p 

d. (p → q) → ¬q 

2. Use truth tables to verify the logical equivalences in tables 1.5, 1.6 and 1.7 

3. Translate the following English statements into propositional logical expressions 

using logical connectives 

a. If it doesn’t rain, then I will go to the party 

b. I supplied the correct password, but was still denied access 

c. In the university, you are either a student or a staff 

d. I go to the library whenever I have to read 

4. Given the predicate P(x) means “x
3
 > 0”. What is the truth value of the following 

quantified predicates? 

a. ∀xP(x) where x ϵ Z (the set of all integers) 

b. ∀xP(x) where x ϵ Z
+
 (the set of all positive integers) 

c. ∃xP(x) where x belongs the set of all real numbers between 0 and 1 

d. ∃xP(x) where x belongs the set of all real numbers between -1 and 0 
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Lesson 2: Sets 

Introduction 

In this lesson, we will study sets as a data structure and understand how data is stored in sets. A set is 

an unordered collection of elements and we shall see that it is perhaps the most basic data structure. 

The important concepts that we shall study include set membership, set operations such as union, 

intersection and complement, the cardinality of sets, subsets, supersets, power set and set identities. 

We shall also learn how to represent sets with the Venn diagram and how to use the inclusion and 

exclusion principle to derive set cardinalities. 

Objectives 

At the end of this lesson, you should know 

1. what sets are and how they are built 

2. the various special sets and their properties 

3. the various set operations and how to use them to derive new sets 

4. how to determine the power set of a set 

5. how to represent a set using the Venn diagram 

2.1 Introduction 

The set is a fundamental discrete (data) structure on which most other structures are built. A set is an 

unordered collection of items (called members or elements) which may or may not be related (have 

similar properties). For instance, all students taking CISXXX make up a set of related objects, while 

the set {a, true, 1, car} is a set of unrelated items, but it’s still a set. A set is said to contain its 

elements while the elements of a set are said to belong to the set. We write a ϵ A and to denote that an 

element a belongs to the set A and that write a A to denote that an element a does not belong to the 

set A respectively. Usually, the name of the set is written in upper case while the name of its elements 

is written in lower case. 
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Two popular notations for writing sets are the roster and set-builder notations. The roster notation 

lists the elements of the set and uses ellipses (…) where the pattern of set elements is obvious, while 

the set-builder notation describes a set by stating the property(ies) that every element of such set must 

have. 

The following sets are written in roster notation: {a, b, c, …, z}, {a, e, i, o, u}, {2, 4, 6, 8, …}, {1, 4, 

9, 16, 25}. 

The following sets are written in set-builder notation: {x | x is even and x ϵ Z
+
}, {x | x is a perfect 

square}. 

We list the following special sets which we shall find useful in this course: 

N = {1, 2, 3, . . .}, the set of natural numbers 

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers 

Z
+
 = {1, 2, 3, . . .}, the set of positive integers 

Q = {p/q | p ∈ Z, q ∈ Z, and q ≠ 0}, the set of rational numbers 

R, the set of real numbers 

R
+
, the set of positive real numbers 

C, the set of complex numbers. 

Note that sets form what is referred to as data types in programming languages. For instance, most 

programming languages define a data type for integers which is essentially the set Z defined above, 

the data type Boolean is also the set {0, 1} or the {true, false}. 

Set Equality: Two sets are said to be equal if and only if they both contain the same elements. 

Therefore, suppose A and B are sets, from our knowledge of logic, we can say that A and B are equal 

if the logic statement ∀x(x ∈ A ↔ x ∈ B) is true. 
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Thus, the sets {1, 2, 3} and {3, 1, 2} are equal. Since sets are unordered, the ordering of elements 

does not matter, as long as the sets contain the same elements, they are equal. Also, the sets {a, b, c, 

d} and the sets {c, a, c, b, a, d} are the same since they contain the same elements irrespective of the 

repeated ones. 

The Empty Set: The empty set is a special set which contains no elements. It is denoted with the 

symbol Ø or {}. Note that the empty set is quite different from the sets { Ø } or { 0 } which are both 

singleton sets (i.e. a set with one element). 

Set Cardinality: The size of a set A is referred to as its cardinality and is written as |A|. Therefore, 

given a set S = {1, 4, 9, 16}, |S| = 4, and given the set B = {a, e, i, o, u}, |B| = 5. For the set C = {a, 

b, a, c}, |C| = 3, because repeated set elements are only counted once. 

2.2 Set Operations 

Just as we could perform logical operations on propositions, we can perform set operations on sets. 

We will look at three set operations namely the union, intersection and complement operations. 

Union: The union of two sets A and B, written as A U B is the set containing elements that belong to 

either in A or in B – thus, elements contained in both sets are only listed once. We can write this as 

A U B = {x | (x ϵ A) ˅ (x ϵ B)} 

Example 2.1: The union of the sets A = {a, b, c, d} and B = {1,2,3} is A U B = {a, b, c, d, 1, 2, 3} 

Intersection: The intersection of two sets A and B, written as A U B is the set containing elements that 

belong to both in A and in B. We can write this as 

A ∩ B = {x | (x ϵ A) ˄ (x ϵ B)} 

Example 2.2: The intersection of the sets A = {a, 2, b, c} and B = {a, 1, 2, 3} is A ∩ B = {a, 2} 

Note: Two sets A and B with A ∩ B = Ø are said to be disjoint 
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Complement: Let A and B be sets, the difference of A and B written as A – B (or sometimes written as 

A \ B) is the set of elements belonging to A but not to B. The difference of A and B is also called the 

complement of B with respect to A. We can write this as 

A – B = {x | (x ϵ A) ˄ ( ( )x B )} 

When a universal set U is defined, then we can determine the complement of a set A, written 

as A’, this is simply the set of elements in the universal set U but not in A. and in terms of set 

difference, this is U – A. 

Example 2.3: Given two sets A = {1, 2, 3, 4, 5}, B = {2, 4, 6} and a universal set U = {1, 2, 

3, …, 10}. 

A – B = {1, 3, 5}  B – A = {6} 

A’ = {6, 7, 8, 9, 10}  B’ = {1, 3, 5, 7, 8, 9, 10} 

From the above, it is obvious that A – B = A ∩ B’ 

2.3 Subsets, Supersets and Power Set 

Now we discuss subsets, supersets and power set. A set can contain other sets, and when this 

happens, the contained set is called a subset of the containing set while the containing set is 

called a superset of the contained set. This also means that every element of the contained set 

is also a member of the containing set. 

Let A and B be two sets such that B ϵ A, then we write  

B A , meaning B is a subset of A (i.e. B is a set contained in A) 

and write A B , meaning A is a superset of B (i.e. A is a set containing B). 

Intuitively, this means that every element in B is also contained in A. Thus, we can define this 

using predicate logic as follows: 
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∀x(x ∈ B → x ∈ A) 

Example 2.4: Given the set A = {a, b, {b, c}, d, {a}}. The set A contains two subsets namely, 

{b, c} and {a}. Thus, we can write { , }b c A  and { }a A . Note that there are 5 elements in 

the set A, that is |A| = 5. 

A typical example of subsets and supersets is seen with the special sets discussed earlier. A 

careful observation of the sets reveals that the following relationships hold: 

   N Z Q R C  

When we wish to emphasize that a set B is a subset of a set A but that A ≠ B, we write B ⊂ A 

and say that B is a proper subset of A. For B ⊂ A to be true, it must be the case that B ⊆ A 

and there must exist an element x of A that is not an element of B. That is, B is a proper subset 

of A if and only if the following proposition is true 

∀x(x ∈ B → x ∈ A) ∧ ∃x(x ∈ A ∧ x B ) 

For any two sets A, B, if B A  holds, the A B holds and is read “A superset B”, which 

means the set A contains the set B. It’s just another way of saying that a set is a subset of 

another set. 

Power Set: The power set of a set A, denoted ƿ(A), is the set of all subsets of A. 

Example 2.5: What is the power set of the set A = {1, 2, 3} 

Solution: ƿ(A) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} 

Example 2.6: What is the power set of the set A = {a, b} 

Solution: ƿ(A) = {Ø, {a}, {b}, {a, b}} 

From the power set, we see that the empty set is a subset of every set and every set is also a 

subset of itself. Also, the cardinality of the power set of a set A can be obtained with the 
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formula 2
n
, where n is the cardinality of A. Therefore, a set with cardinality 4, will have 

power set with cardinality 2
4
 = 16. 

2.4 Venn Diagram 

The Venn Diagram, developed by John Venn, is a graphical illustration of sets and set operations. In a 

Venn diagram, a set is represented as a circle drawn inside a rectangle which stands for the Universal 

set. Figure 2.1a shows the Venn diagram representation of a set A and the universal set U and Figure 

2.1b shows the representation of subsets. The shaded portions in Figure 2.2a and Figure 2.2b represent 

the union and intersection respectively of two sets A and B. Likewise, the shaded portions in Figure 

2.3a and Figure 2.3b represent the set difference of two sets A and B and complement of a set A 

respectively. 

