
COURSE MANUAL

Introduction to Web

Programming
CSC 293

University of Ibadan Distance Learning Centre

Open and Distance Learning Course Series Development

Version 1.0 v1

Copyright © 2016 by Distance Learning Centre, University of Ibadan, Ibadan.

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise, without the prior permission of the copyright

owner.

ISBN: 978-021-723-1

General Editor: Prof. Bayo Okunade

University of Ibadan Distance Learning Centre

University of Ibadan,
Nigeria

Telex: 31128NG

Tel: +234 (80775935727)
E-mail: ssu@dlc.ui.edu.ng

Website: www.dlc.ui.edu.ng

Vice-Chancellor’s Message

The Distance Learning Centre is building on a solid tradition of over two decades of

service in the provision of External Studies Programme and now Distance Learning

Education in Nigeria and beyond. The Distance Learning mode to which we are

committed is providing access to many deserving Nigerians in having access to higher

education especially those who by the nature of their engagement do not have the

luxury of full time education. Recently, it is contributing in no small measure to

providing places for teeming Nigerian youths who for one reason or the other could

not get admission into the conventional universities.

These course materials have been written by writers specially trained in ODL course

delivery. The writers have made great efforts to provide up to date information,

knowledge and skills in the different disciplines and ensure that the materials are user-

friendly.

In addition to provision of course materials in print and e-format, a lot of Information

Technology input has also gone into the deployment of course materials. Most of them

can be downloaded from the DLC website and are available in audio format which you

can also download into your mobile phones, IPod, MP3 among other devices to allow

you listen to the audio study sessions. Some of the study session materials have been

scripted and are being broadcast on the university’s Diamond Radio FM 101.1, while

others have been delivered and captured in audio-visual format in a classroom

environment for use by our students. Detailed information on availability and access is

available on the website. We will continue in our efforts to provide and review course

materials for our courses.

However, for you to take advantage of these formats, you will need to improve on

your I.T. skills and develop requisite distance learning Culture. It is well known that,

for efficient and effective provision of Distance learning education, availability of

appropriate and relevant course materials is a sine qua non. So also, is the availability

of multiple plat form for the convenience of our students. It is in fulfilment of this, that

series of course materials are being written to enable our students study at their own

pace and convenience.

It is our hope that you will put these course materials to the best use.

Prof. Abel Idowu Olayinka

Vice-Chancellor

Foreword

As part of its vision of providing education for “Liberty and Development” for

Nigerians and the International Community, the University of Ibadan, Distance

Learning Centre has recently embarked on a vigorous repositioning agenda which

aimed at embracing a holistic and all encompassing approach to the delivery of its

Open Distance Learning (ODL) programmes. Thus we are committed to global best

practices in distance learning provision. Apart from providing an efficient

administrative and academic support for our students, we are committed to providing

educational resource materials for the use of our students. We are convinced that,

without an up-to-date, learner-friendly and distance learning compliant course

materials, there cannot be any basis to lay claim to being a provider of distance

learning education. Indeed, availability of appropriate course materials in multiple

formats is the hub of any distance learning provision worldwide.

In view of the above, we are vigorously pursuing as a matter of priority, the provision

of credible, learner-friendly and interactive course materials for all our courses. We

commissioned the authoring of, and review of course materials to teams of experts and

their outputs were subjected to rigorous peer review to ensure standard. The approach

not only emphasizes cognitive knowledge, but also skills and humane values which are

at the core of education, even in an ICT age.

The development of the materials which is on-going also had input from experienced

editors and illustrators who have ensured that they are accurate, current and learner-

friendly. They are specially written with distance learners in mind. This is very

important because, distance learning involves non-residential students who can often

feel isolated from the community of learners.

It is important to note that, for a distance learner to excel there is the need to source

and read relevant materials apart from this course material. Therefore, adequate

supplementary reading materials as well as other information sources are suggested in

the course materials.

Apart from the responsibility for you to read this course material with others, you are

also advised to seek assistance from your course facilitators especially academic

advisors during your study even before the interactive session which is by design for

revision. Your academic advisors will assist you using convenient technology

including Google Hang Out, You Tube, Talk Fusion, etc. but you have to take

advantage of these. It is also going to be of immense advantage if you complete

assignments as at when due so as to have necessary feedbacks as a guide.

The implication of the above is that, a distance learner has a responsibility to develop

requisite distance learning culture which includes diligent and disciplined self-study,

seeking available administrative and academic support and acquisition of basic

information technology skills. This is why you are encouraged to develop your

computer skills by availing yourself the opportunity of training that the Centre’s

provide and put these into use.

In conclusion, it is envisaged that the course materials would also be useful for the regular students of

tertiary institutions in Nigeria who are faced with a dearth of high quality textbooks. We are therefore,

delighted to present these titles to both our distance learning students and the university’s regular

students. We are confident that the materials will be an invaluable resource to all.

We would like to thank all our authors, reviewers and production staff for the high

quality of work.

Best wishes.

Professor Bayo Okunade

Course Development Team
Content Authoring Yetunde Folajimi

Content Editor

Production Editor

Learning Design/Assessment Authoring

Managing Editor

General Editor

Prof. Remi Raji-Oyelade

Ogundele Olumuyiwa Caleb

Folajimi Olambo Fakoya

Ogunmefun Oladele Abiodun

Prof. Bayo Okunade

Contents

About this course manual 8

How this course manual is structured .. 8

Getting around this course manual 10

Margin icons .. 10

Study Session 1 11

Understanding the World Wide Web ... 11
Introduction ... 11
Terminology ... 11
1.1 Web Browsers.. 12
1.2 Web Usability ... 12

1.2.1 Designing Web Pages ... 12
1.3 Web site Organization .. 13

1.3.1 File Naming Conventions ... 13
1.4 Site Structure .. 13
1.5 Web Editors .. 14

1.5.1 Adobe Dreamweaver ... 14
1.5.2 Notepad++ .. 14
1.5.3 Bluefish .. 14

1.6 Evaluating Your Web site .. 14
1.6.1 Designing Your Page to Maximize Rankings .. 15

1.7 Moving Your Files to a Web Server ... 16
1.7.1 Uniform Resource Identifiers (URIs) .. 16

1.8 What a URL Is Made Up of .. 16
1.8.1 The Scheme .. 17
1.8.2 The Host Address .. 17
1.8.3 The File path .. 18
1.8.4 Other Parts of the URL ... 18

1.8.4.1 Ports ... 18
1.8.4.2 Fragment Identifiers ... 19

1.9 Absolute and Relative URLs ... 19
1.9.1 Different Types of Relative URLs .. 20

1.9.1.1 Same Directory .. 20
1.9.1.2 Subdirectory ... 20
1.9.1.3 Parent Directory ... 21
1.9.1.4 From the Root .. 21
1.9.1.5 Default Files .. 21

1.10 The Hypertext Transfer Protocol .. 21

Contents ii

Study Session Summary ... 22
Assessment .. 22

Study Session 2 24

Web Programming ... 24
Expected duration: 1 week or 2 contact hour .. 24

Introduction ... 24
Terminology ... 24
2.1 Web Programming ... 25
2.2 Client-side Versus Server-side Scripting .. 25

2.2.1 Client Side Scripting ... 26
2.2.2 Client-side Environment .. 26
2.2.3 Server side Scripting .. 27
2.2.3 Server-side Environment ... 27

2.3 Deployment and platform... 28
2.4 State and secondary effects .. 28

Study Session Summary ... 28
Assessment .. 29

Study Session 3 29

Web Application .. 29
Introduction ... 29
Terminology ... 30
3.1 Web Applications ... 30
3.2 Websites ... 31

3.2.1 Social Network Sites ... 31
3.2.2 Collaborative Web Applications .. 31
3.2.3 E-Commerce Sites.. 31

3.3 Web Services .. 31
3.3.1 XML-RPC .. 32
3.3.2 SOAP, WSDL and WS-*... 32

Study Session Summary ... 33
Assessment .. 33

Study Session 4 34

Beginning Web Programming with HTML and XHTML ... 34
Introduction ... 34
Terminology ... 34
4.1 A Web of Structured Documents ... 35
4.2 HTML and XHTML .. 35

A very simple web page .. 36
4.3 Tags and Elements ... 37

4.3.1 Tags ... 37
4.3.2 Elements: Parent and Child ... 38

4.4 Parts of a Web Page ... 38
4.5 Attributes ... 38

4.5.1 Attribute Groups .. 39
4.6 More on Elements .. 39

4.7 Comments .. 47
Study Session Summary ... 48
Assessment .. 49

Study Session 5 50

Advance HTML (Links, Images, Tables and Forms) ... 50
Introduction ... 50
Terminology ... 50
5.1 Creating Links with the <a> Element ... 51

5.1.1 Creating a Source Anchor with the href Attribute ... 51
5.1.2 Advanced E-mail Links .. 53

5.2 Images and Objects .. 54
Types of Image Formats ... 54

5.2.1 Bitmap Images .. 54
5.2.1.1 Bitmap graphics formats ... 55
Keeping File Sizes Small ... 55

5.2.2 Vector Images .. 56
Adding Other Objects with the <object> Element ... 56

5.3 Using Images as Links .. 57
5.3.1 Image Maps .. 57

5.3.1.1 Server-Side Image Maps .. 57
5.3.2 Client-Side Image Maps ... 58

5.4 Tables .. 58
5.4.1 Basic Table Elements and Attributes .. 60

5.4.1.1 The <table> Element ... 60
5.4.1.2 The dir Attribute ... 61
5.4.1.3 The frame Attribute (deprecated) .. 61
5.4.1.4 The summary Attribute ... 61
5.4.1.5 The width Attribute (deprecated) .. 61
5.4.1.6 The <tr> Element Contains Table Rows ... 61
5.4.1.7. The axis Attribute .. 61
5.4.1.8 The bgcolor Attribute (deprecated) ... 62
5.4.1.9 The char Attribute .. 62
5.4.1.10 The charoff Attribute ... 62
5.4.1.11 The colspan Attribute .. 62
5.4.1.12 The headers Attribute ... 62
5.4.1.13 The height Attribute (deprecated) ... 62
5.4.1.14 The nowrap Attribute (deprecated) .. 62
5.4.1.15 The rowspan Attribute .. 63
5.4.1.16 The scope Attribute .. 63

5.5 Forms ... 63
5.5.1 The action Attribute ... 64
5.5.2 The method Attribute .. 64

5.6 Form Controls .. 66
5.6.1 Text Inputs ... 67
5.6.2 Buttons ... 67
5.6.3 Checkboxes ... 67
5.6.4 Radio Buttons .. 68
5.6.4 Select Boxes ... 68

Contents iv

Study Session Summary ... 69
Assessment .. 70

Study Session 6 70

Cascading Style Sheet (CSS) .. 70
Introduction ... 71
Terminology ... 71
6.1 Origin of CSS ... 71
6.2 Where Can You Add CSS Rules ... 73

6.2.1 Advantages of External CSS Style Sheets ... 74
6.2.2 Inheritance ... 75
6.3 Some CSS Properties .. 75
6.3.1 Basic Example ... 76

Study Session Summary ... 80
Assessment .. 81

Study Session 7 82

Web Programming in JavaScript (Client side) .. 82
Introduction ... 82
Terminology ... 82
7.1 JavaScript ... 83
7.2 Comments in JavaScript ... 84

7.2.1 The <noscript> Element ... 85
7.2.2 Data types ... 85

7.3 Variables... 85
7.3.1 Assigning a Value to a Variable .. 86
7.3.2 Lifetime of a Variable ... 86

7.4 Operators ... 87
7.4.1 Arithmetic Operators ... 87
7.4.2 Assignment Operators ... 87
7.4.3 Comparison Operators .. 88
7.4.3 Logical or Boolean Operators ... 88
7.4.4 String Operator ... 89

7.5 Keywords ... 89
7.6 Function and Function Call .. 90

7.6.1 The Return Statement ... 91
7.7 Practical Tips for Writing Scripts .. 91

7.7.1 Online Script .. 91
7.7.2 Reusable Functions ... 92
7.7.3 Using External JavaScript Files .. 92
7.7.4 Place Scripts in a Scripts Folder .. 92

7.8 Form Validation .. 92
7.8.1 Checking Text Fields .. 93
7.8.2 Required Text Fields .. 96
7.8.3 Preventing a Form Submission Until a Checkbox Has Been Selected 98
7.8.4 Testing Characters Using Test and Regular Expressions 99

7.9 When Not To Use JavaScript ... 100
7.9.1 Drop-Down Navigation Menus ... 100
7.9.2 Hiding Your E-mail Address ... 100

7.9.3 Quick Jump Select Boxes ... 101
7.9.4 Anything the User Requires from Your Site .. 101

Study Session Summary .. 101
Assessment ... 102

Study Session 8 103

Web Programming in PHP (Server side) ... 103
Introduction .. 103
Terminology .. 103
8.1 PHP: Hypertext Preprocessor .. 104
8.2 Escape to PHP ... 104
8.3 Commenting PHP Code ... 105
8.4 PHP is whitespace insensitive.. 106
8.5 PHP is case sensitive .. 107
8.6 Statements are Expressions Terminated by Semicolons ... 107
8.7 Variables.. 108
8.8 Data types ... 108
8.9 Constant... 109
8.10 Operator Types .. 110
8.11 Operators Categories .. 114

8.11.1 Precedence of PHP Operators .. 114
8.12 PHP Code .. 115
8.13 Functions .. 116
8.14 PHP with Forms... 116
8.15 POST and GET... 118
8.16 PHP with E-MAIL .. 119
8.17 Error Reporting ... 121

Study Session Summary .. 121
Assessment ... 122

Study Session 9 123

Concurrency Programming for the Web .. 123
Introduction .. 123
Terminology .. 123
9.1 Concurrency .. 124
9.2 Reduce Latency .. 125

9.2.1 Hide latency .. 125
9.2.2 Increase throughput .. 125

9.3 Multithreading .. 126
9.3.1 Method 1: Thread creation by implementing Runnable Interface 126
9.3.2 Method 2: Thread creation by extending Thread class .. 127

Study Session Summary .. 127
Assessment ... 128

Study Session 10 129

Website Maintenance ... 129
Expected duration: 1 week or 2 contact hour ... 129

Introduction .. 129
Terminology .. 129

Contents vi

10.1 Website Maintenance Team ... 129
10.2 Website Scale .. 130
10.3 Website Size .. 130
10.4 Website Complexity ... 131

10.4.1 Basic Website... 131
10.4.2 Dynamic Website ... 131
10.4.3 Transactional Website ... 131

10.5 Website Activity .. 131
10.6 Regular Website Maintenance Tasks ... 131

10.6.1 Backing up Website .. 132
10.6.2 Monitor Website Outages ... 132
10.6.3 Check Domain Registration Information ... 132
10.6.4 Test Website Speed ... 132
10.6.5 Link Check ... 132
10.6.6 Software Updates ... 132
10.6.7 Analyze Stats .. 133
10.6.8 Traffic Stats ... 133
10.6.9 Reputation Management .. 133

10.7 Development Server or Live Server .. 133
Study Session Summary .. 134
Assessment ... 134

References 135

8

Contents 8

About this course manual

Introduction to Web Programming CSC 293 has been produced by

University of Ibadan Distance Learning Centre. All course manuals

produced by University of Ibadan Distance Learning Centreare structured

in the same way, as outlined below.

How this course manual is

structured

The course overview
The course overview gives you a general introduction to the course.

Information contained in the course overview will help you determine:

 If the course is suitable for you.

 What you will already need to know.

 What you can expect from the course.

 How much time you will need to invest to complete the course.

The overview also provides guidance on:

 Study skills.

 Where to get help.

 Course assignments and assessments.

 Margin icons.

We strongly recommend that you read the overview carefully before

starting your study.

The course content
The course is broken down into Study Sessions. Each Study Session

comprises:

 An introduction to the Study Session content.

 Study Session outcomes.

 Core content of the Study Session with a variety of learning activities.

 A Study Session summary.

 Assignments and/or assessments, as applicable.

 Bibliography

Your comments
After completing Introduction to Web Programming we would appreciate

it if you would take a few moments to give us your feedback on any

aspect of this course. Your feedback might include comments on:

 Course content and structure.

 Course reading materials and resources.

 Course assignments.

 Course assessments.

 Course duration.

 Course support (assigned tutors, technical help, etc.)

Your constructive feedback will help us to improve and enhance this

course.

10

Contents 10

Getting around this course manual

Margin icons

While working through this course manual you will notice the frequent

use of margin icons. These icons serve to “signpost” a particular piece of

text, a new task or change in activity; they have been included to help you

to find your way around this course manual.

A complete icon set is shown below. We suggest that you familiarize

yourself with the icons and their meaning before starting your study.