 

Figure 2.1: (a.) Venn Diagram Representation of a set (b.) Subset representation ( B A ) 

 

 

Figure 2.2: (a.) Set Union (A U B) (b.) Set Intersection (A ∩ B) 

 

(a.) (b.) 

A 

U 

A 

U 

B 

(a.) (b.) 
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Figure 2.3: (a.) Set Difference (A – B) (b.) Set Complement (A’) 

Summary 
In this lesson, we have learnt that 

1. A set is an unordered collection of not necessarily related items 

2. Sets form the fundamental discrete/data structure upon which all others are built 

3. Sets are said to contain their elements and an element is said to belong to a set. 

4. Set operations include union, intersection and difference (complement) 

5. Sets can contain other sets called subsets. 

6. The empty set Ø, is a subset of every set and every set is a subset of itself 

7. The power set of a set is the et of all its subsets. 

8. Venn diagrams are graphical representation of sets and their operations. 

Post-Test 

1. Given the set A = {x
2
 | x ϵ Z

+
 ˄ x ≤ 10}. Use the roster notation to list the elements of A 

and find |A| 

2. Given the set B = {x | x ϵ Z
+
 ˄ x ≤ 100 ˄ x is prime} and the set A as defined in 1 above. 

a. Find A U B 

b. Find A ∩ B 

c. Draw the Venn diagram to represent the intersection and union of the two sets. 

3. What is the power set of the set V = {a, e, i, o, u} 

(a.) (b.) 
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Lesson 3: Mathematical Induction 

Introduction 

Mathematical Induction is a very important technique used to prove mathematical assertions, 

program correctness, the complexity of algorithms as well as some identities and inequalities. 

Generally speaking, the Principle of Mathematical Induction (PMI) is used to prove results 

already obtained by some means and not to derive new formulae or theorem. The idea of PMI 

is to prove that a particular assertion is true for all positive integers n, by showing that it is 

true for n = 1, and show that if it holds for any integer k, then it holds for the next integer k + 

1. This two parts of the PMI are what we shall use to prove assertions and results all through 

this chapter. We will also study a more complex form of the PMI which is called the Strong 

Induction which is suitable for proving results that cannot be easily proven by mathematical 

induction. 

Objectives 

At the end of this lesson, you should be able to 

1. Understand the Principle of Mathematical Induction (PMI) 

2. Know how to use PMI to prove summation theorems 

3. Know how to use PMI to prove inequality theorems 

4. Know how to use PMI to prove divisibility theorems 

3.1 Introduction 

Suppose that we have an infinite ladder and we want to know whether we can reach every step on this 

ladder. We know two things: 

1. We can reach the first rung of the ladder. 

2. If we can reach a particular rung of the ladder, then we can reach the next rung. 

Can we conclude that we can reach every rung? By (1), we know that we can reach the first 
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rung of the ladder. Moreover, because we can reach the first rung, by (2), we can also reach the 

second rung, since it is the next rung after the first rung. Applying (2) again, because we can reach 

the second rung, we can also reach the third rung. Continuing in this way, we can show that we can 

reach the fourth rung, fifth rung and so on. But can we conclude that we are able to reach every rung 

of this infinite ladder? The answer is yes, and we can verify this using an important proof technique 

called mathematical induction. That is, we can show that P(n) is true for every positive integer n, 

where P(n) is the statement that we can reach the n
th
 rung of the ladder. Mathematical induction is an 

extremely important proof technique that can be used to prove assertions of this type. 

Generally, mathematical induction can be used to prove statements that assert that P(n) is true for all 

positive integers n, where P(n) is a propositional function. A proof by mathematical induction has two 

parts, a basis step, where we show that P(1) is true, and an inductive step, where we show that for all 

positive integers k, if P(k) is true, then P(k + 1) is true. The Principle of Mathematical Induction 

(PMI) is stated as follows: 

To prove that a propositional function P(n) is true for all positive integers n, we must complete two 

steps – the basis step and the inductive step – defined as follows: 

1. The Basis step: show that P(1) is true. 

2. The Inductive Step: show that the proposition P(k) → P(k + 1) is true for every positive 

integer k. 

To use PMI to prove that an assertion is true, we first show that the basis step holds i.e. P(1) is true, 

then we prove that the inductive step holds by assuming that P(k) is true and under this assumption we 

show that P(k + 1) must also be true. The assumption that P(k) is true is called the inductive 

hypothesis. Note that the inductive hypothesis does not assume that P(k) is true for all positive 

integers, rather it only shows that if P(k) is true, then P(k + 1) is also true for all positive integers. 

Once we complete both steps in a proof by mathematical induction, we have shown that P(n) is true 
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for all positive integers, that is, we have shown that ∀nP(n) is true where the quantification is over the 

set of positive integers. Expressed as a rule of inference, this proof technique can be stated as 

∀n ϵ Z
+
( (P(1) ∧ ∀k(P(k) → P(k + 1))) → ∀nP(n) ) 

3.2 Example Proofs 
We will now see how to use PMI to prove theorems using a number of examples. Remember that 

mathematical induction can be used to prove assertions that are said to be true for all positive integers. 

Note that most theorem and mathematical results, implicitly contain the statement “for all …”, but it 

is not usually stated explicitly. Remember also that Mathematical Induction is used to prove results, 

theorems or formulae already obtained by some means, but it cannot be used to obtain new formulae. 

Thus, let us look at the following examples 

Example 3.1: Show that if n is a positive integer, then 

         
      

 
 

Solution: The above is a closed formula for the summation of the first n positive integers. To prove 

by mathematical induction that this formula holds, we must show that the basis step as well as the 

inductive step hold. 

Let P(n) be the proposition          
      

 
 

The Basis step: To show that P(1) holds, we substitute 1 for n in the equation: 

  
      

 
 

The Inductive step: We start with the inductive hypothesis, assuming that P(k) holds, which means 

        
      

 
 

Then if P(k) is true, then P(k + 1) must be true as well. This means 
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To verify that P(k + 1) is true, we add (k + 1) to both sides of P(k). 

               
      

 
       

  
             

 
 

 
          

 
 

From this last equation, we see that under the assumption that P(k) is true, P(k + 1) is also true and 

this completes the inductive step of the proof by mathematical induction. Thus, we have shown by 

mathematical induction that the theorem          
      

 
 is true for every positive integer n. 

Example 3.2: Use PMI to show that 

1 + 2 + 2
2
 +· · ·+2

n
 = 2

n+1
 – 1 

for every non-negative integer n. 

Solution: First, note that the condition attached to the theorem says it holds for all non-

negative integers, which means the set of positive integers including zero (0). Thus, the basis 

step becomes P(0). 

Let P(n) be the proposition 1 + 2 + 2
2
 +· · ·+2

n
 = 2

n+1
 – 1 

Basis step: We know that P(0) is true because 2
0
 = 1 = 2

0+1
 – 1, which shows P(0) is true. 

Inductive Step: For the inductive hypothesis, we assume that P(k) is true for an arbitrary 

nonnegative integer, k, so that we have 

1 + 2 + 2
2
 +· · ·+2

k
 = 2

k+1
 – 1 

If P(k) is true, the we know that P(k + 1) must be true as well. Thus, we need to verify that P(k + 

1), that is 
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1 + 2 + 2
2
 +· · ·+ 2

k
 + 2

k+1
 = 2

(k+1)+1
 – 1 = 2

k+2
 – 1 

is true under the assumption that P(k) is true. Therefore, under the assumption that P(k) is 

true, we add the (k + 1)
th

 term to both sides of P(k) and have 

1 + 2 + 2
2
 +· · ·+ 2

k
 + 2

k+1
= (2

k+1
 – 1) + 2

k+1
 

= 2
k+1

 + 2
k+1

 – 1 

= 2(2
k+1

) – 1 

= 2
1
 × 2

k+1
 – 1 

= 2
1+k+1

 – 1 

= 2
k+2

 – 1 

Having completed the inductive step, we know by Mathematical induction that P(n) is true 

for all nonnegative integers, that is 1 + 2 + 2
2
 +· · ·+2

n
 = 2

n+1
 – 1. 

The two examples above have used PMI to prove summation theorems. We will now study 

how PMI is used to prove other theorems that are not necessarily summations. The next two 

examples show how PMI is used to prove inequalities. 

Example 3.3: Use PMI to prove the inequality n < 2
n
. 

Solution: Let n < 2
n
 the proposition P(n). 