Activity Assessment Assignment Case study

Discussion Group Activity Help Outcomes

Note Reflection Reading Study skills

Summary Terminology Time Tip

Study Session 1

Understanding the World Wide Web
Expected duration: 1 week or 2 contact hour

Introduction
The Internet is a collection of computers around the world connected to

each other via a high speed series of networks. The World Wide Web –

or Web – consists of a vast assortment of files and documents that are

stored on these computers and written in some form of HyperText

Markup Language (HTML) that tells browsers how to display the

information. The computers that store the files are called servers because

they can serve requests from many users at the same time. Users access

these HTML files and documents via applications called browsers. In this

study session we will discuss the web publishing process and also learn

how to evaluate a website.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

1.1 explain the Web publishing process.

1.2 organize a sample Web site.

1.3 learn how to evaluate a Web site.

Terminology

Web browser A web browser (commonly referred to as a browser) is a
software application for retrieving, presenting, and
traversing information resources on the World Wide Web.

Web Pages A hypertext document connected to the World Wide Web.

URI Uniform Resource Identifier (URI) is a string of characters
used to identify a resource. Such identification enables
interaction with representations of the resource over a
network, typically the World Wide Web, using specific
protocols.

HTML Hypertext Markup Language, a standardized system for
tagging text files to achieve font, colour, graphic, and

12

Contents 12

hyperlink effects on World Wide Web pages.

Server A computer or computer program which manages access
to a centralized resource or service in a network.

1.1 Web Browsers
Web browser

A web browser (commonly

referred to as a browser) is

a software application for

retrieving, presenting, and

traversing information

resources on the World

Wide Web.

Web Pages

hypertext document

connected to the World

Wide Web.

HTML

HyperText Markup

Language

URI

Uniform Resource Identifier

(URI) is a string of

characters used to identify

a resource. Such

identification enables

interaction with

representations of the

resource over a network,

typically the World Wide

Web, using specific

protocols.

A Web browser is a program that displays Web pages and other

documents on the Web. Unfortunately, different browsers may interpret

the HTML of Web pages somewhat differently, and thus, when you

create Web pages remember that they may appear different when viewed

in various browsers. When a Web page is opened in a browser, the

browser reads and interprets the HTML file and formats the Web page for

display. If there are references to external files, such as images or

multimedia, these files are downloaded from the server and displayed in

the browser window. It is important to note that HTML files are text files

that only contain references to the external files – you do not “embed”

these files into the Web page.

Figure 1.1: Loading of a web page.

1.2 Web Usability
Web site

A location connected to the

Internet that maintains one

or more web pages.

For a Web site to be usable, it must be convenient and practical for its

intended audience. The content, images, navigation, and placement of

these elements need to match what the visitor is expecting. Visitors can

easily become frustrated and quickly go to another Web site.

1.2.1 Designing Web Pages

We really don’t read Web pages – we scan them. When was the last time

you read everything on a Web page? Most visitors scan a Web page,

looking for specific words or phrases. When they find an item that

matches, they try to click that object to get more information. If it isn’t

what they want, the visitors simply click the back button and look for

something else. The concept of scanning Web pages is similar to how we

“read” a newspaper – quickly scanning titles, reading a few lines here and

there.

Here are five important things you can do to make sure your visitors see

and understand as much as possible about your Web pages:

1. Create a clear visual hierarchy on each page.

2. Take advantage of conventions.

3. Break pages up into clearly defined areas.

4. Make it obvious what’s clickable.

5. Minimize noise.

1.3 Web site Organization

1.3.1 File Naming Conventions

When creating a Web site (or a Web page), there are a few rules for

creating filenames. These rules not only apply to HTML files, but to any

file or document that is part of your Web site.

1. Use lower-case letters in your file names. You may use upper-

case letters, but do so sparingly. Uploading files with capitals

into WebCT can create problems. Some older browsers do not

locate files that are not exactly specified.

2. Only use numbers and letters in your file names. File names

must begin with a letter (not a number). Special characters,

except those noted below, should not be used – including #, &

and comma. Do not use any spaces within a filename.

3. Representing spaces within a filename: You may use the

underscore (‘_’) character or the dash (‘‘) character to represent a

space in a filename.

4. File extensions: Use .htm or .html as the file extension when you

name your HTML files. Be consistent with the convention you

use.

1.4 Site Structure
Every Web site that you build or inherit should have a consistent and

simple organization – called a site structure. A site is a collection of

HTML files, documents and images contained in a single master folder

(the root folder). Within this root folder you can save your documents

and subfolders organized in a manner that makes sense to you, as well as

to others in your department that may need to edit the information.

We recommend that the structure of your Web site include:

1. A root folder that contains the Web site.

2. A Web page entitled index.htm (or index.html) that resides

within the root folder to represent the default homepage for the

Web site.

3. An images folder that contains the graphics, illustrations, images

and photographs used in your Web pages.

14

Contents 14

4. Additional folders for organizing your content.

1.5 Web Editors
Web Editors

Web page editors are used

to write HTML code directly.

Web editors are software programs that allow you to create and edit Web

pages in a visual editor or by using a built-in HTML editor. The visual

editor allows you to edit and create Web pages without knowing HTML.

Some examples are:

1.5.1 Adobe Dreamweaver

Dreamweaver is a popular Web editor and is the editor of choice for

many novice and professional Web designers. It is available for free

from your college or department Information Technology Consultant, for

University-owned computers only.

1.5.2 Notepad++

This is an amazingly powerful source code editor with a vast number of

features. Syntax highlighting makes it immediately easier to read and

understand your code, for instance. Code folding allows you to collapse

some areas while you focus on others. Auto-completion helps you enter

code more quickly (and accurately). There's also a powerful search tool,

easy document navigation, bookmarking, macro support, and more, all of

which is presented in a highly configurable, easy-to-use interface. Go

grab a copy immediately.

1.5.3 Bluefish

This is a programmer's editor which also includes plenty of web-related

tools and options. This starts with the usual editing tricks: syntax

highlighting (ASP.NET, CSS, HTML, JavaScript, PHP and more are

supported), code folding, powerful find and search and replace tools,

auto-completion, and more.

1.6 Evaluating Your Web site
This sounds easy, but even many veteran Web designers forget to

properly evaluate their Web sites. You can have a colleague or friend

help with the evaluation process. Determining which criteria to use in

your evaluation can be a cumbersome task. Fortunately, there are many

free sites on the Web that contain a list of criteria on which to review

your Web site. Don’t forget to evaluate the sites you link to from your

Web pages. Here are a couple of excellent resources that can assist you

in evaluating your Web site:

 Checklist for rating Web sites -

http://www.cyberbee.com/design.pdf

http://www.cyberbee.com/design.pdf

 Criteria for evaluating Web pages (good for reviewing resources

linked from your Web pages)

http://www.library.cornell.edu/olinuris/ref/webcrit.html

1.6.1 Designing Your Page to Maximize

Rankings

Search engines that use programs to automatically index sites are using

increasingly sophisticated rules to determine who gets the highest ranking

(top) results in a web page. Following are some points to consider when

designing your pages to help ensure that your site gets the highest ranking

it can:

 The titles of your pages are among the most important words in

your site and are one of the most important things indexed. So

avoid using titles that just contain words such as “Home Page”

and instead go for descriptive titles such as “Wrox Press —

Computer Programming Book Publishers.”

 Then on specific pages the title could change to something like

“XHTML Programming Books, learn to code and build web

sites.” If the words the user types into the search engine are found

in your title, the engine will consider your site more relevant. But

don’t make the title longer than one sentence or the program will

realize you are trying to fool it and count this against you.

 Most search engines look through the text content of a page and

will index that, too. The first words tend to be considered the

most relevant. So you should try to strategically place the

keywords for your site in the text near the start of the page as

well as in the title. You can also expand on that list of keywords

here.

 If the keywords a user searches on appear in the page with more

frequency than other words, then they are considered to be more

relevant. However, do not make them appear too frequently —

again, the search engine will count this against you.

 If your site uses images instead of text, the site can index only

your alt text; so try to make sure any information conveyed with

images is also conveyed in text.

 If you try to fool the search engines by repeating keywords in

text that is the same colour as the background (so that the

repetitive text is invisible to your users), then the search engines

can penalize you for this.

 Using keywords that are not related to the subject matter or the

content of the site can count against you.

 The more sites that link to yours the better. Some search engines

will give you higher priority if you are linked to by lots of other

sites. But note that they will also consider which site is linking to

you. The site should be relevant to your business —a search

engine would not consider a used car dealers linking to a pet shop

as being a relevant link.

 The more users who click on links to your site when it comes up

in the search engine, the better your rating should be. While

things such as the title, keywords in the text, <meta> tags, and

http://www.library.cornell.edu/olinuris/ref/webcrit.html

16

Contents 16

the number of links may help you appear nearer the top of the

search engines, if nobody clicks on the links to visit your site,

your ranking will soon fall.

It can take a long time to build up your search engine rankings, but

constant attention will help you get better and better.

1.7 Moving Your Files to a Web Server
In order for your audience to see the Web pages you create or edit, you

need to copy your completed HTML files, documents and images to a

Web server account – such as your faculty Web account or a

departmental Web account.

1.7.1 Uniform Resource Identifiers (URIs)

URIs, are strings that are used to reference resources. In terms of

distributed systems, a URI has three distinct roles—naming, addressing,

and identifying resources. We will focus on URIs identifying resources in

the WWW, although they can be used for other abstract or physical

entities as well. According to the specification, a URI consists of five

parts: scheme, authority, path, query and fragment. However, only

scheme and path are mandatory, the other parts are optional. Scheme is

declaring the type of the URI and thus determines the meaning of the

other parts of the URI. If used, authority points to the responsible

authority of the referenced resource. In case of http as scheme, this part

becomes mandatory and contains the host of the web server hosting the

resource. It can optionally contain a port number (80 is implied for http)

and authentication data (deprecated). The mandatory path section is used

to address the resource within the scope of the scheme (and authority). It

is often structured hierarchically. The optional query part provides non-

hierarchical data as part of the resource identifier. Fragments can be used

to point to a certain part within the resource.

Figure 1.2: Sample URI

It identifies a web resource (scheme is http), that is hosted on the

example.com (on port 8080). The resource path is /over/there and the

query component contains the key/value pair search test. Furthermore, the

first fragment of the resource is referenced.

1.8 What a URL Is Made Up of
URL

URL is an acronym for

Uniform Resource Locator

A URL is made up of several parts, each of which offers information to

the web browser to help find the page you are after. It is easier to learn

the parts of a URL if you look at the most common ones first. If you

and is a reference (an

address) to a resource on

the Internet.

Scheme

The scheme consists of a

sequence of characters

beginning with a letter and

followed by any

combination of letters,

digits, plus (+), period (.),

or hyphen (-).

Host Address

look at the example URL in Figure 1.3, there are three key parts: the

scheme, the host address, and the file path. The following sections discuss

each of these in turn.

http://www.google.com/index.html

Figure 1.3: Sample URL

1.8.1 The Scheme

The scheme identifies the type of URL you are linking to and therefore

how the resource should be retrieved. For example, most web pages use

something called the Hypertext Transfer Protocol (HTTP) to pass

information to you, which is why most web pages start with http://, but

you might have noticed other prefixes when doing banking online or

downloading large files.

The following table lists the most common schemes.

Figure 1.4: List of Schemes

1.8.2 The Host Address

The host address is the address where a web site can be found. It can

either be an IP address (four sets of numbers between 0 and 255, for

example, 192.0.110.255) or more commonly the domain name for a site

such as www.wrox.com.

All computers connected to the Internet can be found using an IP address;

however, domain names are far easier to remember than IP addresses, so

domain names are more commonly used. However, behind the scenes, all

domain names are converted into the IP address for the computer(s) that

hold the web site by consulting a domain name server (DNS), which

Host address

File Path Scheme

http://www.google.com/index.html

18

Contents 18

contains a directory of domain names and the IP address of the computer

that runs that web site.

Note that “www” is not actually part of the domain name although it is

often used in the host address — it has nothing to do with the HTTP

protocol used.

1.8.3 The File path

The filepath always begins with a forward slash character, and may

consist of one or more directory names (remember, a directory is just

another name for a folder on the web server); each directory name is

separated by forward slash characters and the filepath may end with a

filename at the end. Here, Overview.html is the filename:

/books/newReleases/BeginningWebDevelopment/Overview.html

If a filename is not given, the web server will usually do one of three

things (depending upon how it is configured):

 Return a default file (for web sites written in HTML this is often

index.html or default.html)
 Offer a list of files in that directory

 Show a message saying that the page cannot be found or that you

cannot browse the files in a folder

1.8.4 Other Parts of the URL

A URL may, less commonly, contain a number of other parts.

Credentials are a way of specifying a username and password for a

password-protected part of a site.

The credentials come before the host address, and are separated from the

host address by an @ sign.

Note how the username is separated from the password by a colon. The

following URL shows the username administrator and the password

letmein:

http://administrator:letmein@www.wrox.com/administration/index.html

1.8.4.1 Ports

Ports are like the doors to a web server. A web server often has several

server programs running on the same machine, and each program

communicates using a different port. For example, http:// and https:// by

default use different ports (standard http:// usually uses port 80 and

https:// usually uses port 443).

You will rarely have to specify a port, but if you do, it comes after the

domain name and is separated from it with a colon. For example, if you

wanted to specify that a web server was running on port 8080 you could

use the following address:

http://www.wrox.com:8080/index.html

http://administrator:letmein@www.wrox.com/administration/index.html

1.8.4.2 Fragment Identifiers

Fragment identifiers can be used after a filename to indicate a specific

part of the page that a browser should go to immediately. These are often

used in long pages when you want to allow a user to get to a specific part

of a page easily without having to scroll through the whole page to find

that point.

The fragment identifier is separated from the filename by a pound or hash

sign:

http://www.wrox.com/newTitles/index.html#HTML

1.9 Absolute and Relative URLs

As you have already seen, a URL is used to locate a resource on the

Internet. Each web page and image —in fact every file on the Internet —

has a unique URL, the address that can be used to find that particular file.

No two files on the Internet share the same URL.

If you want to access a particular page of a web site, you type the URL

for that page into the address bar in your browser. For example, to get the

page about film on the fictional news site you met earlier in the chapter,

you might type in the URL:

http://www.exampleNewsSite.com/Entertainment/Film/index.html

An absolute URL like this one contains everything you need to uniquely

identify a particular file on the Internet.

As you can see, absolute URLs can quickly get quite long, and every

page of a web site can contain many links. So it’s about time you learned

the shorthand for URLs that point to files within your web site: relative

URLs.

A relative URL indicates where the resource is in relation to the current

page. For example, imagine you are looking at the index page for the

entertainment section of the following fictional news site:

http://www.exampleNewsSite.com/Entertainment/index.html

Then you want to add a link to the index pages for each of the

subsections: Film, TV, Arts, and Music.

Rather than including the full URL for each page, you can use a relative

URL. For example:

Film/index.html

TV/index.html

Arts/index.html

Music/index.html

As I am sure you agree, this is a lot quicker than having to write out the

following:

http://www.exampleNewsSite.com/Entertainment/Film/index.html

http://www.exampleNewsSite.com/Entertainment/TV/index.html

http://www.wrox.com/newTitles/index.html#HTML
http://www.examplenewssite.com/Entertainment/Film/index.html
http://www.examplenewssite.com/Entertainment/index.html

20

Contents 20

http://www.exampleNewsSite.com/Entertainment/Arts/index.html

http://www.exampleNewsSite.com/Entertainment/Music/index.htm

l

Another key benefit to using relative URLs within your site is that it

means you can change your domain name or copy a subsection of one site

to a new site without having to change all of the links because each link is

relative to other pages within the same site.

Note that relative URLs work only on links within the same directory

structure on the same web site; you cannot use them to link to pages on

other servers.

1.9.1 Different Types of Relative URLs

1.9.1.1 Same Directory

When you want to link to or include a resource from the same directory,

you can just use the name of that file. For example, to link from the home

page (index.html) to the “contact us” page (contactUs.html), you can use

the following: contactUs.html

Because the file lives in the same folder, you do not need to specify

anything else.

1.9.1.2 Subdirectory

The Film, TV, Arts, and Music directories from Figure 2-4 were all

subdirectories of the Entertainment directory. If you are writing a page in

the Entertainment directory, you can create a link to the index page of the

subdirectories like so:

Film/index.html

TV/index.html

Arts/index.html

Music/index.html

You include the name of the subdirectory, followed by a forward slash

character, and the name of the page you want to link to.

For each additional subdirectory, you just add the name of the directory

followed by a forward slash character. So, if you are creating a link from

a page in the root folder of the site (such as the site’s main home page),

you use a relative URL like these to reach the same pages:

Entertainment/Film/index.html

Entertainment/TV/index.html

Entertainment/Arts/index.html

Entertainment/Music/index.html

1.9.1.3 Parent Directory

If you want to create a link from one directory to its parent directory (the

directory that it is in), you use the ../ notation of two periods or dots

followed by a forward slash character. For example, from a page in the

Music directory to a page in the Entertainment directory, your relative

URL looks like this:

../index.html

If you want to link from the Music directory to the root directory, you

repeat the notation:

../../index.html

Each time you repeat the ../ notation, you go up another directory.