Basis step: We know that P(1) is true because 1 < 2
1
 

Inductive step: We first assume the inductive hypothesis that P(k) is true for an arbitrary 

positive integer k. That is, the inductive hypothesis P(k) is the statement that k < 2
k
. To 

complete the inductive step, we need to show that if P(k) is true, then P(k + 1), which is the 

statement that k + 1 < 2
k+1

, is true. That is, we need to show that if k < 2
k
, then k + 1 < 2

k+1
. 
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To show that this conditional statement is true for the positive integer k, we first add 1 to both 

sides of k < 2
k
, and then note that 1 ≤ 2

k
. This tells us that 

k + 1 <2
k + 1

 ≤ 2
k
 + 2

k
 = 2 · 2

k
 = 2

k+1
. 

This shows that P(k + 1) is true, namely, that k + 1 < 2
k+1

, based on the assumption that P(k) 

is true. The induction step is complete. 

Therefore, because we have completed both the basis step and the inductive step, by the 

principle of mathematical induction we have shown that n < 2
n
 is true for all positive integers 

n. 

Example 3.4: Use mathematical induction to prove that 2
n
 < n! for every integer n with n ≥ 4. 

(Note that this inequality is false for n = 1, 2, and 3.) 

Solution: Let P(n) be the proposition 2
n
 < n!. 

Basis step: The basis step is P(4) since the proposition only holds for integers greater than or 

equal to 4. It is obvious that P(4) is true, because  

2
4
 < 4! 

= 16 < 24. 

Inductive step: For the inductive step, we assume that P(k) is true for an arbitrary integer k 

with k ≥ 4. That is, we assume that 2
k
 < k! for the positive integer k with k ≥ 4. We must 

show that under this hypothesis, P(k + 1) is also true. That is, we must show that if 2k < k! 

for an arbitrary positive integer k where k ≥ 4, then 2
k+1

 < (k + 1)!. We have 

2
k+1

 = 2 · 2k (by definition of exponent) 

< 2 · k! (by the inductive hypothesis) 

< (k + 1)k! (because 2 < k + 1) 

= (k + 1)! (by definition of factorial function) 

This shows that P(k + 1) is true when P(k) is true. This completes the inductive step of the 

proof. We have completed the basis step and the inductive step. Hence, by mathematical 
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induction P(n) is true for all integers n with n ≥ 4. That is, we have proved that 2n < n! is true 

for all integers n with n ≥ 4. 

 

The final class of assertion that we will learn to prove with mathematical induction involves 

the results of divisibility of integers and we shall illustrate this with the next example as well. 

For proofs of this kind, keep in mind, the following divisibility theorem, which we shall find 

useful: 

Theorem 1: Let a, b, and c be integers and a ≠ 0: 

i.) if a | b and a | c, then a | (b + c) 

ii.) if a | b and a | c, then a | bc 

iii.) if a | b and b | c, then a | c 

Note: a | b means a divides b OR b is divisible by a. 

 

Example 3.5: Use mathematical induction to prove that n
3
 − n is divisible by 3 whenever n is 

a positive integer. 

Solution: Let P(n) be the proposition: “n
3
 − n is divisible by 3” 

Basis step: P(1) is true because 1
3
 − 1 = 0 is divisible by 3. 

Inductive step: For the inductive hypothesis we assume that P(k) is true; that is, we assume 

that k
3
 − k is divisible by 3 for an arbitrary positive integer k. To complete the inductive step, 

we must show that when we assume the inductive hypothesis, it follows that P(k + 1), the 

statement that (k + 1)
3
 − (k + 1) is divisible by 3, is also true. That is, we must show that 

(k + 1)
3
 − (k + 1) is divisible by 3. 

Note that 

(k + 1)
3
 − (k + 1) = (k

3
 + 3k

2
 + 3k + 1) − (k + 1) 

= (k
3
 − k) + 3(k

2
 + k). 



 

Page 35 of 81 
 

Using the inductive hypothesis, we conclude that the first term k
3
 − k is divisible by 3. The 

second term is divisible by 3 because it is 3 times an integer. So, by part (i) of Theorem 1 

above, we know that (k + 1)
3
 − (k + 1) is also divisible by 3. This completes the inductive 

step. Because we have completed both the basis step and the inductive step, by the principle 

of mathematical induction we know that n
3
 − n is divisible by 3 whenever n is a positive 

integer. 

3.3 Guidelines for constructing correct proofs by Mathematical Induction 

The kind of theorems and results that can be proven by mathematical induction is not limited to the 

types proven in the examples given above. In other to be able to prove other theorem types, following 

guidelines will be very helpful. 

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a fixed integer b. 

2. For the Basis step, show that P(b) is true, taking care that the correct value of b is used. This 

completes the first part of the proof. 

3. For the Inductive Step, state, and clearly identify, the inductive hypothesis, in the form “assume 

that P(k) is true for an arbitrary fixed integer k ≥ b.” 

5. State what needs to be proved under the assumption that the inductive hypothesis is true. That is, 

write out what P(k + 1) is. 

6. Prove the statement P(k + 1) making use of the assumption P(k). Be sure that your proof is valid 

for all integers k with k ≥ b, taking care that the proof works for small values of k, including k = b. 

7. Clearly identify the conclusion of the inductive step, such as by saying “this completes the 

inductive step.” 

8. After completing the basis step and the inductive step, state the conclusion, namely that by 

mathematical induction, P(n) is true for all integers n with n ≥ b. 
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Summary 

In this lesson, we have learnt 

1. The Principle of Mathematical induction is used to prove theorems or assertions to know 

whether they are true. 

2. Mathematical induction cannot be used to derive new theorems but to prove already obtained 

results or existing theorems. 

3. Mathematical induction can be used to prove a wide variety of theorems and results including 

summations and inequalities  

Post-Test 

1. Use PMI to prove the formula for the sum of a finite number of terms of a Geometric 

Progression with initial term a and common ratio, r. It’s your responsibility to find out and 

write the formula. 

2. The harmonic numbers Hj for j = 1, 2, 3, … are defined by the series 

     
 

 
 

 

 
  

 

 
 

For instance, 

     
 

 
 

 

 
 

 

 
 

 

 
 

   

  
 

Use PMI to show that 

      
 

 
, whenever n is a nonnegative integer. 

3. Use mathematical induction to prove that 7
n+2

 + 8
2n+1

 is divisible by 57 for every nonnegative 

integer n. 
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Lesson 4: Loops and Recursion I 

Introduction 

In this lesson, we will discuss recursive definitions of data/discrete structures such as 

functions, sequences and sets. A structure is recursive if is defined in terms of itself. Very 

similar to but more concise than loops, recursive definitions help define structures in very 

succinct terms that aid the understanding of how to generate new items belonging to such 

structures. We also discuss recursive algorithms and study them alongside their iterative 

(loop) versions. As we shall see, the concise nature of recursive algorithms does not 

necessarily translate to their efficiency. In fact, more often than not, recursive algorithms are 

less efficient that their iterative versions.  

Objectives 

At the end of this lesson, you should learn 

1. Recursive definition of structures such as sequences, functions and sets. 

2. To use mathematical induction to prove recursive definitions 

4.1 Recursive Definitions 

Sometimes it is difficult to define an object explicitly. However, it may be easy to define this 

object in terms of itself. This process is called recursion. We can use recursion to define 

sequences, functions and sets. For instance, the sequence of powers of 2 is given by an = 2
n
 

for n = 0, 1, 2, … The same sequence can also be defined by specifying the first term a0 = 1, 

and a rule for finding a term of the sequence from the previous one, i.e., an+1 = 2an. When a 

sequence is defined in this manner, we can use induction to prove results about the sequence, 

specifically, Structural Induction. 
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Structural induction: We define a set recursively by specifying some initial elements in a 

basis step and provide a rule for constructing new elements from those already in the 

recursive step 

Use two steps to define a function with the set of non-negative integers as its domain 

• Basis step: specify the value for the function at zero 

• Recursive step: give a rule for finding its value at an integer from its values at 

smaller integers 

Such a definition is called a recursive or inductive definition. 

Example 4.1: Suppose f is defined recursively by 

f(0) = 3 

f(n+1) = 2f(n) + 3 

Find f(1), f(2), f(3), and f(4) 

Solution: From the recursive definition, it follows that 

f(1) = 2f(0) + 3 = 2 × 3 + 3 = 9 

f(2) = 2f(1) + 3 = 2 × 9 + 3 = 21 

f(3) = 2f(2) + 3 = 2 × 21 + 3 = 45 

f(4) = 2f(3) + 3 = 2 × 45 + 3 = 93 

Example 4.2: Give an inductive definition of the factorial function f(n) = n! 