1.9.1.4 From the Root

It is also possible to indicate a file relative to the root folder of the site.

So, if you wanted to link to the contactUs.html page from any page

within the site, you use its path preceded by a forward slash. For

example, if the Contact Us page is in the root folder, you just need to

enter:

/contactUs.html

Alternatively, you can link to the Music section’s index page from

anywhere within that site using the following:

/Entertainment/Music/index.html

The forward slash at the start indicates the root directory, and then the

path from there is specified.

1.9.1.5 Default Files

You may have noticed on many web sites that you do not need to actually

specify the exact page that you want to view. For example, you might just

enter the domain name or the domain name and a directory, such as:

or

http://www.exampleNewsSite.com/

http://www.exampleNewsSite.com/Entertainment/

1.10 The Hypertext Transfer Protocol
HTTP

Set of rules for transferring

files (text, graphic images,

sound, video, and other

multimedia files) on the

World Wide Web.

The Hypertext Transfer Protocol (HTTP) is an application-level

protocol that represents the foundation of communication for the WWW

on top of TCP/IP. HTTP, is a stateless protocol and complies with a

client/server architecture and a request/response communication model.

Servers host resources that are identified by URIs and can be accessed by

clients. The client issues an HTTP request to the server which in return

provides an HTTP response. The communication model limits the

possible message patterns to single request/response cycles that are

always initiated by the client. Apart from clients and servers, HTTP also

describes optional intermediaries, so called proxies. These components

22

Contents 22

provide additional features such as caching or filtering. Proxies combine

features of a client and a server and are thus often transparent for the

clients and servers in terms of communication.

HTTP requests and responses have a common structure. Both start with a

request line respectively status line. The next part contains a set of

header lines that include information about the request respectively

response and about the entity.

the entity is an optional body of an HTTP message that contains payload

such as a representation of the resource. While the rst two parts of an

HTTP message are text-based, the entity can be any set of bytes. HTTP

request lines contain a request URI and a method. There are different

HTTP methods that provide different semantics when applied to a

resource. In the subsequent HTTP response, the server informs the client

about the outcome of a request by using predefined status codes.

Study Session Summary

Summary

In this Study Session, you learnt that

1. The Internet is a collection of computers around the world

connected to each other via a high speed series of networks. The

World Wide Web – or Web – consists of a vast assortment of

files and documents that are stored on these computers and

written in some form of HyperText Markup Language (HTML).

2. A site is a collection of HTML files, documents and images

contained in a single master folder (the root folder).

3. Every Web site that you build or inherit should have a consistent

and simple organization – called a site structure.

4. A Web site should include: a root folder, an index, an images

folder, and additional folders for organizing your content.

5. A Web browser is a program that displays web pages and other

documents on the Web.

6. Hypertext Transfer Protocol (HTTP) is an application-level

protocol that represents the foundation of communication for the

WWW on top of TCP/IP.

Assessment

1. What is the difference between Internet and the web?
2. State five features of a standard website.

3. What do you understand by Uniform Resource Locator (URL)?

4. What is a Web browser?

5. Differentiate between an Absolute and relative URL?

Assignment 6. Differentiate between HTTP and HTML.

7. What are web editors? Give examples.

8. What is a Web browser?

24

Contents 24

Study Session 2

Web Programming

Expected duration: 1 week or 2

contact hour

Introduction
In the previous study session, we examined the World Wide Web, how to

evaluate a website and also the web publishing process. In this study

session, we will learn web programming, programming languages used to

design and develop a website, client and server side scripting as well as

database technology.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

2.1 explain the concept of web programming.

2.2 explain the term client side scripting and server side

scripting.

2.3 analyse client side scripting and server side scripting.

Terminology

Web
Programming

Refers to the writing, markup and coding involved in Web
development, which includes Web content, Web client and
server scripting and network security.

Client side Refers to operations that are performed by the client in a
client–server relationship in a computer network.
Typically, a client is a computer application, such as a web
browser, that runs on a user's local computer or
workstation and connects to a server as necessary.

Server side (Commonly referred to as SS) refers to operations that are
performed by the server in a client–server relationship in a

computer network. Typically, a server is a computer
program, such as a web server, that runs on a remote
server, reachable from a user's local computer or
workstation.

2.1 Web Programming
Web Programming

Refers to the writing,

markup and coding involved

in Web development, which

includes Web content, Web

client and server scripting

and network security.

Client side

Refers to operations that

are performed by the client

in a client–server

relationship in a computer

network. Typically, a client

is a computer application,

such as a web browser, that

runs on a user's local

computer or workstation

and connects to a server as

necessary.

Server side

(Commonly referred to as

SS) refers to operations

that are performed by the

server in a client–server

relationship in a computer

network. Typically, a server

is a computer program,

such as a web server, that

runs on a remote server,

reachable from a user's

local computer or

workstation.

Web programming can be briefly categorized into client and server

coding. The client side needs programming related to accessing data

from users and providing information. It also needs to ensure there are

enough plug-ins to enrich user experience in a graphic user interface,

including security measures.

1. To improve user experience and related functionalities on the

client side, JavaScript is usually used. It is an excellent client-side

platform for designing and implementing Web applications.

2. HTML5 and CSS3 support most of the client-side functionality

provided by other application frameworks.

The server side needs programming mostly related to data retrieval,

security and performance. Some of the tools used here include ASP,

Lotus Notes, PHP, Java and MySQL. There are certain tools/platforms

that aid in both client- and server-side programming. Some examples of

these are Opa and Tersus.

2.2 Client-side Versus Server-side

Scripting

Web development is all about communication. In this case,

communication between two (2) parties, over the HTTP protocol:

 The Server - This party is responsible for serving pages.

 The Client - This party requests pages from the Server, and

displays them to the user. In most cases, the client is a web

browser.

o The User - The user uses the Client in order to surf the

web, fill in forms, watch videos online, etc.

Each side's programming, refers to code which runs at the specific

machine, the server's or the client's.

Server-side programming is writing code that runs on the server, using

languages supported by the server (such as Java, PHP, C#; it is possible

to write code that executes on the server-side in JavaScript). Client-side

programming is writing code that will run on the client, and is done in

languages that can be executed by the browser, such as JavaScript.

Basic Example

1. The User opens his web browser (the Client).

26

Contents 26

2. The User browses to http://google.com.

3. The Client (on the behalf of the User), sends a request to

http://google.com (the Server), for their home page.

4. The Server then acknowledges the request, and replies the client

with some meta-data (called headers), followed by the page's

source.

5. The Client then receives the page's source, and renders it into a

human viewable website.

6. The User types Stack Overflow into the search bar, and presses

Enter

7. The Client submits that data to the Server.

8. The Server processes that data, and replies with a page matching

the search results.

The Client, once again, renders that page for the User to view.

2.2.1 Client Side Scripting
Client side development is done almost exclusively in JavaScript. This is,

of course, in addition to basic HTML and CSS code. The reason

JavaScript is called a client side language is because it runs scripts on

your computer after you've loaded a web page. Client-side script can be

used to enhance the functionality and user experience. For example, it can

be used to provide simple mouse over image effects, animations, and

form field validations.

2.2.2 Client-side Environment

The client-side environment used to run scripts is usually a browser. The

processing takes place on the end users computer. The source code is

transferred from the web server to the user’s computer over the internet

and run directly in the browser.

The scripting language needs to be enabled on the client computer.

Sometimes if a user is conscious of security risks they may switch the

scripting facility off. When this is the case a message usually pops up to

alert the user when script is attempting to run.

Uses

 Make interactive webpages.

 Make stuff happen dynamically on the web page.

 Interact with temporary storage, and local storage (Cookies,

localStorage).

 Send requests to the server, and retrieve data from it.

 Provide a remote service for client-side applications, such as

software registration, content delivery, or remote multi-player

gaming.

http://google.com/
http://google.com/

Example languages

 JavaScript (primarily)

 HTML*

 CSS*

 Any language running on a client device that interacts with a

remote service is a client-side language.

*HTML and CSS aren't really "programming languages" per-se. They are

markup syntax by which the Client renders the page for the User.

2.2.3 Server side Scripting

A server side language runs its scripts before the HTML is loaded, not

after.

There are a range of server side languages in use on the web today. PHP

is one of the most popular, as well as Ruby on Rails, ASP.NET and many

others. They are called server side languages because their scripts are run

not on your computer, but on the server which hosts the website and

sends down the HTML code.

Server-side scripts can also be used to enhance the functionality of a site.

Some examples of features that can be included in a site by using server-

side scripts include forums, polls, guest books, and searches.

2.2.3 Server-side Environment

The server-side environment that runs a scripting language is a web

server. A user's request is fulfilled by running a script directly on the web

server to generate dynamic HTML pages. This HTML is then sent to the

client browser. It is usually used to provide interactive web sites that

interface to databases or other data stores on the server. This is different

from client-side scripting where scripts are run by the viewing web

browser, usually in JavaScript. The primary advantage to server-side

scripting is the ability to highly customize the response based on the

user's requirements, access rights, or queries into data stores.

Uses

 Process user input.

 Display pages.

 Structure web applications.

 Interact with permanent storage (SQL, files).

Example Languages

 PHP

 ASP.Net in C#, C++, or Visual Basic.

 Nearly any language (C++, C#, Java). These were not designed

specifically for the task, but are now often used for application-

level web services.

28

Contents 28

2.3 Deployment and platform
Deployment

Deploying your application

means putting it on a Web

server so that it can be

used either through the

Internet or an intranet.

In server-side programming, deployment has to happen from outside

your code, using some kind of tool (even if it is make install or a git

clone), and this deployment is usually manual — or at least, it is expected

to happen in a semi-supervised way. The system (meaning the OS) on

which you deploy is usually uniform across a number of machines, but it

can be heavily customized to your needs. In client-side programming,

deployment happens from your server-side code, which serves the clients

automatically and without supervision. The underlying system (meaning

mainly the browser) can be very different across a much larger number of

machines. In order to make deployment feasible at all, standards have to

be kept, and there is a much stronger trend to a single language and

environment. This is why copying server-side code from one machine to

another can take weeks, while client-side code is usually trivial to execute

in different machines.

2.4 State and secondary effects

In server-side programming, state is a much bigger concern, meaning

how to retrieve and update data at the request of the user with the

possibility of conflicts due to concurrency. Even if most of this

complexity is offloaded to a database server, it is the server-side code's

responsibility to allow the database to keep its guarantees on data

integrity by using its interface correctly (e.g. not use a cache for updates

that are never seen by the DB), while it is also a goal of the server-side

code not to overload the database with work and keep the user waiting for

response.

In client-side programming, presenting the results to the user is a much

bigger concern, and this implies secondary effects (mostly printing to the

screen). This is not to say that there is no state involved (e.g. cookies),

only that the main goal of the code is to actually interface with the user,

and this cannot happen without secondary effects.

This is why client-side programming usually requires (at some point)

looking at the screen with a demo, to check that all colors and layout are

right, while server-side programming can happen almost exclusively in a

text-oriented environment, where automated tests check that the logic is

still doing what it is supposed to do.

Study Session Summary

Summary

In this Study Session, you learnt that

1. The Server - This party is responsible for serving pages.

2. The Client - This party requests pages from the Server, and

displays them to the user. In most cases, the client is a web

browser.

3. Web programming can be briefly categorized into client and

server coding. The client side needs programming related to

accessing data from users and providing information. The server

side needs programming mostly related to data retrieval, security

and performance.

4. Client side development is done almost exclusively in

JavaScript.

5. Example languages of client side scripting JavaScript, HTML,

CSS, any language running on a client device.

6. Example languages of client side scripting PHP, ASP.Net in C#,

C++, or Visual Basic and nearly any language (C++, C#, Java).

Assessment

Assignment

1 What is Web programming?
2 Differentiate between client side and server side scripting

3 Give examples of client side and server side scripting.

4 What is Web programming?

5 Differentiate between client side and server side scripting

6 Give examples of client side and server side scripting.

Study Session 3

Web Application
Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we discussed the concept of web

programming, identified the difference between client side and server

side scripting and also how to deploy a website. Therefore in this study

session, we will learn about web based applications, web services and

various examples of website based on their purposes.

30

Contents 30

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

3.1 differentiate between web base application and web

services;

3.2 examine what a website is

3.3 describe web services

Terminology

Web Application (Web app) is an application program that is stored on a
remote server and delivered over the Internet through a
browser interface.

Web Service (Sometimes called application services) are services
(usually including some combination of programming and
data, but possibly including human resources as well) that
are made available from a business's Web server for Web
users or other Web-connected programs.

3.1 Web Applications
 Web Application

(Web app) is an application

program that is stored on a

remote server and delivered

over the Internet through a

browser interface.

Web applications refer to applications accessed via Web browser over a

network and developed using browser-supported languages (e.g., HTML,

JavaScript). For execution, Web applications depend on Web browsers

and include many familiar applications such as online retail sales, online

auctions, and webmail. It is a collection of servlets, html pages, classes,

and other resources that can be bundled and run on multiple containers

from multiple vendors. One of the main characteristics of a Web

application is its relationship to the Servlet Context. Each Web

application has one and only one Servlet Context. This relationship is

controlled by the servlet container and guarantees that Web applications

will not clash when storing objects in the Servlet Context.

Web applications are needed in the area of business-to-business

interaction over networks, e.g., for overseas companies that outsource

projects to each other. The adoption of a Web applications infrastructure

can provide vital processes such as transfer of funds and updates of

pricing information.

Because of the complexity of service systems, analysis of each

component and subsystem becomes more challenging. In the field of Web

engineering, the need exists for methodologies for the development of

Web services. Web Services provide tools

3.2 Websites
Social Network

A dedicated website or

other application which

enables users to

communicate with each

other by posting

information, comments,

messages, images, etc.

Web sites have evolved from hyper-referenced, text-based research

documents to highly interactive, social and collaborative applications for

many different purposes. Web content has become increasingly dynamic

and based on content provided by the users. Web technologies such as

JavaScript (JS), AJAX, and HTML5 have introduced more interactive

user interfaces and boosted this transition. Thanks to powerful APIs

provided by modern browsers, web applications are already starting to

replace traditional desktop applications and native mobile applications.

Examples

We will now introduce some popular types for web sites that are

interesting in terms of scalability and concurrency.

3.2.1 Social Network Sites

Social networks are sites that transfer social interactions to the web.

They often try to reflect real world social relations of its users (e.g.

Facebook) or focus on specific topics (e.g. dopplr for travelling). Social

network sites motivate their users to interact, for instance via instant

messaging. Also, social networks heavily rely on user generated content

and context-specific data, such as geo-tagged content. User content and

actions are often published into activity streams, providing a “real-time”

feed of updates that can be watched live by other users.

3.2.2 Collaborative Web Applications

These web applications allow a group of people to collaborate via the

web. Traditional examples are wiki systems, where users can collectively

edit versions of text documents. More recent collaborative applications

incorporate some real-time aspects. For example, Etherpad is a web-

based word processor that supports multiple users working on the same

document concurrently.

3.2.3 E-Commerce Sites

E-Commerce sites such as Amazon are traditional commercial sites in the

web selling products online. Interestingly enough, many sites have

adopted features known from social sites for business purposes. By

commenting, rating and tagging products, users can participate on these

sites beyond just buying items. User-generated content is then used to

cluster product items and compute accurate recommendations. Thus,

commercial sites face similar challenges to social sites to some extent.

3.3 Web Services
Web Services

(Sometimes called

application services) are

Web services provide access to application services using HTTP. Thus,

web services often resemble traditional mechanisms for distributed

computing such as Remote Procedure Call (RPC) or message passing,

32

Contents 32

services (usually including

some combination of

programming and data, but

possibly including human

resources as well) that are

made available from a

business's Web server for

Web users or other Web-

connected programs.

though based on web technologies. Opposed to web sites, web services

are not targeting direct (human) user access in a first place. Instead, web

services enable machine-to-machine communication and provide

application features via an interface and structured messages. Several web

applications provide both, a web site and a web service interface (API).

While the web site is used for browser-based access, the web service can

be used for custom applications such as mobile client applications or

scripted program-based service interactions.

3.3.1 XML-RPC

XML-RPC has been one of the first attempts to transfer traditional RPC-

based services to the web. It makes use of HTTP POST requests for

dispatching procedure calls and an XML-based serialization format for

call parameters and return values. It is important to clarify that XML-

RPC is using HTTP as a generic transport protocol for RPC calls. It

does not take advantage of any HTTP features such as caching, status

codes for error handling or header fields for negotiation.

Figure 3.1: Example XML-RPC call

3.3.2 SOAP, WSDL and WS-*

The stack of SOAP, WSDL, UDDI and a myriad of additional extensions

(WS-*) forms a more comprehensive approach for machine-to-machine

communication, mostly based on web technologies. It is widely used and

particularly popular in enterprise environments.

As previously mentioned, SOAP is a successor of XML-RPC. It species

the format, call semantics and exchange patterns of XML-encoded

messages between parties. Various extension specifications, often labeled

as WS-*, address additional features of SOAP-based web services such as

security or orchestration. The Web Services Description Language

(WSDL) is another important specification for this kind of web services.

It provides XML-based, machine-readable service descriptions,

comparable to interface definition languages of traditional RPC protocols.

Universal Description, Discovery and Integration (UDDI) was originally

a third component providing registry functions for web services, but it

has almost entirely lost its significance in practice.

Although the SOAP/WSDL stack is generally known as web service

stack, it dismisses parts of the original idea of the web. For instance, the

stack uses HTTP as a pure communication protocol for exchanging

messages that can be replaced by other protocols. Similarly to XML-

RPC, this web service stack does not use HTTP as an application-level

protocol.

Study Session Summary

Summary

In this Study Session, you learnt that

1. Web applications depend on Web browsers and include many

familiar applications. It is a collection of servlets, html pages,

classes, and other resources that can be bundled and run on

multiple containers from multiple vendors. Web applications

infrastructure can provide vital processes such as transfer of

funds and updates of pricing information.

2. Some popular types for web sites that are interesting in terms of

scalability and concurrency are Social Network Sites e.g.

Facebook, Collaborative Web Applications e.g. Etherpad, E-

Commerce Sites e.g. ebay.

3. XML-RPC has been one of the first attempts to transfer

traditional RPC-based services to the web. It makes use of

HTTP POST requests for dispatching procedure calls and an

XML-based serialization format for call parameters and return

values.

Assessment

Assignment

1. What is a web base application?
2. What is a web service application?

3. What is a website?

4. Give 3 examples each of the 2 above.

34

Contents 34

Study Session 4

Beginning Web Programming with

HTML and XHTML
Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we distinguished between web applications

and web services. Therefore in this study session, we will examine

critically HTML and XHMTL as the basics for building websites.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

4.1 examine the difference between tags, elements, and

attributes

4.2 analyze how a web page uses markup to describe how the

page should be structured

4.3 use different HTML elements to format a web page.

4.4 differentiate between HTML and XHTML

Terminology

HTML Tags An HTML code that defines every structure on an HTML
page, including the placement of text and images and
hypertext links. HTML tags begin with the less-than (<)
character and end with greater-than (>). These symbols

are also called "angle brackets."

HTML Elements An individual component of an HTML document or web
page, once this has been parsed into the Document Object
Model. HTML is composed of a tree of HTML elements and
other nodes, such as text nodes. Each element can have
HTML attributes specified.

HTML
Attributes

An HTML attribute is a modifier of an HTML element type.
An attribute either modifies the default functionality of an
element type or provides functionality to certain element
types unable to function correctly without them. In HTML
syntax, an attribute is added to an HTML start tag.

4.1 A Web of Structured Documents
 The Web is like a sea of documents all linked together; these documents

bear a strong similarity to the documents that you meet in everyday life.

For example, I have a form sitting on my desk (which I really must mail)

from an insurance company. This form contains fields for me to write my

name, address, and the amount of coverage I want, and boxes I have to

check to indicate the number of rooms in the house and what type of lock

I have on my front door. Indeed, there are lots of forms on the Web, from

a simple search box that asks what you are looking for to the registration

forms you are required to go through before you can place an online order

for books or CDs. Consider another example: Say I’m catching a train to

see a friend, so I check the schedule to see what time the trains go that

way. The main part of the schedule is a table telling me what times trains

arrive and when they depart from different stations. In the same way that

a lot of documents have headings and paragraphs, a lot of other

documents use tables; from the stocks and shares pages in the financial

supplement of your paper to the TV listings at the back, you come across

tables of information every day—and these are often recreated on the

Web.

As you can see, there are many parallels between the structure of printed

documents you come across every day and pages you see on the Web. So

you will hardly be surprised to learn that when it comes to writing web

pages, your code tells the web browser the structure of the information

you want to display— what text to put in a heading, or in a paragraph, or

in a table, and so on—so that the browser can present it properly to the

user. In order to tell a web browser the structure of a document—how to

make a heading, a paragraph, a table, and so on—you need to learn

HTML and XHTML.

4.2 HTML and XHTML
XHTML, or Extensible Hypertext Markup Language, and its predecessor

HTML, are the most widely used languages on the Web. As its name

suggests, XHTML is a markup language, the key purpose of this kind of

markup is to provide a structure that makes the document easier to

36

Contents 36

understand. When marking up documents for the Web, you are

performing a very similar process, except you do it by adding things

called tags to the text. With XHTML the key thing to remember is that

you are adding the tags to indicate the structure of the document, which

part of the document is a heading, which parts are paragraphs, what

belongs in a table, and so on. Browsers such as Internet Explorer, Firefox,

and Safari will use this markup to help present the text in a familiar

fashion, similar to that of a word processor (headings are bigger than the

main text, there is space between each paragraph, lists of bullet points

have a circle in front of them). However the way these are presented is up

to the browser; the XHTML specification does not say which font should

be used or what size that font should be. While earlier versions of HTML

allowed you to control the presentation of a document—things like which

typefaces and colors a document should use—XHTML markup is not

supposed to be used to style the document; that is the job of CSS.

A very simple web page

Simply use a text editor such as Notepad on Windows or TextEdit on a

Mac, and save your files with an .html file extension.

<html>

<head>

 <title>Popular Websites: Google</title>

</head>

<body>

 <h1>About Google</h1>

 <p>Google is best known for its search engine, although

 Google now offers a number of other services.</p>

<p>Google’s mission is to organize the world’s

information and make it universally accessible and

useful.</p>

<p>Its founders Larry Page and Sergey Brin started

Google at Stanford University.</p>

</body>

</html>

There are several sets of angle brackets with words or letters between

them, such as

<html>, <head>, </title>, and </body>. These angle brackets and the

words inside them are known as tags, and these are the markup we have

been talking about.

Figure 4.1: First HTML Page

As you can see, this document contains the heading “About Google” and

a paragraph of text to introduce the company. Note also that it says

“Popular Websites: Google” in the top-left of the browser window; this is

known as the title of the page.

4.3 Tags and Elements
HTML Tag

An HTML code that defines

every structure on an HTML

page, including the

placement of text and

images and hypertext links.

HTML tags begin with the

less-than (<) character and

end with greater-than (>).

These symbols are also

called "angle brackets."

HTML Elements

An individual component of

an HTML document or web

page, once this has been

parsed into the Document

Object Model. HTML is

composed of a tree of HTML

elements and other nodes,

such as text nodes. Each

element can have HTML

attributes specified.

4.3.1 Tags

If you look at the first and last lines of the code for the last example, you

will see pairs of angle brackets containing the letters <html>. The two

brackets and all of the characters between them are known as a tag, and

there are lots of tags in the example. All the tags in this example come in

pairs; there are opening tags and closing tags. The closing tag is always

slightly different from the opening tag in that it has a forward slash after

the first angled bracket </html>. A pair of tags and the content these

include are known as an element.

Figure 4.2: Opening and Closing tags

The opening tag says “This is the beginning of a heading” and the closing

tag says “This is the end of a heading.” Like most of the tags in XHTML,

the text inside the angled brackets explains the purpose of the tag—here

h1 indicates that it is a level 1 heading (or top-level heading). As you will

see shortly, there are also tags for subheadings (<h2>, <h3>, <h4>, <h5>,

and <h6>). Without the markup, the words “About Google” in the middle

of the tags would just be another bit of text; it would not be clear that they

formed the heading.

38

Contents 38

4.3.2 Elements: Parent and Child

Tags are the angle brackets and the letters and numbers between them,

whereas elements are tags and anything between the opening and closing

tags.

You will often find that terms from a family tree are used to describe the

relationships between elements. For example, an element that contains

another element is known as the parent, while the element that is between

the parent element’s opening and closing tags is called a child of that

element. So, the <title> element is a child of the <head> element, the

<head> element is the parent of the <title> element, and so on.

Furthermore, the <title> element can be thought of as a grandchild of the

<html> element.

4.4 Parts of a Web Page

There are two main parts to the page:

 The <head> element: Often referred to as the head of the page,

this contains information about the page (this is not the main

content of the page). It is information such as a title and a

description of the page, or keywords that search engines can use

to index the page. It consists of the opening <head> tag, the

closing </head> tag, and everything in between. Inside the

<head> element of the first example page, you can see a <title>

element:
<head>

<title>Popular Websites: Google</title>

</head>

 The <body> element: Often referred to as the body of the page,

this contains the information you actually see in the main

browser window. It consists of the opening <body> tag, closing

</body> tag, and everything in between. The real content of your

page is held in the <body> element, which is what you want

users to read, and is shown in the main browser window.

4.5 Attributes
HTML Attributes

An attribute is used to

define the characteristics

of an HTML element and is

placed inside the element's

opening tag. All attributes

are made up of two parts: a

name and a value

Attributes are used to say something about the element that carries them,

and they always appear on the opening tag of the element that carries

them. All attributes are made up of two parts: a name and a value:

 The name is the property of the element that you want to set. In

this example, the <a> element carries an attribute whose name is

href, which you can use to indicate where the link should take

you.

 The value is what you want the value of the property to be. In this

example, the value was the URL that the link should take you to,

so the value of the href attribute is http://www.google.com. The

value of the attribute should always be put in double quotation

marks, and it is separated from the name by the equal sign. If you

wanted the link to open in a new window, you could add a target

attribute to the opening <a> tag as well, and give it a value of

_blank:

This illustrates that elements can carry several attributes, although an

element should never have two attributes of the same name.

4.5.1 Attribute Groups

As you have seen, attributes live on the opening tag of an element and

provide extra information about the element that carries them. All

attributes consist of a name and a value; the name reflects a property of

the element

The attribute is describing, and the value is a value for that property.

For example, the xml:lang attribute describes the language used within

that element; a value such as EN-US would indicate that the language

used inside the element is U.S. English.

There are three groups of attributes that many of the XHTML elements

can carry (as you have already seen, the <html>, <head>, <title>, and

<body> elements share some of these attributes).

The three attribute groups are:

 Core attributes: The class, id, and title attributes

 Internationalization attributes: The dir, lang, and xml:lang

attributes

 UI events: Attributes associated with events onclick,

ondoubleclick, onmousedown, onmouseup, onmouseover,

onmousemove, onmouseout, onkeypress, onkeydown, and

onkeyup. Together, the core attributes and the

internationalization attributes are known as the universal

attributes.

4.6 More on Elements

Element

Category
Type Description Example

Formatting Hn

where n is

any

number

between 1

& 6

XHTML offers six levels of

headings, which use the

elements

<h1>, <h2>, <h3>, <h4>, <h5>,

and <h6>.

While browsers can display

<h1>Basic Text

Formatting</h1>

http://www.google.com/

40

Contents 40

headings differently, they tend to

display the <h1> element as the

largest of the six and

<h6> as the smallest, CSS can be

used to override the size and

style of any of the elements.

<p> Creating Paragraphs <p>Here is a paragraph

of text.</p>

<p>Here is a second

paragraph of text.</p>

<p>Here is a third

paragraph of text.</p>

 Creating Line Breaks.

Whenever you use the

element, anything following it

starts on the next line. The
 element

is an example of an empty

element, where you do not need

opening and closing tags,

because there is nothing

to go in between them.

<pre> Creating Preformatted Text.

Any text between the opening

<pre> tag and the closing </pre>

tag will preserve the formatting

of the

source document. Two of the

most common uses of the <pre>

element are to display tabular

data without the use of a

table (in which case you must

use the monospaced font or

columns will not align correctly)

and to represent

computer source

code. For example, the following

shows some JavaScript inside a

<pre>

element

<pre>

function

testFunction(strText){

alert (strText)

}

</pre>

Presentationa Anything that appears in a The following word

l Elements

(these

elements

affect only

the

presentation

of a

document.

The full

list is bold,

italic,

monospaced,

underlined,

strikethrough

, teletype,

larger,

smaller,

superscripted

, and

subscripted

text.)

element is displayed in bold.

This element has the same

effect as the element,

which you will meet later, and is

used to indicate that its contents

have strong emphasis.

would be bold

<i> The content of an <i> element is

displayed in italicized text, like

the word italic.

The <i> element has the same

effect as the element,

which you will meet later, and

which is used to indicate that its

contents have emphasis.

The following word

would be <i>italized</i>

<u> The content of a <u> element is

underlined with a simple line

The following word

would be

<u>underlined</u>

<s> or

<strike>

The content of an <s> or

<strike> element is displayed

with a strikethrough, which is a

thin line through

the text (-

<s> is just the abbreviated form

of <strike>).

The following word

would have a

<s>strikethrough</s>.

<sup> The <sup> element is especially

helpful in adding exponential

values to equations, and adding

the st, nd, rd, and th suffixes to

numbers such as dates. However,

in some browsers, you should be

aware that it can

create a taller gap between the

line with the superscript text and

the line above it.

Written on the

31st

February.

<sub> The content of a <sub> element

is written in subscript; the font

size used is the same as the

characters

surrounding it, but is displayed

half a character’s height beneath

the other characters.

The EPR

paradox₂

was devised by Einstein,

Podolsky, and Rosen.

 <big> The content of the <big>

element is displayed one font

size larger than the rest of the

text surrounding it. If the font is

already the largest size, it has no

The following word

should be

<big>bigger</big> than

those around it.

42

Contents 42

effect. You can nest several

<big> elements inside one

another, and the content of each

will get one size larger for each

element.

<small> The content of the <small>

element is displayed one font

size smaller than the rest of the

text surrounding it. If the font is

already the smallest, it has no

effect. You can nest several

<small> elements inside one

another, and the content of each

gets one size smaller for each

element.

The following word

should be

<small>smaller</small>

than those around it.

<hr /> The <hr /> element creates a

horizontal rule across the page. It

is an empty element, rather like

the
 element.

This is frequently used to

separate distinct sections of a

page where a new heading is not

appropriate.

<hr />

Phrase

Elements

(designed to

describe their

content)

For emphasis <p>You

must

remember to close

elements in

XHTML.</p>

The element is

intended to show strong

emphasis for its content—

stronger emphasis than the

 element.

<p>Always

look at burning

magnesium through

protective colored

glass as it can

cause

blindness.</p>

 <blockquot

e>,

When you want to quote a

passage from another source,

you should use the <blockquote>

element.

Use the cite attribute on the

<blockquote> element to

indicate the source of the quote.

<p>The following

description of XHTML is

taken from the W3C Web

site:</p> <blockquote>

XHTML 1.0 is the

W3C’s first

Recommendation for

XHTML,

following on from earlier

work on HTML 4.01,

HTML 4.0, HTML 3.2

and HTML

2.0. </blockquote>

 <cite> If you are quoting a text, you can

indicate the source by placing it

between an opening <cite> tag

and

closing

</cite> tag. As you would expect

in a print publication, the content

of the <cite> element is

rendered in italicized text by

default.

This chapter is taken

from <cite>Beginning

Web

Development</cite>.

 <q> The <q> element is intended to

be used when you want to add a

quote within a sentence rather

than as

an indented block on its own

<p>As Dylan Thomas

said, <q>Somebody’s

boring me. I think it’s

me</q>.</p>

 <abbr> for abbreviations I have a friend called

<abbr

title=”Beverly”>Bev</ab

br>.

 <acronym> The <acronym> element allows

you to indicate that the text

between an opening <acronym>

and closing

</acronym> tags is an acronym.

This chapter covers

marking up text in

<acronym

title=”Extensible

Hypertext

Markup

Language”>XHTML</ac

ronym>.

 <dfn>

The <dfn> element allows you to

specify that you are introducing

a special term. Its use is similar

to the words that are in italics in

the midst of paragraphs in this

book when new key concepts are

intro

duced.

This book teaches you

how mark up your

documents for the Web

using

<dfn>XHTML</dfn>.

 <code>

for computer code and

information

<p><code><h1>Th

is is a primary

heading</h1></cod

e></p>

 <kbd> For text typed on the keyboard <p>Type in the

44

Contents 44

following: <kbd>This is

the kbd

element</kbd>.</p>

 <samp> The <samp> element indicates

sample output from a program,

script, or the like. Again, it is

mainly used

when documenting programming

concepts.