Solution: 

Note that (n+1)! = (n+1) ∙ n! 
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We can define f(0) = 1 and f(n+1) = (n+1) ∙ f(n) 

To determine a value, e.g., f(5) = 5!, we can use the recursive function 

   f(5) = 5 ∙ f(4) = 5 ∙ 4 ∙ f(3) = 5 ∙ 4 ∙ 3 ∙ f(2) = 5 ∙ 4 ∙ 3 ∙ 2 ∙ f(1) = 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 ∙ f(0) = 5 ∙ 4 ∙ 3 

∙ 2 ∙ 1 ∙ 1 = 120 

4.2 Recursive Functions 

Recursively defined functions are well defined such that for every positive integer, the value 

of the function is determined in an unambiguous way. Given any positive integer, we can use 

the two parts of the definition to find the value of the function at that integer and we will 

always obtain the same value no matter how we apply two parts of the definition. 

Example 4.3: Given a recursive definition of a
n
, where a is a non-zero real number and n is a 

non-negative integer. 

Solution: 

Note that a
n+1

 = a ∙ a
n
 and a

0
 = 1 

These two equations uniquely define a
n
 for all nonnegative integer n. 

Example 4.4: Given a recursive definition of 
0

n
k

k

a


  

Solution: The first part of the recursive definition is 
0

0

0

k

k

a a


  

The second part is 
1

1

0 0

( )
n n

k k n

k k

a a a




 

    

The Fibonacci Numbers: Fibonacci numbers f0, f1, f2, are defined by the equations, f0 = 0, f1 

= 1, and fn = fn-1 + fn-2 for n = 2, 3, 4, … 

By definition 



 

Page 40 of 81 
 

f2 = f1 + f0 = 1 + 0 = 1 

f3 = f2 + f1 = 1 + 1 = 2 

f4 = f3 + f2 = 2 + 1 = 3 

f5 = f4 + f3 = 3 + 2 = 5 

f6 = f5 + f4 = 5 + 3 = 8 

Summary 

In this lesson, you have learnt that 

1. Sequences, functions and sets can be defined recursively 

2. Recursive definitions can be proven with mathematical induction. 

Post-Test 

1. Show that whenever n ≥ 3, fn > α
n−2

, where α = (1 + √5)/2. 
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Lesson 5: Loops and Recursion II 

Introduction 

In this lesson, we will discuss recursive definitions of data/discrete structures such as 

functions, sequences and sets. A structure is recursive if is defined in terms of itself. Very 

similar to but more concise than loops, recursive definitions help define structures in very 

succinct terms that aid the understanding of how to generate new items belonging to such 

structures. We also discuss recursive algorithms and study them alongside their iterative 

(loop) versions. As we shall see, the concise nature of recursive algorithms does not 

necessarily translate to their efficiency. In fact, more often than not, recursive algorithms are 

less efficient that their iterative versions.  

Objectives 

At the end of this lesson, you should learn 

1. About recursive and iterative algorithms 

5.1 Recursively Defined Sets and Structures 

Consider the subset S of the set of integers defined by 

• Basis step: 3 ∊ S 

• Recursive step: if x ∊ S and y ∊ S, then x + y ∊ S 

The new elements formed by this are 3 + 3 = 6, 3 + 6 = 9, 6 + 6 = 12, … Thus, S is the set of 

all positive multiples of 3. 

Strings can be defined recursively. 

The set ∑* of strings over the alphabet ∑ can be defined recursively by 

• Basis step:   ∊ ∑* (where   is the empty string containing no symbols) 

• Recursive step: if w ∊ ∑* and x ∊ ∑ then wx ∊ ∑* 
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The basis step defines that the empty string belongs to the set of strings. The recursive step 

states new strings are produced by adding a symbol from ∑ to the end of stings in ∑*. At 

each application of the recursive step, strings containing one additional symbol are generated. 

Example 4.1: If ∑ = {0, 1}, the strings found to be in ∑*, the set of all bit strings, are  

•  , specified to be in ∑* in the basis step 

• 0 and 1 found in the 1
st
 recursive step 

• 00, 01, 10, and 11 are found in the 2
nd

 recursive step, and so on 

5.2 Recursive Algorithms 

An algorithm is called recursive if it solves a problem by reducing it to an instance of the 

same problem with smaller input. 

Example 4.2: Give a recursive algorithm for computing n! where n is a non-negative integer 

Solution: We can compute n! = n ∙ (n – 1)! Where n is a positive integer, and that 0! = 1 for a 

particular integer. We use the recursive step n times 

procedure factorial(n: non-negative integer) 

    if n=0 then 

factorial(n):=1 

    else 

factorial(n):= n * factorial(n-1) 

Example 4.3: Give a recursive algorithm for computing a
n
 where a is a non-zero real number 

and n is a non-negative integer. 

Solution: We can base a recursive algorithm on the recursive definition of a
n
. This definition 

states that a
n+1

 = a · a
n
 for n > 0 and the initial condition a

0
 = 1. To find a

n
, successively 

use the recursive step to reduce the exponent until it becomes zero. 

procedure power(a: nonzero real number, n: non-negative integer) 

    if n=0 then 
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power(a,n):=1 

    else 

power(a,n):=a ∙ power(a, n-1) 

Recursion and Iteration: 

A recursive definition expresses the value of a function at a positive integer in terms of the 

values of the function at smaller integers. This means that we can devise a recursive 

algorithm to evaluate a recursively defined function at a positive integer. Instead of 

successively reducing the computation to the evaluation of the function at smaller integers, 

we can start with the value of the function at one or more integers, the base cases, and 

successively apply the recursive definition to find the values of the function at successive 

larger integers. Such a procedure is called iterative. Often iterative algorithms are more 

efficient than their recursive versions (unless special-purpose machines are used). Consider 

the recursive algorithm for the Fibonacci numbers and its iterative version. 

Recursive Fibonacci algorithm 

procedure fibonacci(n: nonzero integer) 

    if n=0 then 

fibonacci(n):=0 

    else if n=1 then 

fibonacci(1):=1 

    else 

fibonacci(n)=fibonacci(n-1)+fibonacci(n-2) 

 

Iterative Fibonacci algorithm 

procedure iterative_fibonacci(n: nonzero integer) 

      if n=0 then 

y:=0 

      else  

        begin  

          x:=0  

          y:=1 

          for i:=1 to n-1 

   z:=x+y 

             x:=y 

y:=z 

         end 
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    end                

    {y is the n-th Fibonacci number} 

When we use a recursive procedure to find fn, we first express fn as fn−1 + fn−2. Then we 

replace both of these Fibonacci numbers by the sum of two previous Fibonacci numbers, and 

so on. When f1 or f0 arises, it is replaced by its value. Note that at each stage of the recursion, 

until f1 or f0 is obtained, the number of Fibonacci numbers to be evaluated has doubled. For 

instance, when we find f4 using this recursive algorithm, we must carry out all the 

computations illustrated in the tree diagram in Figure 4.1. 

 

Figure 4.1: Computation of f4 in the recursive Fibonacci algorithm 

The iterative algorithm initializes x as f0 = 0, and y as f1 = 1. When the loop is traversed, the 

sum of x and y is assigned to the auxiliary variable z. Then x is assigned the value of y and y 

is assigned the value of the auxiliary variable z. Thus, after going through the loop the first 

time, it follows x equals f1 and y equals f0 + f1 = f2 

Next, f1 + f2 = f3, … 

After going through the algorithm n-1 times, x equals fn-1 and y equals fn. Only n-1 additions 

have been used to find fn. 

Summary 

In this lesson, you have learnt that 

1. How to write recursive algorithms 
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2. Iterative algorithms are often more effective than recursive algorithms 

Post-Test 

1. Write an iterative algorithm for computing the factorial of a non-negative integer n. 

References 
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Lesson 6: Program Correctness 

Introduction 

It is not enough to write programs, there is need to verify their correctness. A very obvious way to do 

this might be to test the program with sample inputs, but this can never suffice as the set of possible 

inputs is usually infinite and cannot all be accounted for. We therefore to resort to mathematical 

proofs to verify the correctness of a program. 

This lesson will introduce you to the assertions, inferences and invariants used to prove program 

segments and with worked examples, you should be able to learn the steps of proving program 

correctness. While all the examples in this lesson proved the programs correct, it must also be noted 

that the same procedure is followed in an attempt to verify a wrong program in which case, the proof 

fails. 

Objectives 

At the end of this lesson, you should 

1. Know how to prove programs correct 

2. Understand the rules of inference for proving conditional statements 

3. Understand how to derive loop invariants to prove loops 

6.1 Introduction 

Suppose we have written a program to solve a problem, after debugging, how can we be sure 

that the program always gets the correct answer? We need a proof to show that the program 

always gives the correct answer. 

Program verification:  uses the rules of inference and proof techniques. It is one form of 

formal verification and can be carried out using a computer. However, only limited progress 

has been made. Some mathematicians and theoretical computer scientists argue that it will 

never be realistic to mechanize the proof of correctness of complex programs. 
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A program is said to be correct if it produces the correct output for every possible input. 