<p>If everything worked

you should see the result

<samp>Test completed

OK</samp>.</p>

 <var> The <var> element is another of

the elements added to help

programmers. It is usually used

in conjunction

with the <pre> and <code>

elements to indicate that the

content of that element is a

variable that can be

supplied by a user

<p><code>document.wri

te(“<var>user-

name</var>”)</code></p

>

 <address> for addresses <address>Wrox Press,

10475 Crosspoint Blvd,

Indianapolis, IN

46256</address>

List There are

three types

of lists in

XHTML:

❑

Unordered

lists, which

are like

lists of

bullet

points

❑

<ul compact=”compact”>

Item one

Item two

Item three

 ❑ Ordered

lists, which

use a

sequence

of numbers

or letters

instead of

bullet

points

Point number

one

Point number

two

Point number

three

 Definition

lists, which

allow you

to specify a

term and its

definition.

The

definition

list is a

special

kind of list

for

providing

terms

followed

by a short

text

definition

or

description

for them.

Definition

lists are

contained

inside the

<dl>

element.

The <dl>

element

then

contains

alternating

<dt> and

<dd>

elements.

The

content of

 <dl>

<dt>Unordered List</dt>

<dd>A list of bullet

points.</dd>

<dt>Ordered List</dt>

<dd>An ordered list of

points, such as a

numbered set of

steps.</dd>

<dt>Definition List</dt>

<dd>A list of terms and

definitions.</dd>

</dl>

46

Contents 46

the <dt>

element is

the term

you will be

defining.

Editing <ins> The

<ins> element for

 when you want to add text

<h1>How to Spot a Wrox

Book</h1>

<p>Wrox-spotting is a

popular pastime in

bookshops. Programmers

like to find

the distinctive

blue<ins>red

</ins> spines because

they know that

Wrox books are written

by 1000

monkeys

<ins>Programmers</ins>

for Programmers.</p>

<ins><p>Both readers

and authors, however,

have reservations about

the use of photos on the

covers.</p></ins>

 The

 element for

when you want to delete some

text

<h1>How to Spot a Wrox

Book</h1>

<p>Wrox-spotting is a

popular pastime in

bookshops. Programmers

like to find

the distinctive

blue<ins>red

</ins> spines because

they know that

Wrox books are written

by 1000

monkeys

<ins>Programmers</ins>

for Programmers.</p>

<ins><p>Both readers

and authors, however,

have reservations about

the use of photos on the

covers.</p></ins>

Grouping <div> The

<div> element is used to group

block-level elements:

<div class=”footnotes”>

<h2>Footnotes</h2>

<p>1 The World

Wide Web was invented

by Tim Berners-Lee</p>

<p>2 The W3C

is the World Wide Web

Consortium who

maintain many Web

standards</p>

</div>

 The element, on the

other hand, can be used to group

inline elements only.

<div class=”footnotes”>

<h2>Footnotes</h2>

<p><span

class=”inventor”>1</

b> The World Wide Web

was invented by Tim

Berners Lee</p>

<p>2 The W3C

is the World Wide Web

Consortium who

maintain many Web

standards</p>

</div>

4.7 Comments

You can put comments between any tags in your XHTML documents.

Comments use the following syntax:

<!-- comment goes here -->

Anything after <!-- until the closing --> will not be displayed. It can still

be seen in the source code for the document, but it is not shown onscreen.

It is good practice to comment your code, especially in complex

documents, 2rto indicate sections of a document, and any other notes to

anyone looking at the code. Comments help you and others understand

your code.

 ITQ

48

Contents 48

Question

.

Feedback

.

.

Study Session Summary

Summary

In this Study Session, you learnt that

1. HTML and XHTML are needed to explain the structure of any

web pages. They’re used to indicate what text should be

considered a heading, where paragraphs start and end, and what

images should appear in the document, and to specify links

between different pages.

2. Tags are the angle brackets and the letters and numbers between

them, whereas elements are tags and anything between the

opening and closing tags.

3. An element that contains another element is known as the

parent, while the element that is between the parent element’s

opening and closing tags is called a child of that element.

4. There are two main parts to the page: <head> element and the

<body> element.

5. Attributes are used to say something about the element that

carries them, and they always appear on the opening tag of the

element that carries them.

6. The three attribute groups are: Core attributes (the class, id, and

title attributes); the Internationalization attributes (the dir, lang,

and xml:lang attributes), UI events (Attributes associated with

events: onclick, ondoubleclick, onmousedown, onmouseup,

onmouseover, onmousemove, onmouseout, onkeypress,

onkeydown, and onkeyup).

7. These elements consist of an opening tag, a closing tag, and

some content between the opening and closing tags. In order to

alter some properties of elements, the opening tag may carry

attributes, and attributes are always written as name value pairs.

8. By default, most browsers display the contents of the <h1>,

<h2>, and <h3> elements larger than the default size of text in

the document. The content of the <h4> element would be the

same size as the default text, and the content of the <h5> and

<h6>elements would be smaller.

9. The six levels of headings: <h1>, <h2>, <h3>, <h4>, <h5>, and

<h6>

10. Paragraphs <p>, preformatted sections <pre>, line breaks
,

and addresses <address>

11. Presentational elements , <i>, <u>, <s>, <tt>, <sup>, <sub>,

<strike>, <big>, <small>, and <hr />

12. It is good practice to comment your code, especially in complex

documents, to indicate sections of a document, and any other

notes to anyone looking at the code. Comments help you and

others understand your code.

Assessment

Assignment

1. What are tags, elements and attribute?
2. Mention the categories of elements

3. Give three examples of each category in 2 above.

50

Contents 50

Study Session 5

Advance HTML (Links, Images,

Tables and Forms)
Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we discussed how to use HTML elements

to format a webpage, difference between Tags, Elements and Attributes.

In this study session, we will examine some advance HTML elements

and the role they play in building a good web application.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

5.1 explain the meaning of links.

5.2 use images as links.

5.3 state the usefulness of Image maps.

5.4 explain the types of Image format.

5.5 What client side and server side Image maps are

Terminology

Vector Image The use of polygons to represent images in computer
graphics. Vector graphics are based on vectors, which lead
through locations called control points or nodes. Each of
these points has a definite position on the x and y axes of
the work plane and determines the direction of the path;
further, each path may be assigned a stroke color, shape,
curve, thickness, and fill

Bitmap Image A bit map (often spelled "bitmap") defines a display space
and the color for each pixel or "bit" in the display space. A
Graphics Interchange Format and a JPEG are examples of
graphic image file types that contain bit maps.

HREF tag (Hypertext REFerence) The HTML code used to create a
link to another page. The HREF is an attribute of the
anchor tag, which is also used to identify sections within a
document.

5.1 Creating Links with the <a> Element
HREF

(Hypertext REFerence) The

HTML code used to create a

link to another page. The

HREF is an attribute of the

anchor tag, which is also

used to identify sections

within a document.

All hypertext links on the Web take you from one part of the Web to

another. You have already seen links that take you from one page to

another (and this section covers them in more depth). You will also meet

links that take you to a specific part of a page (either a specific part of the

same page or specific part of a different page).

Like all journeys, these have a starting point known as the source, and a

finishing point known as the destination, which are both called anchors.

Each link that you see on a page that you can click is actually a source

anchor, and each source anchor is created using the <a> element.

5.1.1 Creating a Source Anchor with the href

Attribute

The source anchor is what most people think of when talking about links

on the Web — whether the link contains text or an image. It is something

you can click and then expect to be taken somewhere else.

As you have already seen, any text that forms part of the link that a user

can click is contained between the opening <a> tag and closing tag,

and the URL to which the user should be taken is specified as the value of

the href attribute.

For example, when you click the words Wrox Press website (which you

can see are inside the <a> element) the link takes you to

http://www.wrox.com/:

Why not visit the Wrox Press

website to find out about some of our other books? Whereas the

following link on the home page of the fictional news site would take you

to the main Film page (note how this link uses a relative URL):

You can see more films in the

film

section. You need to specify a destination anchor only if you want to

link to a specific part of a page.

Creating a Destination Anchor Using the name and id Attributes (linking

to a specific part of a page)

If you have a long web page, you might want to link to a specific part of

that page. You will usually want to do this when the page does not fit in

the browser window, and the user might otherwise have to scroll to find

the relevant part of the page.

The destination anchor allows the page author to mark specific points in a

page that a source link can point to.

Common examples of linking to a specific part of a page that you might

have seen used on web pages include:

 “Back to top” links at the bottom of long pages

52

Contents 52

 A list of contents for a page that takes the user to the relevant

section

 Links to footnotes or definitions

You create a destination anchor using the <a> element again, but when it

acts as a destination anchor it must carry an id attribute (and if you are

creating pages that might be viewed by very early browsers, such as IE 3

and Netscape 3, a name attribute as well) because the id attribute was

only introduced in HTML 4.

By way of an example, imagine that you have a long page with a main

heading and several subheadings.

The whole page does not fit on the screen at once, forcing the user to

scroll, so you want to add links to each of the main headings at the start

of the document.

Before you can create links to each section of the page (using the source

anchors), you have to add the destination anchors. Here you can see the

subheadings of the page, each containing an <a> element with the id

attribute whose value uniquely identifies that section:

<h1>Linking and Navigation</h1>

<h2>URLs</h2>

<h2>Source Anchors</h2>

<h2>Destination Anchors</h2>

<h2>Examples</h2>

With destination anchors in place, it’s now possible to add source anchors

to link to these sections, like so:

<p>This page covers the following topics:

URLs

Source Anchors

Destination Anchors

Examples

</p>

The value of the href attribute in the source anchors is the value of the id

attribute preceded by a pound or hash sign (#).

If someone wanted to link to a specific part of this page from a different

web site, he or she would add the full URL for the page, followed by the

pound or hash sign and then the value of the id attribute, like so:

http://www.example.com/HTML/links.html#SourceAnchors.

5.1.2 Advanced E-mail Links

You can make a link open up the user’s default e-mail editor, and address

an e-mail to you —or any other e-mail address you give —automatically.

This is done like so:

info@example.org

You can also specify some other parts of the message, too, such as the

subject, body, and people that it should be cc’d or bcc’d to.

To add a subject to an e-mail, you follow the e-mail address with a

question mark to separate the extra values from the e-mail address. Then

you use the name/value pairs to specify the additional properties of the

mail you want to control. The name and the value are separated by an

equal sign.

For example, to set the subject to be Enquiry, you would add the subject

property name and what you wanted to be the subject, like so:

You can specify more than one property by separating the name/value

pairs with an ampersand. Here you can see that the subject and a cc

address have been added in:

<a

href=”mailto:info@example.org?subject=XHTML&cc=sales@example.o

rg”>

The table that follows includes a full list of properties you can add.

Property Purpose

subject

Adds a subject line to the e-mail; you can add this to encourage the user to

use a subject line that makes it easier to recognize where the mail has come

from.

body

Adds a message into the body of the e-mail, although you should be aware

that users would be able to alter this message

cc

Sends a carbon copy of the mail to the cc‘d address; the value must be a valid

e-mail address. If you want to provide multiple addresses you simply repeat

the property, separating it from the previous one with an ampersand.

bcc

Secretly sends a carbon copy of the mail to the bcc‘d address without any

recipient seeing any other recipients; the value must be a valid e-mail address.

If you want to provide multiple addresses, you simply repeat the property,

separating it from the previous one with an ampersand.

If you want to add a space between any of the words in the subject line,

you should add %20 between the words instead of the space. If you want

to take the body part of the message onto a new line you should add

%0D%0A (where 0 is a zero, not a capital O).

54

Contents 54

It is common practice to add only the e-mail address in e-mail links. If

you want to add subject lines or message bodies you are better off

creating an e-mail form.

5.2 Images and Objects
Bitmap Image

A bit map (often spelled

"bitmap") defines a display

space and the color for

each pixel or "bit" in the

display space. A Graphics

Interchange Format and a

JPEG are examples of

graphic image file types

that contain bit maps.

Vector Image

The use of polygons to

represent images in

computer graphics. Vector

graphics are based on

vectors, which lead through

locations called control

points or nodes. Each of

these points has a definite

position on the x and y axes

of the work plane and

determines the direction of

the path; further, each path

may be assigned a stroke

color, shape, curve,

thickness, and fill

Images and graphics can really bring your site to life. However, it is

important to choose the right format for your images and save them

correctly as this will help make your site faster and result in happier

visitors.

Types of Image Formats

Graphics are created for computers in two main ways:

 Bitmapped graphics divide a picture into a grid of pixels and

specify the color of each pixel, much as a computer tells a screen

the color of each pixel. Broadly speaking, bitmaps are ideal for

photographs and complicated gradations of shade and color.

There are several different Bitmap formats; common ones include

JPEG, GIF, TIFF, PNG, and the rather confusingly named bitmap

or BMP.

 Vector graphics break the image into lines and shapes (like a

wireframe drawing), and store the lines as coordinates. They then

fill the spaces between the lines with color. Vector graphics are

commonly used for line art, illustration, and animation. They

often feature large areas of flat color (as opposed to textures,

shades of colors, and photographic styles).

In the early days, bitmaps were the main image format for the Web,

although more recently some formats such as Flash and SVG are making

use of vector graphics.

5.2.1 Bitmap Images

Most static images on the Web are bitmapped images. The image is

divided into a grid of pixels. If you look very closely at your computer

screen you may be able to make out the pixels that make up the screen. If

you look at Figure 5.1, you can see an example of a bitmap image with

one section that has been modified so that you can see how pixels make

up the image.

Figure 5.1: Illustrating Bitmap image

The number of pixels in every square inch of the screen is known as the

resolution of the image. Images on the Web can show a maximum of 72

pixels per inch; images used in print are usually higher resolution and are

often supplied to printers at 300 dots per inch (note how onscreen we

refer to pixels per inch, while in print we call them dots per inch). The

more pixels or dots per inch an image contains, the larger the size of the

file will be. As a result, any images that you use on the Web, you save at

a resolution of 72 dots per inch. If you saved it any larger, this would

create unnecessarily large files that would take longer to download.

5.2.1.1 Bitmap graphics formats

Browsers tend to support three common bitmap graphics formats, and

most graphics programs will save images in these formats:

 GIF: Graphics Interchange Format (pronounced either “gif” or

“jif”)

 JPEG: Joint Photographic Experts Group Format (pronounced

“jay peg”)

 PNG: Portable Network Graphics (pronounced “ping” or “pee en

gee”)

Keeping File Sizes Small

You will usually want to save the images for your site in the format that

best compresses the image and therefore results in a smaller file size. This

will not only make your pages quicker to load, but can also save you on

the charges made for hosting your site.

Usually one or another format will be the obvious choice for you. The

rule of thumb is:

 Use JPEGs for photo-realistic pictures with a lot of detail, or

subtle shade differences you want to preserve.

 Use GIFs for images with flat color (rather than textured colors),

and hard edges, such as diagrams, text, or logos.

56

Contents 56

You can also consider using PNGs if you do not need the advanced

features such as transparency, or if you know the majority of your visitors

will be using more recently released browsers.

5.2.2 Vector Images

Illustration and animation software tends to use vector formats to save

images, and the most popular vector graphics format on the Web is Flash.

Vector formats store information in terms of coordinates between which

lines are drawn, and then inside the lines a colored fill can be specified.

Because vector formats are based on the coordinates that mark points on

lines, it is very easy for vector formats to scale to different sizes simply

by increasing or decreasing the gap between each point the coordinates

are plotted against.

Browsers and XHTML do not, by default, support any vector graphics

formats, although the main browsers now ship with the Flash Player that

is required to view Flash files. As a result, Flash is currently the most

popular way of deploying vector graphics and animations on the Web.

While the Flash Player is free for download, and the browsers feature it,

you should be aware that Adobe charges for the software to create Flash

files and that learning to use the software is an entirely new skill.

Adding Other Objects with the <object> Element

Before the <object> element was introduced, a range of elements was

used to insert multimedia objects into pages, such as the <applet>,

<embed> and <bgsound> elements, but these elements have been

deprecated. The <object> element was initially introduced by Microsoft

to support its Active X technology; however, it was soon used to embed

all kinds of object in web pages. To embed an object into a page, you

need to specify:

 The location of the code used to display or play the object

(sometimes referred to as the implementation of the object)

 The actual data to be rendered (for example a movie, an audio

file, a program)

 Any additional values the object needs at runtime

The first two are added using the <object> element, while additional

values are provided in the <param> element, which can be a child of the

<object> element. While the <object> element can contain a child

<param> element, any other content of the <object> element should be

displayed only if the browser cannot render the object:

<object>Your browser does not appear to support the format used in this

film clip,

for more details please look here

</object>

5.3 Using Images as Links

It’s easy to turn an image into a link; rather than putting text between the

opening <a> tag and the closing tag, as you saw in the last chapter,

you can place an image inside these tags. Images are often used to create

graphical buttons or links to other pages,

<img src=”images/banana.jpg” width=”130” height=”130” alt=”Banana”

border=”0” />

Note the use of the deprecated border attribute. When you use an image

inside an <a> element, the image will gain a border in IE for Windows.