A proof that a program is correct consists of two parts 

 Partial correctness: Correct answer is obtained if the program terminates 

 Shows the program always terminates. 

To specify a program produces the correct output, we must state 

 Initial assertion: the properties that the input values must have 

 Final assertion:  the properties that output of the program should have, if the 

program did what was intended 

A program or program segment, S is said to be partially correct with respect to the initial 

assertion p and the final assertion q if whenever p is true for the input values of S and S 

terminates, then q is true for the output values of S. 

The notation p{S}q, known as the Hoare Triple, indicates that the program, or program 

segment, S is partially correct with respect to the initial assertion p and the final assertion q. 

Example 6.1: Show that the program segment 

y := 2 

z := x + y 

is correct with respect to the initial assertion p: x = 1 and the final assertion q: z = 3 

Solution: 

Suppose that p is true, so that x = 1. Then y is assigned the value 2, and z is assigned the sum 

of the values of x and y, which is 3. 

Hence, S is correct with respect to the initial assertion p and the final assertion q. Thus p{S}q 

is true. 
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6.2 Rules of Inference 

Suppose the program S is split into subprograms S1 and S2, denote it by S = S1;S2 that is the 

program S is made up of S1 followed by S2. Suppose the correctness of S1 w.r.t. the initial 

assertion p and final assertion q, the correctness of S2 w.r.t. the initial assertion q and the final 

assertion r, have been established. It follows that if p is true and S1 is executed and 

terminates, then q is true; and if q is true and S2 executes and terminates, then r is true. Thus, 

if p is true and S = S1;S2 is executed and terminates, then r is true. This rule of inference, 

called the composition rule can be stated as 

1

2

1 2

{ }

{ }

{ ; }

p S q

q S r

p S S r
 

6.2.1 Conditional Statements 

Consider a program statement 

if condition then 

S 

To verify this segment is correct w.r.t. initial assertion p and final assertion q, two things 

must be done 

 First, when p is true and condition is true, then q is true after S terminates 

 Second, when p is true and condition is false, then q is true (as S is not executed) 

This therefore leads to the following rule of inference: 

( ){ }

( )

{if  then }

p condition S q

p condition q

p condition S q



 


 

Example 6.2: Verify the program segment 

    if x < 0 then 
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          abs:=-x 

  else 

          abs:=x 

is correct w.r.t. the initial assertion T and the final assertion abs = |x| 

Solution: 

Two things must be demonstrated. First, it must be shown that if the initial condition is true 

and x < 0, then abs = |x|. This is correct as when x < 0, the assignment statement abs :=-x sets 

abs = -x, which is |x| by definition when x < 0. 

Second, it must be shown that if the initial assertion is true and x < 0 is false, so that x ≥ 0, 

then abs = |x|. This is correct as in this case the program uses the assignment abs := x, and x is 

|x| by definition when x ≥ 0, so that abs := x. 

Hence, using the rule of inference for program segments of this type, this segment is correct 

w.r.t. the given initial and final assertions 

6.2.2 Loop Invariants 

We will now see how to prove the correctness of while loops. Consider the following 

program segment. 

    while condition 

            S 

Note that S is repeatedly executed until condition becomes false. An assertion that remains 

true each time S is executed must be chosen. Such an assertion is called a loop invariant. That 

is, p is a loop invariant if (p∧condition){S}p is true. 

Suppose that p is a loop invariant, it follows that is p is true before the program segment is 

executed, p and ¬condition are true after termination, if it occurs. This gives the rule of 

inference 



 

Page 50 of 81 
 

( ){ }

{while  }( )

p condition S p

p condition S condition p



  
 

Example 6.3: Use a loop invariant to verify that the following program segment terminates 

with factorial = n! when n is a positive integer 

    i:=1 

    factorial:=1 

    while i<n 

    begin 

          i:=i+1 

          factorial:= factorial * i 

     end 

Solution: Let p be the assertion “factorial = i! and i ≤ n”. We first prove that p is a loop 

invariant 

Suppose that at the beginning of one execution of the while loop, p is true and the condition 

holds, i.e., assume that factorial = i! and i < n 

The new values inew and factorialnew of i and factorial are 

inew = i + 1 ≤ n and 

factorialnew = factorial ∙ (i + 1) = (i + 1)! = inew! 

Because i < n, we also have inew = i + 1 ≤ n 

Thus p is true at the end of the execution of the loop. This shows that p is a loop invariant 

Just before entering the loop, i = 1 ≤ n and factorial = 1 = 1! = i! both hold, so p is true 

As p is a loop invariant, the rule of inference implies that if the while loop terminates, it 

terminates with p true and with i < n false. 
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In this case, at the end, factorial = i! and i ≤ n are true, but i < n is false; in other words, i = n 

and factorial = i! = n!, as desired 

Finally, we need to check that the while loop actually terminates 

At the beginning of the program, i is assigned the value 1, so that after n-1 traversals of the 

loop, the new value of i will be n, and the loop terminates at that point. 

Summary 

In this lesson, you have learnt 

1. That programs must be verified for correctness 

2. That there are two parts to program to program verification; the partial correctness and the 

proof that the program always terminates 

3. That to check that a program always produces correct output, two assertions are used – the 

initial assertion (which specifies the properties of the expected input) and the final assertion 

(which checks the properties of the expected output). These assertions together with the 

program segment to be proven form the Hoare triple. 

4. About rules of inference for Conditional statements and loop invariants 

Post-Test 

1. Verify the correctness of the program below: 
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1

2

3

4

( , : integers)

if  0 then  :

else  :

: 0

: 0

while 

begin

:

: 1

end

if  0 then  :

else  

procedure m n

n a n
S

a n

k
S

x

k a

S x x m

k k

n product x
S

product : x
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Lesson 7: Discrete Probability 

Introduction 

The history of Discrete Probability dates back to the 15
th
 – 17

th
 century with the contributions of 

mathematicians such as Girolamo Cardano, Blaise Pascal and Laplace. Probability is generally 

concerned with the chances or possibilities associate with a given task. 

In this lesson, we will study the probabilities of tasks with finitely many, equally-likely outcomes and 

learn how they can be combined with set theory operations. 

Objectives 

At the end of this lesson, you should 

1. Know how to find the probability of an event 

2. Know how to derived the probabilities of events from other events 

7.1 Finite Probability 

An experiment is a procedure that yields one of a given set of possible 

outcomes. The sample space of the experiment is the set of possible 

outcomes. An event is a subset of the sample space. Laplace’s definition of 

the probability of an event with finitely many possible outcomes is stated 

as follows: 

If S is a finite nonempty sample space of equally likely outcomes, and E is 

an event, that 

is, a subset of S, then the probability of E is       
   

   
 

Note that the value of p(E) is always between 0 and 1 i.e. 0 ≤ p(E) ≤ 1. 

Example 7.1: A bag contains four blue balls and five red balls. What is the probability that a 

ball chosen at random from the bag is blue? 
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Solution: From the question, we know that |S| = 9 (the number of balls in the bag; 4 blue 

balls + 5 red balls) and |E| = 4 (the number of blue balls in the bag, since the blue balls are 

under consideration now). 

Using the formula above, p(E) = 4 / 9 

Example 7.2: What is the probability that when two dice are rolled, the sum of the numbers 

on the two dice is 7? 

Solution: There are a total of 36 equally likely possible outcomes when two dice are rolled. 

(The product rule can be used to see this; because each die has six possible outcomes, the 

total number of outcomes when two dice are rolled is 62 = 36.) 

There are 6 successful outcomes that can give a sum of 7, namely, (1, 6), (2, 5), (3, 4), (4, 3), 

(5, 2), and (6, 1), where the values of the first and second dice are represented by an ordered 

pair. Hence, the probability that a 7 comes up when two fair dice are rolled is 6/36 = 1/6. 

Example 7.3: What is the probability that the numbers 11, 4, 17, 39, and 23 are drawn in that 

order from a bin containing 50 balls labelled with the numbers 1, 2, . . . , 50 if 

(a) the ball selected is not returned to the bin before the next ball is selected and 

(b) the ball selected is returned to the bin before the next ball is selected? 

Solution: 

(a) By the product rule, there are 50 · 49 · 48 · 47 · 46 = 254,251,200 ways to select the balls 

because each time a ball is drawn there is one fewer ball to choose from. Consequently, the 

probability that 11, 4, 17, 39, and 23 are drawn in that order is 1/254,251,200. This is an 

example of sampling without replacement. 
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(b) By the product rule, there are 505 = 312,500,000 ways to select the balls because there are 

50 possible balls to choose from each time a ball is drawn. Consequently, the probability that 

11, 4, 17, 39, and 23 are drawn in that order is 1/312,500,000. This is an example of sampling 

with replacement. 