5.3.1 Image Maps

Image maps allow you to specify several links that correspond to

different areas of one single image, so that when users click different

parts of the image they get taken to different pages. There are two types

of image maps:

 Server-side image maps

 Client-side image maps

The difference between the two lies in where the code that decides which

link you should be taken to is executed. With client-side image maps, the

browser indicates which page you should be taken to based upon where

the user clicks, whereas with server-side image maps the browser sends

the server the coordinates of where the user clicked, and these are

processed by a script file on the server that determines which page the

user should be sent to. Image maps are particularly helpful when the

image needs to be divided up in irregular shapes, such as maps. However,

if the image can be divided up in a grid. These hotspots should not be too

small; otherwise, users might have difficulty in selecting the correct area

they want. If this happens, they will soon get frustrated and leave your

site. Image maps can also be difficult for people with motor control

difficulties to navigate. Thus, if for any reason you use image maps as the

main method of navigation for your site you should offer text links at the

bottom of the page (and indicate this in the alt text).

5.3.1.1 Server-Side Image Maps

With server-side images, the element (inside an <a> element)

carries a special ismap attribute, which tells the browser to send the

server x, y coordinates representing where the user’s mouse was when he

or she clicked the image map. Then a script on the server is used to

determine which page the user should be sent to based on the coordinates

fed to it.

For example, look at the following link, where the element carries

the ismap attribute with a value of ismap (this is an attribute that did not

require a value in HTML; however, in XHTML all attributes must have a

value, and therefore its own name is used as a value in XHTML to make

the attribute valid):

58

Contents 58

<img src=”../images/states.gif” alt=”map

of US States” border=”0” ismap=”ismap” />

Now, if the user clicks the image 50 pixels to the right of the top-left

corner of the image and 75 pixels down from the that same corner, the

browser will send this information with the URL like so:

http://www.example.org/location/map.aspx?50,75

You can see the coordinates appended at the end of the URL that is

specified in the <a> element.

5.3.2 Client-Side Image Maps

Because server-side image maps rely on server technology, an alternative

that worked on browsers was introduced and client-side image maps were

born. Client-side image maps use code within the XHTML page to

indicate which parts of the image should link to which pages. Because the

code that divides up the sections of the image is on the browser, it is

possible for the browser to offer extra information to users, either by

showing them a URL in the status bar or as a tooltip when the mouse is

hovered over the image.

There are two methods of creating a client-side image map: using the

<map> and <area> elements inside an element, and, more

recently, using the <map> element inside the <object> element.

The thing about a server-side image map is that there needs to be a script,

map file, or application on the server that can process the coordinates and

know which page the user should then be sent to. The implementation of

image maps will vary depending on what kind of server you are running

on.

5.4 Tables

Tables are commonly used to display all manner of data, such as

timetables, financial reports, and sports results. So when you want to

display information in rows and columns, you need to use the markup to

create a table. In order to work with tables, you need to start thinking in

grids. Here you can see a grid of rectangles. Each rectangle is known as a

cell. A row is made up of a set of cells on the same line from left to right,

while a column is made up of a line of cells going from top to bottom.

By now you have understood that the names of elements in XHTML tend

to refer to the type of markup they contain. So you will hardly be

surprised to know that you create a table in XHTML using the <table>

element.

Inside the <table> element, the table is written out row by row. A row is

contained inside a <tr> element — which stands for table row. And each

cell is then written inside the row element using a <td> element — which

stands for table data.

Figure 5.1: An Example of a Table

The following is an example of a very basic table

<table border=”1”>

 <tr>

<td>Row 1, Column 1</td>

<td>Row 1, Column 2</td>

 </tr>

 <tr>

<td>Row 2, Column 1</td>

<td>Row 2, Column 2</td>

 </tr>

</table>

All tables will follow this basic structure, although there are additional

elements and attributes that allow you to control the presentation of

tables. If a row or column should contain a heading, a <th> element is

used in place of the table data or <td> element. By default, most browsers

render the content of a <th> element in bold text.

Here you can see a slightly more complex example of a table, which

includes headings

<table border=”1”>

<tr>

<th></th>

<th>Outgoings ({$})</th>

<th>Receipts ({$})</th>

<th>Profit ({$})</th>

60

Contents 60

</tr>

<tr>

<th>Quarter 1 (Jan-Mar)</th>

<td>11200.00</td>

<td>21800.00</td>

<td>10600.00</td>

</tr>

<tr>

<th>Quarter 2 (Apr-Jun)</th>

<td>11700.00</td>

<td>22500.00</td>

<td>10800.00</td>

</tr>

<tr>

<th>Quarter 3 (Jul - Sep)</th>

<td>11650.00</td>

<td>22100.00</td>

<td>10450.00</td>

</tr>

<tr>

<th>Quarter 4 (Oct - Dec)</th>

<td>11850.00</td>

<td>22900.00</td>

<td>11050.00</td>

</tr>

</table>

5.4.1 Basic Table Elements and Attributes

5.4.1.1 The <table> Element

The <table> element is the containing element for all tables. It can carry

the following attributes:

 All of the universal attributes
 Basic event attributes for scripting

The <table> element can carry the following deprecated attributes. Even

though they are deprecated, you will still see many of them in use today:

align, bgcolor, border, cellpadding, cellspacing, dir, frame, rules,

summary, width

5.4.1.2 The dir Attribute

The dir attribute is supposed to indicate the direction of text that is used

in the table. Possible values are ltr for left to right text and rtl for right to

left (for languages such as Hebrew and Arabic): dir=”rtl”

If you use the dir attribute with a value of rtl on the <table> element, then

the cells appear from the right first and each consecutive cell is placed to

the left of that one.

5.4.1.3 The frame Attribute (deprecated)

The frame attribute is supposed to control the appearance of the

outermost border of the whole table, referred to here as its frame, with

greater control than the border attribute. If both the frame and border

attributes are used, the frame attribute takes precedence. The syntax is:

frame=”frameType”

5.4.1.4 The summary Attribute

The summary attribute is supposed to provide a summary of the table’s

purpose and structure for nonvisual browsers such as speech browsers or

Braille browsers.

The value of this attribute is not rendered in IE or Firefox, but you should

include it in your pages for accessibility purposes: summary=”Table

shows the operating profit for the last four quarters. The first column

indicates the quarter, the second indicates outgoings, the third indicates

receipts, and the fourth indicates profit.”

5.4.1.5 The width Attribute (deprecated)

The width attribute is used to specify the width of the table in pixels, or

as a percentage of the available space. When the table is not nested inside

another element, the available space is the width of the screen; otherwise

the available space is the width of the containing element.

width=”500” or width=”90%”

5.4.1.6 The <tr> Element Contains Table Rows

The <tr> element is used to contain each row in a table. Anything

appearing within a <tr> element should appear on the same row. It can

carry five attributes, four of which have been deprecated in favor of using

CSS.

5.4.1.7. The axis Attribute

The axis attribute allows you to add conceptual categories to cells, and

therefore represent n-dimensional data. The value of this attribute would

be a comma-separated list of names for each category the cell belonged

to.

axis=”heavy, old, valuable”

62

Contents 62

Rather than having a visual formatting effect, this attribute allows you to

preserve data, which then maybe used programmatically, such as

querying for all cells belonging to a certain category.

5.4.1.8 The bgcolor Attribute (deprecated)

The bgcolor attribute sets the background color for the cell. The value of

this attribute should be either a hex code or a color name.

5.4.1.9 The char Attribute

The char attribute specifies a character, the first instance of which should

be used to horizontally align the contents of a cell. (See the full

description in the “The char Attribute” subsection within the “The <tr>

Element Contains Table Rows” section earlier in the chapter.)

5.4.1.10 The charoff Attribute

The charoff attribute specifies the number of offset characters that can be

displayed before the character specified as the value of the char attribute.

5.4.1.11 The colspan Attribute

The colspan attribute is used to specify how many columns of the table a

cell will span across. The value of the colspan attribute is the number of

columns the cell stretches across.

5.4.1.12 The headers Attribute

The headers attribute is used to indicate which headers correspond to that

cell. The value of the attribute is a space-separated list of the header cells’

id attribute values:

headers=”income q1”.

The main purpose of this attribute is to support voice browsers. When a

table is being read to you it can be hard to keep track of which row and

column you are on; therefore the header attribute is used to remind users

which row and column the current cell’s data belongs to.

5.4.1.13 The height Attribute (deprecated)

The height attribute allows you to specify the height of a cell in pixels or

as a percentage of the available space: height=”20” or height=”10%”

5.4.1.14 The nowrap Attribute (deprecated)

The now13 rap attribute is used to stop text from wrapping onto a new

line within a cell. You would use nowrap only when the text really would

not make sense if it were allowed to wrap onto the next line (for example

a line of code that would not work if it were spread across two lines). In

HTML it was used without

An attribute value, but that would not be allowed in Transitional

XHTML. Rather,

you would use the following: nowrap=”nowrap”

5.4.1.15 The rowspan Attribute

The rowspan attribute specifies the number of rows of the table a cell will

span across, the value of the attribute being the number of rows the cell

stretches across.

5.4.1.16 The scope Attribute

The scope attribute can be used to indicate which cells the current header

provides a label or header information for. It can be used instead of the

headers attribute in basic tables, but does not have much support:

scope=”range“

The <td> and <th> Elements Represent Table Cells Every cell in a table

will be represented by either a <td> element for cells containing table

data or a <th> element for cells containing table headings.

By default the contents of a <th> element are usually displayed in a bold

font, horizontally aligned in the center of the cell. The content of a <td>

element, meanwhile, will usually be displayed left-aligned and not in

bold (unless otherwise indicated by CSS or another element).

The <td> and <th> elements can both carry the same set of attributes,

each of which applies just to that cell. Any effect these attributes have

will override settings for the table as a whole or any containing element

(such as a row).

In addition to the universal attributes and the basic event attributes, the

<td> and <th> elements can also carry the following attributes:

abbr, align, axis, bgcolor, char, charoff, colspan, headers,

height, nowrap, rowspan, scope, valign, width.

5.5 Forms

Any form that you create will live inside an element called <form>.

Between the opening <form> and closing </form> tags, you will find the

form controls (the text input boxes, drop-down boxes, checkboxes, a

submit button, and so on). A <form> element can also contain other

XHTML markup just like the rest of a page.

Once users have entered information into a form, they usually have to

click what is known as a submit button (although the actual text on the

button may say something different such as Search, Send, or Proceed —

and often pressing the return key on the keyboard has the same effect as

clicking this button).

This indicates that the user has filled out the form, and this usually sends

the form data to a web server.

Once the data that you have entered arrives at the server, a script or other

program usually processes the data and sends a new web page back to

you. The returned page will usually respond to a request you have made

or acknowledge an action you have taken.

The <form> element carries an attribute called action whose value is the

URL of the page on the web server that handles search requests. The

64

Contents 64

method attribute meanwhile indicates which HTTP method will be used

in getting the form data to the server.

The <form> element can also contain other markup, such as paragraphs,

headings, and so on. A <form> element must not, however, contain

another <form> element.

Providing you keep your <form> elements separate from each other (and

no one <form> element contains another <form> element), your page

may contain as many forms as you like. For example, you might have a

login form, a search form, and a form to subscribe to a newsletter all on

the same page. If you do have more than one form on a page, users will

be able to send the data from only one form at a time to the server.

Every <form> element should carry at least two attributes: action, method

5.5.1 The action Attribute

The action attribute indicates what happens to the data when the form is

submitted. Usually the value of the action attribute is a page or program

on a web server that will receive the information from this form when a

user presses the submit button.

For example, if you had a login form consisting of a username and

password, the details the user enters may get passed to a page written in

ASP.net on the web server called login.aspx, in which case the action

attribute would read as follows:

<form action=”http://www.example.org/membership/login.aspx”>

Most browsers will accept only a URL beginning with http:// as the value

of the action attribute.

5.5.2 The method Attribute

Form data can be sent to the server in two ways, each corresponding to an

HTTP method:
The get method, which sends data as part of the URL

 When you send form data to the server using the HTTP get

method, the form data is appended to the URL specified in the

action attribute of the <form> element.

The form data is separated from the URL using a question mark.

Following the question mark you get the name/value pairs for

each form control. Each name/value pair is separated by an

ampersand (&).

For example, take the following login form, which you saw when

the password form control was introduced:

<form action=http://www.example.com/login.aspx

method=”get”>

Username:

http://www.example.com/login.aspx

<input type=”text” name=”txtUsername” value=”“

size=”20” maxlength=”20”>

Password:

<input type=”password” name=”pwdPassword”

value=”“ size=”20” maxlength=”20”>

<input type=”submit” />

</form>

When you click the submit button, your username and password

are appended to the URL http://www.example.com/login.aspx

like so in what is known as the query string:

http://www.example.com/login.aspx?txtUsername=Bob&pwdPas

sword=LetMeIn

Note that, when a browser requests a URL with any spaces or

unsafe characters (such as /, \ , =, &, and +, which have special

meanings in URL), they are replaced with a hex code to represent

that character. This is done automatically by the browser, and is

known as URL encoding. When the data reaches the server, the

server will usually un-encode the special characters

automatically.

One of the great advantages of passing form data in a URL is that

it can be bookmarked. If you look at searches performed on

major search engines such as Google, they tend to use the get

method so that the page can be bookmarked.

The get method, however, has some disadvantages. Indeed, when

sending sensitive data such as the password shown here, or credit

card details, you should not use the get method because the

sensitive data becomes part of the URL and is in full view to

everyone (and could be bookmarked).

You should not use the HTTP get method when:

 You are updating a data source such as a database or

spreadsheet (because someone could make up URLs

that would alter your data source).

 You are dealing with sensitive information, such as

passwords or credit card details (because the sensitive

form data would be visible as part of a URL).

 You have large amounts of data (because older browsers

do not allow URLs to exceed more than 1,024 characters

— although the recent versions of the main browsers do

not have limits).

 Your form contains a file upload control (because

uploaded files cannot be passed in the URL).

 Your users might enter non-ASCII characters such as

Hebrew or Cyrillic characters. In these circumstances,

you should use the HTTP post method.

 The post method, which hides data in the HTTP headers

http://www.example.com/login.aspx

66

Contents 66

When you send data from a form to the server using the HTTP

post method, the form data is sent transparently in what is known

as the HTTP headers.

While you do not see these headers, they are sent in clear text and

cannot be relied upon to be secure (unless you are sending data

under a Secure Sockets Layer, or SSL). If the login form you just

saw was sent using the post method, it could look something like

this in the HTTP headers:

User-agent: MSIE 5.5

Content-Type: application/x-www-form-urlencoded

Content-length: 35

...other headers go here...

txtUserName=Bob&pwdPassword=LetMeIn

Note that the last line is the form data, and that it is in exactly the same

format as the data after the question mark in the get method — it would

also be URL — encoded if it contained spaces or any characters reserved

for use in URLs.

There is nothing to stop you using the post method to send form data to a

page that also contains a query string. For example, you might have one

page to handle users that want to subscribe to or unsubscribe from a

newsletter, and you might choose to indicate whether a user wanted to

subscribe or unsubscribe in the query string. Meanwhile, you might want

to send their actual contact details in a form that uses the post method

because you are updating a data source. In this case, you could use the

following <form> element:

<form action=http://www.example.com/newsletter.asp?action=subscribe

method=”post”>

The only issue with using the HTTP post method is that the information

the user entered on the form cannot be bookmarked in the same way it

can when it is contained in the URL. So you cannot use it to retrieve a

page that was generated using specific form data as you can when you

bookmark a page generated by most search engines, but it is good for

security reasons.

5.6 Form Controls
This section covers the different types of form controls that you can use

to collect data from a visitor to your site. They are:

 Text input controls

 Buttons

 Checkboxes and radio buttons

 Select boxes (sometimes referred to as drop-down menus) and

list boxes

 File select boxes

 Hidden controls

http://www.example.com/newsletter.asp?action=subscribe

5.6.1 Text Inputs

You undoubtedly have come across text input boxes on many web pages.

Possibly the most famous text input box is the one right in the middle of

the Google home page that allows you to enter what you are searching

for.

On a printed form, the equivalent of a text input is a box or line that you

are allowed to write a response in or on.

There are actually three types of text input used on forms:

 Single-line text input controls: Used for items that require only

one line of user input, such as search boxes or e-mail addresses.

They are created using the <input> element.

 Password input controls: These are just like the single-line text

input, except they mask the characters a user enters so that the

characters cannot be seen on the screen. They tend to either show

an asterisk or a dot instead of each character the user types, so

that someone cannot simply look at the screen to see what a user

types in. Password input controls are mainly used for entering

passwords on login forms or sensitive details such as credit card

numbers. They are also created using the <input> element.

 Multi-line text input controls: Used when the user is required to

give details that may be longer than a single sentence. Multi-line

input controls are created with the <textarea> element.