 

 

7.2 Probabilities of Complements and Unions of Events 

We can use counting techniques to find the probability of events derived from other events. 

We can find the probabilities of the complement and union of events 

Theorem 1: Let E be an event in a sample space S. The probability of the event E  = S − E, 

the complementary event of E, is given by p( E ) = 1 − p(E). 

Theorem 2: Let E1 and E2 be events in the sample space S. Then 

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2). 

 

Example 7.4: A sequence of 10 bits is randomly generated. What is the probability that at 

least one of these bits is 0? 

Solution: Let E be the event that at least one of the 10 bits is 0. Then E is the event that all 

the bits are 1s. Because the sample space S is the set of all bit strings of length 10, it follows 

that 

 

Hence, the probability that the bit string will contain at least one 0 bit is 1023/1024. It is quite 

difficult to find this probability directly without using Theorem 1 above. 
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Example 7.5: What is the probability that a positive integer selected at random from the set 

of positive integers not exceeding 100 is divisible by either 2 or 5? 

Solution: Let E1 be the event that the integer selected at random is divisible by 2, and let E2 

be the event that it is divisible by 5. Then E1 ∪ E2 is the event that it is divisible by either 2 or 

5. 

Also, E1 ∩ E2 is the event that it is divisible by both 2 and 5, or equivalently, that it is 

divisible by 10. Because |E1| = 50, |E2| = 20, and |E1 ∩ E2| = 10, it follows that 

 

Summary 

In this lesson, you have learnt that 

1. An experiment is a procedure that yields one of a given set of 

possible outcomes. 

2. The sample space of the experiment is the set of possible outcomes. 

3. An event is a subset of the sample space 

4. We can derive the probabilities of events as a complement of the probabilities of other 

events or as the union of the probabilities of two events. 

Post-Test 

1. There are many lotteries now that award enormous prizes to people who correctly 

choose a set of six numbers out of the first n positive integers, where n is usually 

between 30 and 60. What is the probability that a person picks the correct six numbers 

out of 40? 
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Lesson 8: Randomized Algorithms 

Introduction 

 

Objectives 

At the end of this lesson, you should 

1. Understand randomized algorithms 

2. Be introduced to two methods of randomizing algorithm data inputs 

8.1 Randomized Algorithms 

Suppose we need to hire a new employee and have decided to employ the following 

pseudocode in figure 8.1. The hire-assistant pseudocode successively interviews candidates 

and determines a ‘best’ candidate relative to the previously interviewed ones. 

 

Figure 8.1: Pseudocode for hiring a new employee 

For certain problems such as the hiring problem, in which it is helpful to assume that all 

permutations of the input are equally likely, a probabilistic analysis can guide the 

development of a randomized algorithm. Instead of assuming a distribution of inputs, we 

impose a distribution. In particular, before running the algorithm, we randomly permute the 

candidates in order to enforce the property that every permutation is equally likely. Although 

we have modified the algorithm, we still expect to hire a new office assistant approximately 
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ln n times. But now we expect this to be the case for any input, rather than for inputs drawn 

from a particular distribution. 

Consider, on the other hand, the randomized algorithm that first permutes the candidates and 

then determines the best candidate. In this case, we randomize in the algorithm, not in the 

input distribution. Given a particular input, say A3 above, we cannot say how many times the 

maximum is updated, because this quantity differs with each run of the algorithm. The first 

time we run the algorithm on A3, it may produce the permutation A1 and perform 10 updates; 

but the second time we run the algorithm, we may produce the permutation A2 and perform 

only one update. The third time we run it, we may perform some other number of updates. 

Each time we run the algorithm, the execution depends on the random choices made and is 

likely to differ from the previous execution of the algorithm. For this algorithm and many 

other randomized algorithms, no particular input elicits its worst-case behaviour. The 

randomized algorithm performs badly only if the random-number generator produces an 

“unlucky” permutation. For the hiring problem, the only change needed in the code is to 

randomly permute the array as shown in figure 8.2. With this simple change, we have created 

a randomized algorithm whose performance matches that obtained by assuming that the 

candidates were presented in a random order. 

 

Figure 8.2: A Randomized version of the Hiring pseudocode 
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Generally speaking, an algorithm is called randomized if its behaviour is determined not only 

by its input but also by values produced by a random-number generator. 

8.2 Random Permutation of Arrays 

Many randomized algorithms randomize the input by permuting the given input array and we 

shall discuss two methods of doing this. We assume that we are given an array A which, 

contains the elements 1 through n. Our goal is to produce a random permutation of the array. 

One common method is to assign each element A[i] of the array a random priority P[i], and 

then sort the elements of A according to these priorities. For example, if our initial array is A 

= ‹1, 2, 3, 4› and we choose random priorities P = ‹36, 3, 62, 19›, we would produce an array 

B = ‹2, 4, 1, 3› since the second priority is the smallest, followed by the fourth, then the first, 

and finally the third. We call this procedure PERMUTE-BY-SORTING and write the 

pseudocode in figure 8.3. 

 

Figure 8.3: Permute-by-Sorting Pseudocode 

Line 4 chooses a random number between 1 and n
3
; a range of 1 to n

3
 is used to make it likely 

that all the priorities in P are unique. Sorting is done on line 5 and after sorting, if P[i] is the 

j
th

 smallest priority, then A[i] lies in position j of the output. In this manner we obtain a 

permutation. 

A better method for generating a random permutation is to permute the given array in place. 

The procedure RANDOMIZE-IN-PLACE (figure 8.4) does so in O(n) time. In its i
th

 iteration, 
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it chooses the element A[i] randomly from among elements A[i] through A[n]. Subsequent to 

the i
th

 iteration, A[i] is never altered. 

 

Figure 8.4: Randomize-In-Place Pseudocode 

Summary 

In this lesson, you have learnt 

1. That randomized algorithms is one whose behaviour is determined not only by its 

input but also by values produced by a random-number generator 

2. Two methods of randomizing data inputs, here referred to as permute-by-sorting and 

randomize-in-place. 

Post-Test 

1. Use loop invariant to show that the Randomize-In-Place algorithm produces a 

uniform random permutation. 
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Lesson 9: Lists 

Introduction 

 

Objectives 

At the end of this lesson, you should 

1. Know what a list is 

2. Understand the two special types of lists – queues and stacks – and the operations defined on 

them. 

3. Understand linked lists and the operations of searching, insertion into and deleting from them. 

9.1 Introduction 

A list is a finite sequence of data items, i.e., a collection of data items arranged in a certain 

linear order. The basic operations performed on this data structure are searching for, 

inserting, and deleting an element. 

Two special types of lists, stacks and queues, are particularly important. A stack is a list in 

which insertions and deletions can be done only at the end. This end is called the top because 

a stack is usually visualized not horizontally but vertically—akin to a stack of plates whose 

“operations” it mimics very closely. As a result, elements are added to (pushed onto) a stack 

and deleted from (popped off) it, the structure operates in a “last-in–first-out” (LIFO) 

fashion— 

exactly like a stack of plates if we can add or remove a plate only from the top. Stacks have a 

multitude of applications; in particular, they are indispensable for implementing recursive 

algorithms. A queue, on the other hand, is a list from which elements are deleted from one 

end of the structure, called the front (this operation is called dequeue), and new elements are 

added to the other end, called the rear (this operation is called enqueue). Consequently, a 
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queue operates in a “first-in–first-out” (FIFO) fashion—akin to a queue of customers served 

by a single teller in a bank. Queues also have many important applications, including several 

algorithms for graph problems. 

Many important applications require selection of an item of the highest priority among a 

dynamically changing set of candidates. A data structure that seeks to satisfy the needs of 

such applications is called a priority queue. A priority queue is a collection of data items from 

a totally ordered universe (most often, integer or real numbers). The principal operations on a 

priority queue are finding its largest element, deleting its largest element, and adding a new 

element. A priority queue must be implemented so that the last two operations yield another 

priority queue. Straightforward implementations of this data structure can be based on either 

an array or a sorted array, but neither of these options yields the most efficient solution 

possible. A better implementation of a priority queue is based on an ingenious data structure 

called the heap. 

A Special implementation of lists is called linked lists. A linked list is a data structure in 

which the objects are arranged in a linear order. Unlike an array, however, in which the linear 

order is determined by the array indices, the order in a linked list is determined by a pointer 

in each object. A linked list may be either singly-linked or doubly-linked, it may be sorted or 

not, and it may be circular or not. If a linked list is singly-linked, we omit the previous 

pointer in each element. If a linked list is sorted, the linear order of the list corresponds to the 

linear order of keys stored in elements of the list; the minimum element is then the head of 

the list, and the maximum element is the tail. If the list is unsorted, the elements can appear 

in any order. In a circular list, the previous pointer of the head of the list points to the tail, 

and the next pointer of the tail of the list points to the head. We can think of a circular list as a 

ring of elements. 
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9.2 List Operations 

Here, we shall write and study pseudocodes for searching, inserting to and deleting from lists. 

Searching a List 

The procedure LIST-SEARCH (L, k) (figure 9.2) finds the first element with key k in list L 

by a simple linear search, returning a pointer to this element. If no object with key k appears 

in the list, then the procedure returns NIL. For the linked list in Figure 9.1(a), the call LIST-

SEARCH (L, 4) returns a pointer to the third element, and the call LIST-SEARCH (L, 7) 

returns NIL. 

 

Figure 9.1: Graphical illustration of a list 

 

Figure 9.2: LIST-SEARCH algorithm 

Inserting into a List 

Given an element x whose key attribute has already been set, the LIST-INSERT procedure 

(figure 9.3) “splices” x onto the front of the linked list, as shown in Figure 9.1(b). 
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Figure 9.3: LIST-INSERT algorithm 

Deleting from a List 

The procedure LIST-DELETE (figure 9.4) removes an element x from a linked list L. It must 

be given a pointer to x, and it then “splices” x out of the list by updating pointers. If we wish 

to delete an element with a given key, we must first call LIST-SEARCH to retrieve a pointer 

to the element. Figure 9.1(c) illustrates the deletion of an item (4) from the list. 

 

Figure 9.4: LIST-DELETE algorithm 

Summary 

In this lesson, you have learnt that 

1. A list is a finite sequence of data items 

2. Stacks and Queues are special types of lists. 

3. The stack operates in a LIFO fashion with its insertion and deletion operations referred to as 

push and pop respectively. 

4. The queue operates in a FIFO fashion with its insertion and deletion operations referred to as 

enqueue and dequeue respectively. 
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Post-Test 

1. Write a pseudocode to perform the following operations 

a. Push element x onto stack S 

b. Pop stack S 

c. Enqueue queue Q 

d. Dequeue queue Q 
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Lesson 10: Graphs 

Introduction 

 

Objectives 

At the end of this lesson, you should learn 

1 The formal definition of a graph 

2 Graph types 

3 The different Graph representations 

10.1 Overview 

As we mentioned in the previous section, a graph is informally thought of as a collection of 

points in the plane called “vertices” or “nodes,” some of them connected by line segments 

called “edges” or “arcs.” Formally, a graph G = ‹V,E› is defined by a pair of two sets: a finite 

nonempty set V of items called vertices and a set E of pairs of these items called edges. If 

these pairs of vertices are unordered, i.e., a pair of vertices (u, v) is the same as the pair (v, u), 

we say that the vertices u and v are adjacent to each other and that they are connected by the 

undirected edge (u, v). We call the vertices u and v endpoints of the edge (u, v) and say that u 

and v are incident to this edge; we also say that the edge (u, v) is incident to its endpoints u 

and v. A graph G is called undirected if every edge in it is undirected. 

If a pair of vertices (u, v) is not the same as the pair (v, u), we say that the edge (u, v) is 

directed from the vertex u, called the edge’s tail, to the vertex v, called the edge’s head. We 

also say that the edge (u, v) leaves u and enters v. A graph whose every edge is directed is 

called directed. Directed graphs are also called digraphs. It is normally convenient to label 

vertices of a graph or a digraph with letters, integer numbers, or, if an application calls for it, 



 

Page 68 of 81 
 

character strings (Figure 10.1). The graph depicted in Figure 10.1a has six vertices and seven 

undirected edges: 

V = {a, b, c, d, e, f },   E = {(a, c), (a, d), (b, c), (b, f ), (c, e), (d, e), (e, f )}. 

The digraph depicted in Figure 10.1b has six vertices and eight directed edges: 

V = {a, b, c, d, e, f },   E = {(a, c), (b, c), (b, f ), (c, e), (d, a), (d, e), (e, c), (e, f )}. 

 

Figure 10.1: Examples of Undirected and Directed Graphs 

Our definition of a graph does not forbid loops, or edges connecting vertices to themselves. 

Unless explicitly stated otherwise, we will consider graphs without loops. Since our 

definition disallows multiple edges between the same vertices of an undirected graph, we 

have the following inequality for the number of edges |E| possible in an undirected graph with 

|V | vertices and no loops: 

0 ≤ |E| ≤ |V |(|V| − 1)/2. 

(We get the largest number of edges in a graph if there is an edge connecting each of its |V | 

vertices with all |V| − 1 other vertices. We have to divide product |V |(|V| − 1) by 2, however, 

because it includes every edge twice.) A graph with every pair of its vertices connected by an 

edge is called complete. A standard notation for the complete graph with |V | vertices is K|V |. 

A graph with relatively few possible edges missing is called dense; a graph with few edges 

relative to the number of its vertices is called sparse. Whether we are dealing with a dense or 

sparse graph may influence how we choose to represent the graph and, consequently, the 

running time of an algorithm being designed or used. 
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10.2 Representation of Graphs 

Graphs for computer algorithms are usually represented in one of two ways: the adjacency 

matrix and adjacency lists. The adjacency matrix of a graph with n vertices is an n × n 

boolean matrix with one row and one column for each of the graph’s vertices, in which the 

element in the ith row and the jth column is equal to 1 if there is an edge from the ith vertex 

to the jth vertex, and equal to 0 if there is no such edge. For example, the adjacency matrix 

for the 

graph of Figure 10.1a is given in Figure 10.2a. Note that the adjacency matrix of an 

undirected graph is always symmetric, i.e., A[i, j ]= A[j, i] for every 0 ≤ i, j ≤ n − 1 (why?). 

The adjacency lists of a graph or a digraph is a collection of linked lists, one for each vertex, 

that contain all the vertices adjacent to the list’s vertex (i.e., all the vertices connected to it by 

an edge). Usually, such lists start with a header identifying a vertex for which the list is 

compiled. For example, Figure 10.2b represents the graph in Figure 10.1a via its adjacency 

lists. To put it another way, adjacency lists indicate columns of the adjacency matrix that, for 

a given vertex, contain 1’s. 

If a graph is sparse, the adjacency list representation may use less space than the 

corresponding adjacency matrix despite the extra storage consumed by pointers of the linked 

lists; the situation is exactly opposite for dense graphs. In general, which of the two 

representations is more convenient depends on the nature of the problem, on the algorithm 

used for solving it, and, possibly, on the type of input graph (sparse or dense). 
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Figure 10.2: Adjacency matrix and adjacency list respectively for the graph in figure 10.1a 

Summary 

In this lesson, you have learnt 

1. A graph is a 2-tuple defined by a pair of two sets – vertices, V and edges E 

2. A graph could be directed or undirected based on the importance or unimportance of 

the ordering of its vertices pairs, it could also be complete, dense or sparse based on 

its connectedness. 

3. Graphs can be represented in computers either by an adjacency matrix or an 

adjacency list. 

Post-Test 

1. A graph contains 100 vertices and each vertex is connected to 99 vertices. How many edges 

are in the graph? 

2. Find out and mention three application areas of Graph theory. 

References 

1. Cormen T. H., Leiserson C. E., Rivest R. L. and Stein C. Introduction to Algorithms. 

3
rd

 Edition, MIT Press, 2009. 

2. Levitin A. Introduction to the Design and Analysis of Algorithms. 3
rd

 Edition, 

Pearson Education, 2012. 



 

Page 71 of 81 
 

3. Rosen, K. Discrete Mathematics and its Applications. 7
th

 Edition, McGraw-Hill, 

2012.  



 

Page 72 of 81 
 

Lesson 11: Cryptography 

Introduction 

 

Objectives 

At the end of this lesson, you should learn 

1. What cryptography is about 

2. About classical ciphers ad how to use them for encryption and decryption 

3. About cryptanalysis and how to perform it 

11.1 Introduction 

Number theory plays a key role in cryptography – the subject of transforming information so that it 

cannot be easily recovered without special knowledge. Number theory is the basis of many classical 

ciphers, first used thousands of years ago, and used extensively until the 20
th
 century. These ciphers 

encrypt messages by changing each letter to a different letter, or each block of letters to a different 

block of letters. We will discuss some classical ciphers, including shift ciphers, which replace each 

letter by the letter a fixed number of positions later in the alphabet, wrapping around to the beginning 

of the alphabet when necessary. The classical ciphers we will discuss are examples of private key 

ciphers where knowing how to encrypt allows someone to also decrypt messages. With a private key 

cipher, two parties who wish to communicate in secret must share a secret key. The classical ciphers 

we will discuss are also vulnerable to cryptanalysis, which seeks to recover encrypted information 

without access to the secret information used to encrypt the message. We will show how to 

cryptanalyze messages sent using shift ciphers. 