5.6.2 Buttons

Buttons are most commonly used to submit a form, although they are

sometimes used to clear or reset a form and even to trigger client-side

scripts. (For example, on a basic loan calculator form within the page, a

button might be used to trigger the script that calculates repayments

without sending the data to the server.) You can create a button in three

ways:

 Using an <input> element with a type attribute whose value is

submit, reset, or button

 Using an <input> element with a type attribute whose value is

image

 Using a <button> element

With each different method, the button will appear slightly different.

5.6.3 Checkboxes

Checkboxes are just like the little boxes that you have to check on paper

forms. As with light switches, they can be either on or off. When they are

checked they are on and the user can simply toggle between on and off

positions by clicking the checkbox. Checkboxes can appear individually,

with each having its own name, or they can appear as a group of

checkboxes that share a control name and allow users to select several

values for the same property.

Checkboxes are ideal form controls when you need to allow a user to:

68

Contents 68

 Provide a simple yes or no response with one control (such as

accepting terms and conditions or subscribing to an e-mail list)

 Select several items from a list of possible options (such as when

you want a user to indicate all of the skills they have from a

given list)

A checkbox is created using the <input> element whose type attribute has

a value of checkbox.

5.6.4 Radio Buttons

Radio buttons are similar to checkboxes in that they can be either on or

off, but there are two key differences:

 When you have a group of radio buttons that share the same

name, only one of them can be selected. Once one radio button

has been selected, if the user clicks another option, the new

option is selected and the old one deselected.

 You should not use radio buttons for a single form control where

the control indicates on or off because once a lone radio button

has been selected it cannot be deselected again (without writing a

script to do that).

Therefore, radio buttons are ideal if you want to provide users with a

number of options from which they can pick only one. In such situations,

an alternative is to use a drop-down select box that allows users to select

only one option from several. Your decision between whether to use a

select box or a group of radio buttons depends on three things:

 Users expectations: If your form models a paper form where

users would be presented with several checkboxes, from which

they can pick only one, then you should use a group of radio

buttons.

 Seeing all the options: If users would benefit from having all the

options in front of them before they pick one, you should use a

group of radio buttons.

 Space: If you are concerned about space, a drop-down select box

will take up far less space than a set of radio buttons.

5.6.4 Select Boxes

A drop-down select box allows users to select one item from a drop-down

menu. Drop-down select boxes can take up far less space than a group of

radio buttons.

Drop-down select boxes can also provide an alternative to single-line text

input controls where you want to limit the options that a user can enter.

For example, you can use a select box to allow users to indicate which

country or state they live in (the advantage being that all users from

Nigeria would have the same value, rather than potentially having people

write Nigeria, N.G.., ng, or Naija and then having to deal with different

answers for the same country).

A drop-down select box is contained by a <select> element, while each

individual option within that list is contained within an <option>

element..

Study Session Summary

Summary

In this Study Session, we discussed that

1. The source anchor is what most people think of when talking

about links on the Web — whether the link contains text or an

image. It is something you can click and then expect to be taken

somewhere else.

2. Each link that you see on a page that you can click is actually a

source anchor, and each source anchor is created using the <a>

element.

3. The destination anchor allows the page author to mark specific

points in a page that a source link can point to.

4. Images and graphics can really bring your site to life

5. Graphics are created for computers in two main ways:

Bitmapped graphics, Vector graphics.

6. Image maps allow you to specify several links that correspond to

different areas of one single image, so that when users click

different parts of the image they get taken to different pages.

7. There are two types of image maps: Server-side image maps,

Client-side image maps.

8. There are two methods of creating a client-side image map:

using the <map> and <area> elements inside an element,

and, more recently, using the <map> element inside the

<object> element.

9. The thing about a server-side image map is that there needs to be

a script, map file, or application on the server that can process

the coordinates and know which page the user should then be

sent to.

10. Tables are commonly used to display all manner of data. Each

rectangle is known as a cell. A row is made up of a set of cells

on the same line from left to right, while a column is made up of

a line of cells going from top to bottom ta

11. Every <form> element should carry at least two attributes:

action, method. The action attribute indicates what happens to

the data when the form is submitted.

12. Form data can be sent to the server in two ways, each

corresponding to an HTTP method: The get method, which

sends data as part of the URL, and the post method, which hides

data in the HTTP headers.

13. There are different types of form controls that you can use to

collect data from a visitor to your site. They are: Text input

controls, Buttons, Checkboxes and radio buttons, Select boxes

(sometimes referred to as drop-down menus) and list boxes, File

70

Contents 70

select boxes, Hidden controls.

Assessment

Assignment

1. What are links?

2. Mention the different ways of linking pages on the web

3. State the usefulness of Image maps

4. List and explain the types of Image format

5. Differentiate between client side and server side Image maps

Study Session 6

Cascading Style Sheet (CSS)
Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we learnt how to use some advance HTML

elements to structure and add more life to our website. In this study

session, we will learn how to beautify how HTML using Cascading Style

Sheet (CSS)

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

6.1 explain what makes up a CSS rule

6.2 describe how to place CSS rules within your document, and

how to link to an external CSS document

6.3 evaluate how properties and values control presentation of

different elements within your document

6.4 discuss how CSS is based on a box model, and how you set

different properties for these boxes (such as width and styles

of borders)

Terminology

CSS A cascading style sheet (CSS) is a Web page derived from
multiple sources with a defined order of precedence where
the definitions of any style element conflict.

CSS Selector A CSS selector is the part of a CSS rule set that actually
selects the content you want to style.

6.1 Origin of CSS
 CSS

A cascading style sheet

(CSS) is a Web page derived

from multiple sources with

a defined order of

precedence where the

definitions of any style

element conflict.

CSS Selector

A CSS selector is the part

of a CSS rule set that

actually selects the content

you want to style.

Earlier versions of HTML used elements and attributes in the markup of

the web page (just like the ones you have met already in the book) to

control how a document should appear. However, the W3C decided quite

a while back that the HTML and XHTML languages should no longer

contain instructions that indicated how the document appears — rather

that CSS should be used to control the appearance of web pages.

The cascading style sheets specification works by allowing you to specify

rules that say how the content of elements within your document should

appear. In fact, you can set different rules to control the appearance of

every element in your page so that your pages start to look a lot more

interesting.

CSS works by allowing you to associate rules with the elements that

appear in the document. These rules govern how the content of those

elements should be rendered. Figure 6-1 shows you an example of a CSS

72

Contents 72

rule, which as you can see is made up of two parts:

 The selector, which indicates which element or elements the

declaration applies to (if it applies to more than one element, you

can have a comma-separated list of several elements)

 The declaration, which sets out how the elements should be

styled

 h1 {font-family: arial;}

Figure 6.1: Example of CSS Rule

The rule in Figure 6-1 applies to all <h1> elements and indicates that they

should appear in the Arial typeface.

The declaration is also split into two parts, separated by a colon:

 A property, which is the property of the selected element(s) that

you want to affect, in this case the font-family property.

 A value, which is a specification for this property; in this case it

is the Arial typeface.

This is very similar to the way elements can carry attributes in HTML,

where the attribute controls a property of the element, and its value would

be the setting for that property. With CSS, however, rather than your

having to specify the attribute on each instance of the <h1> element, the

selector indicates that this one rule applies to all <h1> elements in the

document.

Here is an example of a CSS rule that applies to several different

elements (in this example, the <h1>, <h2>, and <h3> elements). A

comma separates the name of each element that this rule will apply to.

The rule also specifies several properties for these elements with each

property-value pair separated by a semicolon.

Note how all the properties are kept inside the curly braces:

h1, h2, h3 {

font-weight:bold;

font-family:arial, verdana, sans-serif;

color:#000000;

background-color:#FFFFFF;}

Even if you have never seen a CSS rule before, you should now have a

good idea of what this rule is doing.

The content of each heading element named in the selector (<h1>, <h2>,

Declaration

Value property

Selector

and <h3>) will be written in a bold Arial font (unless the computer does

not have Arial installed, in which case it will look for Verdana, failing

which its default sans-serif font), and this will be written in black with a

white background.

6.2 Where Can You Add CSS Rules
The example that you saw at the beginning of the chapter used a separate

style sheet, or external style sheet, to contain the CSS rules. This involved

the use of the

<link /> element in the header of the XHTML document to indicate

which style sheet should be used to control the appearance of the

document.

CSS rules can also appear in two places inside the XHTML document:

 Inside the <head> element, contained with a <style> element

 As a value of a style attribute on any element that can carry the

style attribute

When the style sheet rules are held inside a <style> element in the head

of the document, they are referred to as an internal style sheet.

<head>

 <title>Internal Style sheet</title>

 <style type=”text/css”>

 body {

 color:#000000;

 background-color:#ffffff;

 font-family:arial, verdana, sans-serif; }

 h1 {font-size:18pt;}

 p {font-size:12pt;}

 </style>

</head>

When style attributes are used on XHTML elements, they are known as

inline style rules. For example:

<td style=”font-family:courier; padding:5px; border-style:solid;

border-width:1px; border-color:#000000;”>

Here you can see that the properties are added as the value of the style

attribute. There is no need for a selector here (because the style is

automatically applied to the element that carries the style attribute), and

there are no curly braces. You still need to separate each property from its

value with a colon and each of the property-value pairs from each other

with a semicolon.

74

Contents 74

6.2.1 Advantages of External CSS Style Sheets

If two or more documents are going to use a style sheet, you should

always aim to use an external style sheet (although you may sometimes

resort to an internal style sheet to override rules in the external style

sheet).

There are several advantages to using external CSS style sheets rather

than internal style sheets or inline style rules, including the following:

 The same style sheet can be reused by all of the web pages in

your site. This saves you from including the stylistic markup in

each individual document.

 Because the style rules are written only once, rather than

appearing on every element or in every document, the source

documents are smaller. This means that, once the CSS style sheet

has been downloaded with the first document that uses it,

subsequent documents will be quicker to download (because the

browser retains a copy of the CSS style sheet and the rules do not

have to be downloaded for every page). This also puts less strain

on the server (the computer that sends the web pages to the

people viewing the site) because the pages it sends out are

smaller.

 You can change the appearance of several pages by altering just

the style sheet rather than each individual page; this is

particularly helpful if you want to change your company’s colors,

or the font used for a certain type of element wherever that

element appears across the whole site.

 The style sheet can act as a style template to help different

authors achieve the same style of document without learning all

of the individual style settings.

 Because the source document does not contain the style rules,

different style sheets can be attached to the same document. So

you can use the same XHTML document with one style sheet

when the viewer is on a desktop computer, another style sheet

when the user has a handheld device, another style sheet when

the page is being printed, another style sheet when the page is

being viewed on a TV, and so on. You reuse the same document

with different style sheets for different visitors’ needs.

 A style sheet can import and use styles from other style sheets,

making for modular development and good reuse.

 If you remove the style sheet, you make the site more accessible

for those with visual impairments, because you are no longer

controlling the fonts and color schemes. It is fair to say,

therefore, that whenever you are writing a whole site, you should

be using an external style sheet to control the presentation,

although as you will see in the next chapter you might use several

external style sheets for different aspects of the site.

6.2.2 Inheritance

One of the powerful features of CSS is that many of the properties that

have been applied to one element will be inherited by child elements

(elements contained within the element that the rules were declared

upon). For example, once the font-family property had been declared for

the <body> element in the previous example, it applied to all of the

elements inside the <body> element (all of the <body> element’s child

elements).

If a more specific rule comes along, the more specific rule will override

any properties associated with the <body> element, or any other

containing element. In the preceding example, most of the text was in an

Arial typeface, as specified in the rule associated with the <body>

element. There were a few table cells that used a Courier typeface. The

table cells that were different had a class attribute whose value was code:

<td class=”code”>font-size</td>

Here you can see the rule associated with these elements:

 td.code {

font-family:courier, courier-new, serif;

font-weight:bold;}

This rule takes precedence over the one associated with the <body>

element because the selector is more specific about which element it

applies to.

The way in which some properties inherit saves you from having to write

out rules and all the property-value pairs for each element and makes for

a more compact style sheet.

6.3 Some CSS Properties

The following table shows the main properties available to you from

CSS1 and CSS2:

76

Contents 76

6.3.1 Basic Example

The following example uses quite a number of CSS rules. The purpose of

most of these rules should be clear by their name. After this example, you

look at different aspects of CSS, and how to control text, tables, white

space, and backgrounds.

Before starting, take a look at the XHTML document we will be working

on without the CSS rules attached.

Figure 6.2 shows you what the document looks like without styling.

Figure 6.2: Sample page2 without CSS

Here is the code for the document you saw in Figure 6-2

(sample_page2.html). It contains a heading, a paragraph, and a table.

Notice the use of the <link> element inside the <head> element, which

tells the browser that this document should be styled with the style sheet

specified in the value of the href attribute that is carried on the <link>

element. Also note how some of the <td> elements carry a class attribute

whose value is code; you use this to distinguish the <td> elements that

contain code from other text in the document.

<?xml version=”1.0” encoding=”iso-8859-1”?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en”>

 <head>

 <title>CSS Example</title>

 <link rel=”stylesheet” type=”text/css” href=”sample_page2.css” />

 </head>

 <body>

 <h1>Basic CSS Font Properties</h1>

<p>The following table shows you the basic CSS font properties

that allow you to change the appearance of text in your

documents.</p>

 <table>

<tr>

<th>Property</th>

<th>Purpose</th>

78

Contents 78

</tr>

<tr>

<td class=”code”>font-family</td>

<td>Specifies the font used.</td>

</tr>

<tr>

<td class=”code”>font-size</td>

<td>Specifies the size of the font used.</td>

</tr>

tr>

<td class=”code”>font-style</td>

<td>Specifies whether the font should be normal, italic

or oblique.</td>

</tr>

<tr>

<td class=”code”>font-weight</td>

<td>Specifies whether the font should be normal, bold,

bolder,

or lighter</td>

</tr>

 </table>

 </body>

</html>

Figure 6.3 shows what this document looks like with a style sheet

attached.

Now, let’s take a look at the style sheet used with this document. All CSS

style sheets are saved with the file extension .css, and this one is called

sample_page2.css.

You should be able to create a CSS style sheet in the same editor you are

using to create your XHTML pages, and because CSS files are just

simple text files (like XHTML files) you can also create them in

Windows Notepad or TextEdit on the Mac.

Figure 6.3: Sample_page2 with CSS

The document is mainly separate rules, the exception being the first line

— which isn’t really a rule; it is a comment.

Anything between the opening /* and closing */ will be ignored by the

browser and therefore will not be shown:

/* Style sheet for sample_page2.html */

The first rule applies to the <body> element. It specifies that the default

color of any text and lines used on the page will be black, that the

background of the page should be in white, and that the typeface used

throughout the document should be Arial. If Arial is not available,

Verdana will be used instead; failing that, any sans-serif font will be

used.

body {

color:#000000;

background-color:#ffffff;

font-family:arial, verdana, sans-serif; }

There is also a background-color property for the body of a document

because some people change the default background color of their

computers (so that it is not a glaring white); if you do not set this

property, the background color of those users’ browsers will be whatever

color they have selected.

The next two rules simply specify the size of the contents of the

<h1> and <p> elements, respectively:

h1 {font-size:18pt;}

p {font-size:12pt;}

Next, it is time to add a few settings to control the appearance of the table

— first to give it a light gray background, and then to draw a 1-pixel dark

gray border around the edge:

table {

80

Contents 80

background-color:#efefef;

border-style:solid;

border-width:1px;

border-color:#999999;}

Within the table, the headings should have a medium gray background

color (slightly darker than the main body of the table), the text should

appear in a bold font, and between the edge of the cell and the text there

should be 5 pixels of padding. (As you will see in more detail later in the

chapter, padding is the term used for space between the edge of a box and

the content inside it.)

th {

background-color: #cccccc;

font-weight: bold;

padding:5px;}

The individual table data cells have 5 pixels of padding. Adding this

space makes the text much easier to read, and without it the text in one

column might run up right next to the text in the neighboring column:

td {padding:5px;}

Finally, you may have noticed in Figure 6-3 that the cells of the table that

mentioned CSS properties were in a Courier font. This is because the

corresponding table cells in the XHTML document carried a class

attribute whose value was code. On its own, the class attribute does not

change the display of the document

(as you can see from Figure 6-2). The class attribute does, however, allow

you to associate CSS rules with elements whose class attribute has a

specific value. Therefore, the following rule applies only to <td>

elements that carry a class attribute whose value is code, not to all <td>

elements:

td.code {

font-family:courier, courier-new, serif;

font-weight:bold;}

Study Session Summary

Summary

In this Study Session, you learnt that

1. CSS works by allowing you to associate rules with the elements

that appear in the document.

2. A CSS rule is made up of two parts: Selector and Declaration.

3. The declaration is also split into two parts, separated by a colon:

a property, which is the property of the selected element(s) that

you want to affect, in this case the font-family property; a value,

which is a specification for this property; in this case it is the

Arial typeface.