11.2 Classical Ciphers 

One of the earliest known uses of cryptography was by Julius Caesar. He made messages 

secret by shifting each letter three letters forward in the alphabet (sending the last three letters 

of the alphabet to the first three). For instance, using this scheme the letter B is sent to E and 
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the letter X is sent to A. This is an example of encryption, that is, the process of making a 

message secret. 

To express Caesar’s encryption process mathematically, first replace each letter by an 

element of Z26, that is, an integer from 0 to 25 equal to one less than its position in the 

alphabet. For example, replace A by 0, K by 10, and Z by 25. Caesar’s encryption method 

can be represented by the function f that assigns to the nonnegative integer p, p ≤ 25, the 

integer f (p) in the set {0, 1, 2, . . . , 25} with 

f (p) = (p + 3) mod 26. 

In the encrypted version of the message, the letter represented by p is replaced with the letter 

represented by (p + 3) mod 26. 

Example 11.1: What is the secret message produced from the message “MEET 

YOU IN THE PARK” using the Caesar cipher? 

Solution: First replace the letters in the message with numbers. This 

produces 

12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10. 

Now replace each of these numbers p by f (p) = (p + 3) mod 26. This gives 

15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13. 

Translating this back to letters produces the encrypted message  

“PHHW BRX LQ WKH SDUN.” 

To recover the original message from a secret message encrypted by the 

Caesar cipher, the 
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function f−1, the inverse of f, is used. Note that the function f−1 sends an 

integer p from 

Z26, to f−1(p) = (p − 3) mod 26. In other words, to find the original message, 

each letter is 

shifted back three letters in the alphabet, with the first three letters 

sent to the last three letters 

of the alphabet. The process of determining the original message from the 

encrypted message 

is called decryption. 

 

There are various ways to generalize the Caesar cipher. For example, 

instead of shifting the 

numerical equivalent of each letter by 3, we can shift the numerical 

equivalent of each letter by k, so that 

f (p) = (p + k) mod 26. 

Such a cipher is called a shift cipher. Note that decryption can be carried 

out using 

f−1(p) = (p − k) mod 26. 

Here the integer k is called a key. We illustrate the use of a shift cipher 

in the next two examples. 
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Example 11.2: Encrypt the plaintext message “STOP GLOBALWARMING” using the 

shift cipher with shift k = 11. 

Solution: To encrypt the message “STOP GLOBAL WARMING” we first translate 

each letter to the corresponding element of Z26. This produces the string 

18 19 14 15 6 11 14 1 0 11 22 0 17 12 8 13 6. 

We now apply the shift f (p) = (p + 11) mod 26 to each number in this string. 

We obtain 

3 4 25 0 17 22 25 12 11 22 7 11 2 23 19 24 17. 

Translating this last string back to letters, we obtain the ciphertext 

“DEZA RWZMLW HLCXTYR.” 

Example 11.3: Decrypt the ciphertext message “LEWLYPLUJL PZ H NYLHA 

ALHJOLY” that was encrypted with the shift cipher with shift k = 7. 

Solution: To decrypt the ciphertext “LEWLYPLUJL PZ H NYLHA ALHJOLY” we 

first 

translate the letters back to elements of Z26.We obtain 

11 4 22 11 24 15 11 20 9 11 15 25 7 13 24 11 7 0 0 11 7 9 14 11 24. 

Next, we shift each of these numbers by −k = −7 modulo 26 to obtain 

4 23 15 4 17 8 4 13 2 4 8 18 0 6 17 4 0 19 19 4 0 2 7 4 17. 

Finally, we translate these numbers back to letters to obtain the 

plaintext. We obtain 
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“EXPERIENCE IS A GREAT TEACHER.” 

 

We can generalize shift ciphers further to slightly enhance security by 

using a function of the form 

f (p) = (ap + b) mod 26, 

where a and b are integers, chosen so that f is a bijection. (The function f 

(p) = (ap + b) mod 26 is a bijection if and only if gcd(a, 26) = 1.) Such a 

mapping is called an affine transformation, and the resulting cipher is 

called an affine cipher. 

Example 11.4: What letter replaces the letter K when the function f (p) = (7p + 

3) mod 26 is used for encryption? 

Solution: First, note that 10 represents K. Then, using the encryption 

function specified, it follows that f (10) = (7 ・ 10 + 3) mod 26 = 21. Because 

21 represents V, K is replaced by V in the encrypted message. 

 

We will now show how to decrypt messages encrypted using an affine cipher. 

Suppose that c = (ap + b) mod 26 with gcd(a, 26) = 1. To decrypt we need to show 

how to express p in terms of c. To do this, we apply the encrypting 

congruence c ≡ ap + b (mod 26), and solve it for p. To do this, we first 

subtract b from both sides, to obtain c − b ≡ ap (mod 26). Because gcd(a, 26) = 
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1, we know that there is an inverse ā of a modulo 26. Multiplying both sides 

of the last equation by ā gives us ā(c − b) ≡ āap (mod 26). Because āa ≡ 1 (mod 

26), this tells us that p ≡ ā(c − b) (mod 26). This determines p because p 

belongs to Z26. 

11.3 Cryptanalysis 

The process of recovering plaintext from ciphertext without knowledge of 

both the encryption method and the key is known as cryptanalysis or breaking 

codes. In general, cryptanalysis is a difficult process, especially when 

the encryption method is unknown. We will not discuss cryptanalysis in 

general, but we will explain how to break messages that were encrypted 

using a shift cipher. 

If we know that a ciphertext message was produced by enciphering a message 

using a shift cipher, we can try to recover the message by shifting all 

characters of the ciphertext by each of the 26 possible shifts (including a 

shift of zero characters). One of these is guaranteed to be the plaintext. 

However, we can use a more intelligent approach, which we can build upon to 

cryptanalyze ciphertext resulting from other ciphers. The main tool for 

cryptanalyzing ciphertext encrypted using a shift cipher is the count of 

the frequency of letters in the ciphertext. The nine most common letters in 

English text and their approximate relative frequencies are E (13%,) T 

(9%), A (8%), O (8%), I (7%,) N (7%,) S (7%,) H (6%), and R (6%). To 

cryptanalyze ciphertext that we know was produced using a shift cipher, we 
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first find the relative frequencies of letters in the ciphertext. We list 

the most common letters in the ciphertext in frequency order; we 

hypothesize that the most common letter in the ciphertext is produced by 

encrypting E. Then, we determine the value of the shift under this 

hypothesis, say k. If the message produced by shifting the ciphertext by −k 

makes sense, we presume that our hypothesis is correct and that we have the 

correct value of k. If it does not make sense, we next consider the 

hypothesis that the most common letter in the ciphertext is produced by 

encrypting T, the second most common letter in English; we find k under 

this hypothesis, shift the letters of the message by −k, and see whether 

the resulting message makes sense. If it does not, we continue the process 

working our way through the letters from most common to least common.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

Example 11.5: Suppose that we intercepted the ciphertext message 

ZNK KGXRE HOXJ MKZY ZNK CUXS 

that we know was produced by a shift cipher. What was the original 

plaintext message? 

Solution: Because we know that the intercepted ciphertext message was 

encrypted using a shift cipher, we begin by calculating the frequency of 

letters in the ciphertext. We find that the most common letter in the 

ciphertext is K. So, we hypothesize that the shift cipher sent the 

plaintext letter E to the ciphertext letter K. If this hypothesis is 
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correct, we know that 10 = 4 + k mod 26, so k = 6. Next, we shift the letters 

of the message by −6, obtaining 

THE EARLY BIRD GETS THE WORM. 

Because this message makes sense, we assume that the hypothesis that k = 6 

is correct. 

Summary 

In this lesson, you learnt that 

1. Cryptography deals with transforming information so that it cannot be easily recovered 

without special knowledge 

2. Caesar’s cipher shifts each alphabet forward by 3 positions 

3. Shift ciphers shifts alphabets forward by k positions; more specifically each alphabet 

can be encrypted and decrypted with the functions 

f(p) = (p + k) mod 26 and f
-1

(p) = (p - k) mod 26 respectively. 

4. The process of recovering plaintext from ciphertext without knowledge 

of both the encryption method and the key is known as cryptanalysis or 

breaking codes 

Post-Test 

1. Encrypt the message DO NOT PASS GO by translating the letters into 

numbers, applying the given encryption function, and then translating 

the numbers back into letters. 

a. f (p) = (p + 3) mod 26 (the Caesar cipher) 
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b. f (p) = (p + 13) mod 26 

c. f (p) = (3p + 7) mod 26 

2. Suppose the ciphertext ERC WYJJMGMIRXPC EHZERGIH XIGLRSPSKC MW 

MRHMWXMRKYMWLEFPI JVSQ QEKMG was produced by encrypting a plaintext 

message using a shift cipher. What is the original plaintext? 
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Lesson 12: Revision 