4. CSS rules can also appear in two places inside the XHTML

document:

5. Inside the <head> element, contained with a <style> element

6. As a value of a style attribute on any element that can carry the

style attribute

7. One of the powerful features of CSS is that many of the

properties that have been applied to one element will be

inherited by child elements (elements contained within the

element that the rules were declared upon).

Assessment

Assignment

1 What are CSS rules?

2 What makes up a CSS rule?

3 What is Inheritance?

4 Mention 7 CSS properties and their use.

82

Contents 82

Study Session 7

Web Programming in JavaScript

(Client side)
Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we explained CSS as a scripting language

used to beautify out HTML. In this study session, we will learn how to

use JavaScript on our website and the need add the client side scripting

language to our website.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

7.1 explain the usefulness of JavaScript

7.2 state where to include JavaScript in a document

7.3 understand the concept of variables, Constant, operators and

functions

7.4 explain the terms Keywords and cite examples

Terminology

JavaScript An object-oriented computer programming language
commonly used to create interactive effects within web
browsers.

Data Types A particular kind of data item, as defined by the values it
can take, the programming language used, or the
operations that can be performed on it.

Variable or scalar is a storage location paired with an associated
symbolic name (an identifier), which contains some known
or unknown quantity of information referred to as a value.

Operators A character that represents an action, as for example (*) is
an arithmetic operator that represents multiplication.

7.1 JavaScript
JavaScript

An object-oriented

computer programming

language commonly used to

create interactive effects

within web browsers.

Rather like CSS rules, JavaScript can either be embedded in a page or

placed in an external script file. But in order to work in the browser, the

browser must support JavaScript and must have it enabled (most browsers

allow you to disable JavaScript). Bearing in mind that a user might not

have JavaScript enabled in the browser, you should use JavaScript only to

enhance the experience of using your pages; you should not make it a

requirement in order to use or view the page.

You add scripts to your page inside the <script> element. The type

attribute on the opening <script> tag indicates what scripting language

will be found inside the element. There are several other scripting

languages (such as VBScript or Perl), but JavaScript is by far the most

popular for use in a browser.

Here you can see a very simple script that will write the words “My first

JavaScript” into the mypage.html.

<html>

<body>

<p>

<script type=”text/javascript”>

document.write(“My first JavaScript”)

</script>

</p>

</body>

</html>

JavaScript uses the write() method to write text into the document

(remember that methods perform an action/calculation). The text is

outputted where the script is written in the page.

Where you put your JavaScript within a page is very important. If you put

it in the body of a page — as in this example — then it will run (or

execute) as the page loads. Sometimes, however, you will want a script to

run only when an event triggers; an event can be something like a key

being pressed or a submit button being clicked. This will usually result in

something known as a function being called. Functions are put inside

<script> elements that live in the <head> of a page to ensure that they

load before the page is displayed and are therefore ready for use

immediately when the page has loaded. A function also allows you to

reuse the same script in different parts of the page.

You can also write JavaScript in external documents that have the file

extension .js. This is a particularly good option if your script is used by

more than one page — because you do not need to repeat the script in

84

Contents 84

each page that uses it, and if you want to update your script you need only

change it in one place. When you place your JavaScript in an external

file, you need to use the src attribute on the <script> element; the value of

the src attribute should be an absolute or relative URL pointing to the file

containing the JavaScript. For example: <script type=”JavaScript”

src=”scripts/validation.js” />

So there are three places where you can put your JavaScripts — and a

single XHTML document can use all three because there is no limit on

the number of scripts one document can contain:

 In the <head> of a page: These scripts will be called when an

event triggers them.

 In the <body> section: These scripts will run as the page loads.

 In an external file: If the link is placed inside the <head> element,

the script is treated the same as when the script lives inside the

head of the document waiting for an event to trigger it, whereas if

it is placed in the <body> element it will act like a script in the

body section and execute as the page loads.

Some early browsers did not support JavaScript; therefore, you will

sometimes see JavaScript written inside an HTML or XHTML comment

so that older browsers can ignore the script, which would otherwise cause

errors, as shown here. Newer browsers will just ignore these comments in

the

<script> element:

<script type=”text/javascript”>

 <!--

document.write(“My first JavaScript”)

 //- - >

</script>

Note how two forward slash characters (//) precede the closing characters

of the XHTML comment. This is actually a JavaScript comment that

prevents the JavaScript compiler from trying to process the -- >

characters

7.2 Comments in JavaScript
Data Type

A particular kind of data

item, as defined by the

values it can take, the

programming language

used, or the operations that

can be performed on it.

You can add comments to your JavaScript code in two ways. The first

way, which you have already seen, allows you to comment out anything

on that line after the comment marks. Here, anything on the same line

after the two forward slash characters is treated as a comment:

<script type=”text/javascript”>

document.write(“My first JavaScript”) // comment goes here

</script>

You can also comment out multiple lines using the following syntax,

holding the comment between an opening pair of characters

/* and a closing pair of characters */ like so:

/* This whole section is commented out so it is not treated as a part of the

script. */

This is similar to comments in CSS.

As with all code, it’s good practice to comment your code clearly, even if

you are the only person likely to be using it, because what may have

seemed clear when you wrote a script may not be so obvious when you

come back to it later. Adding variable name descriptions and explanations

of functions and their parameters are good examples of where comments

make code easier to read.

7.2.1 The <noscript> Element

The <noscript> element offers alternative content for users whose

browsers do not support JavaScript or have it disabled. It can contain any

XHTML content that the author wants to be seen in the browser if the

user does not have JavaScript enabled.

7.2.2 Data types

Different types of data (letters, whole numbers, decimal numbers, dates)

are known to have different data types; these allow programs to manage

the different types of data in different ways. For example, if you use the +

operator with a string, it concatenates two strings, whereas if it is used

with numbers, it adds the two numbers together. Some programming

languages require that you specifically indicate what type a variable is

and require you to be able to convert between types. While JavaScript

supports different data types, as you are about to see, it handles

conversion between types itself, so you never need to worry about telling

JavaScript that a certain type of data is a date or a string (a string is a set

of characters that may include letters and numbers).

7.3 Variables
Variable

or scalar is a storage

location paired with an

associated symbolic name

(an identifier), which

contains some known or

unknown quantity of

information referred to as

a value.

Variables are used to store data. To store information in a variable, you

can give the variable a name and put an equal sign between it and the

value you want it to have. For example, here is a variable that contains a

username:

userName = “Bob Stewart”

The variable is called userName and the value is Bob Stewart. If no value

is given, then its value is undefined. (Note that when you are writing out

the value of the variable in the code, the value is given in quotation

marks.)

When you first use a variable, you are creating it. The process of creating

a variable is referred to as declaring the variable. You can declare a

variable with the var statement, like:

var userName = “Bob Stewart”

86

Contents 86

Note here that you need to use the var keyword only if you are creating a

variable inside a function that has the same name as a global variable —

although to understand this point you need to understand functions and

global and local variables, which are covered later.

A variable’s value can be recalled or changed by the script, and when you

want to do either of these you use its name.

There are a few rules you must remember about variables in JavaScript:

 Variable names are case-sensitive.

 They must begin with a letter or the underscore character.

 Avoid giving two variables the same name within the same

document as one might override the value of the other, creating

an error.

 Try to use descriptive names for your variables. This makes your

code easier to understand (and will help you debug your code if

there is a problem with it).

7.3.1 Assigning a Value to a Variable

When you want to give a value to a variable, you put the variable name

first, then an equal sign, and then on the right the value you want to

assign to the variable. You have already seen values being assigned to

these variables when they were declared a moment ago. So, here is an

example of a variable being assigned a value and then the value being

changed:

var userName = “Bob Stewart”

userName = “Robert Stewart”

userName is now the equivalent of Robert Stewart.

7.3.2 Lifetime of a Variable

When you declare a variable in a function it can be accessed only in that

function. (As promised, you will learn about functions shortly.) After the

function has run, you cannot call the variable again. Variables in

functions are called local variables.

Because a local variable works only within a function, you can have

different functions that contain variables of the same name (each is

recognized by that function only).

If you declare a variable outside a function, all the functions on your page

can access it. The lifetime of these variables starts when they are declared

and ends when the page is closed.

Local variables take up less memory and resources than page-level

variables because they require only the memory during the time that the

function runs, rather than having to be created and remembered for the

life of the whole page.

7.4 Operators

Operator

A character that represents

an action, as for example

(*) is an arithmetic

operator that represents

multiplication.

The operator itself is a keyword or symbol that does something to a

value when used in an expression. For example, the arithmetic operator +

adds two values together.

The symbol is used in an expression with either one or two values and

performs a calculation on the values to generate a result. For example,

here is an expression that uses the x operator:

area = (width x height)

An expression is just like a mathematical expression. The values are

known as operands. Operators that require only one operand (or value)

are sometimes referred to as unary operators, while those that require two

values are sometimes called binary operators.

The different types of operators, namely:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 String operators

7.4.1 Arithmetic Operators

Arithmetic operators perform arithmetic operations upon operands. (Note

that in the examples in the following table, x = 10.)

Figure 7.1: Arithmetic Operators

7.4.2 Assignment Operators

The basic assignment operator is the equal sign, but do not take this to

mean that it checks whether two values are equal. Rather, it’s used to

assign a value to the variable on the left of the equal sign, as you have

seen in the previous section that introduced variables.

The assignment operator can be combined with several other operators to

allow you to assign a value to a variable and perform an operation in one

step. For example, with the arithmetic operators, the assignment operators

88

Contents 88

can be used to create shorthand versions of operators, as in the following

statement:

total = total – profit

This can be reduced to the following statement:

total -= profit

While it might not look like much, this kind of shorthand can save a lot of

code if you have a lot of calculations such as this (see table below) to

perform.

Figure 7.2: Comparison Operators

7.4.3 Comparison Operators

As you can see in the table that follows, comparison operators compare

two operands and then return either true or false based on whether the

comparison is true or not.

Note that the comparison for checking whether two operands are equal is

two equal signs (a single equal sign would be an assignment operator).

Figure 7.3: Arithmetic Operators

7.4.3 Logical or Boolean Operators

Logical or Boolean operators return one of two values: true or false. They

are particularly helpful because they allow you to evaluate more than one

expression at a time. The two operands in a logical or Boolean operator

evaluate to either true or false. For example, if x=1 and y=2, then x<2 is

true and y>1 is true. So the following expression: (x<2 && y>1) returns

true because both of the operands evaluate to true.

7.4.4 String Operator

You can also add text to strings using the + operator. For example, here

the + operator is being used to add two variables that are strings together:

firstName = “Bob”

lastName = “Stewart”

name = firstName + lastName

The value of the name variable would now be Bob Stewart. The process

of adding two strings together is known as concatenation.

You can also compare strings using the comparison operators you just

met. For example, you could check whether a user has entered a specific

value into a text box.

There are three simple data types in JavaScript:

 Number: Used to perform arithmetic operations (addition,

subtraction, multiplication, and division).

 Any whole number or decimal number that does not appear

between quotation marks is considered a number.

 String: Used to handle text. It is a set of characters enclosed by

quotation marks.

 Boolean: A Boolean value has only two possible values: true and

false. This data allows you to perform logical operations and

check whether something is true or false. You may well come

across two other data types:

 Null: Indicates that a value does not exist. This is written using

the keyword null. This is an important value because it explicitly

states that no value has been given. This can mean a very

different thing from a string that just contains a space or a zero.

 Undefined: Indicates a situation where the value has not been

defined previously in code and uses the JavaScript keyword

undefined. You might remember that if you declare a variable but

do not give it a value, the variable is said to be undefined (you

are particularly likely to see this when something is not right in

your code).

7.5 Keywords

There are several keywords in JavaScript that perform functions, such as

break, for, if, and while, all of which have special meaning; therefore,

these words should not be used in variable, function, method, or object

names. The following is a list of the keywords that you should avoid

using (some of these are not actually used yet, but are reserved for future

use):

abstract, boolean, break, byte, case, catch, char, class, const, continue,

default, do, double, else, extends, false, final, finally, float, for, function,

90

Contents 90

goto, if, implements, import, in, instanceof, int, interface, long, native,

new, null, package, private, protected, public, return, short, static, super,

switch, synchronized, this, throw, throws, transient, true, try, var, void,

while, with.

If you are working on a page that contains more than one scripting

language, in order to indicate the default scripting language, a <meta>

element should be used in the <head> of the document.

<meta http-equiv=”Content-Script-Type” content=”text/JavaScript”>

7.6 Function and Function Call

A function is some code that is executed when an event fires or a call to

that function is made, and typically a function contains several lines of

code. Functions are either written in the <head> element and can be

reused in several places within the page, or in an external file that is

linked from inside the <head> element.

There are three parts to creating or defining a function:

 Define a name for it.

 Indicate any values that might be required as arguments.

 Add statements.

For example, if you want to create a function to calculate the area of a

rectangle, you might name the function calculateArea() (remembering a

function name should be followed by parentheses). Then in order to

calculate the area, you need to know the rectangle’s width and height, so

these would be passed in as arguments (arguments are the information the

function needs to do its job). Inside the function between the curly braces

are the statements, which indicate that area is equal to the width

multiplied by the height (both of which have been passed into the

function). The area is then returned.

function calculateArea(width, height) {

area = width * height

return area

}

If a function has no arguments it should still have parentheses after its

name; for example, logOut().

The calculateArea() function does nothing sitting on its own in the head

of a document; it has to be called. In this example, you can call the

function from a simple form using the onclick event, so that when the

user clicks the Submit button the area will be calculated.

Here you can see that the form contains two text inputs for the width and

height, and these are passed as arguments to the function like:

<form name=”frmArea” action=””>

Enter the width and height of your rectangle to calculate the size:

Width: <input type=”text” name=”txtWidth” size=”5” />

Height: <input type=”text” name=”txtHeight” size=”5” />

<input type=”button” value=”Calculate area”

onclick=”alert(calculateArea(document.frmArea.txtWidth.value,

document.frmArea.txtHeight.value))” />

</form>

7.6.1 The Return Statement

Functions that return a result must use the return statement. This

statement specifies the value that will be returned to where the function

was called. The calculateArea() function, for example, returned the area

of the rectangle:

function calculateArea(width, height) {

area = width * height

return area

}

Some functions simply return true or false values. When you look at

events later in the chapter, you will see how a function that returns false

can stop an action from occurring. For example, if the function associated

with an onsubmit event on a form returns false, the form is not submitted

to the server.

7.7 Practical Tips for Writing Scripts
Before you start looking at the examples, there are a few practical hints

on developing JavaScripts that should save time.

7.7.1 Online Script

Of course, some tasks will require that you create your own scripts, but if

there is a script already written that you can use, then there’s no point

reinventing the wheel; you should consider just using that script.

Here are a couple of sites that will help you get going (and don’t forget

you can search using a search engine such as Google, too):

 www.HotScripts.com

 www.JavaScriptKit.com

 http://JavaScript.Internet.com

Even if you do not copy the script exactly, you can learn a lot by looking

at how someone else has approached the same task.

92

Contents 92

7.7.2 Reusable Functions

Along with reusing other people’s scripts and folders, you should also

write code that you can reuse yourself. So, you should aim to make your

functions as reusable as possible rather than tying each script into the one

page.

7.7.3 Using External JavaScript Files

Whenever you are going to use a script in more than one page it’s a good

idea to place it in an external JavaScript file (a technique you learned

about at the beginning of Chapter 11). For example, in the “Image

Rollovers” section later in the chapter you will see an example of a script

that creates image rollovers for a navigation bar. Your navigation will

appear on each page, so rather than including the image rollover function

in each page, you can just include the one script into every page. This has

the following three advantages:

 If you need to change something about the navigation, you need

to change only the one function, not every page.

 The file size of the pages is smaller because the JavaScript is in

one file that is included on each page rather than repeated.

 You do not have to copy and paste the same code into several

files.

7.7.4 Place Scripts in a Scripts Folder

When you use external scripts you should create a special scripts folder

—just as you would an images folder. This helps improve the

organization of your site and your directory structure. Whenever you

need to look at or change a script, you know exactly where it will be.

You should also use intuitive names for your script files so that you can

find them quickly and easily.

7.8 Form Validation

Validation can happen in two places, either in the browser using

JavaScript or on the server. The reason for the validation on the browser

is that it helps the user enter the correct data required for the job without

the form being sent to the server, being processed, and then being sent

back again if there are any errors. It’s much quicker to force the user to

fix errors before submitting the form to the server. The server then double

checks before passing the form data onto another part of the

application— this second level of validation is performed because a

simple wrong value in a database could prevent the application from

running properly, and if the user does not have JavaScript enabled, then

the application will not be compromised by the user’s submitting a value

that has not been checked using JavaScript in the browser.

Forms are usually validated using the onsubmit event handler, which

triggers a validation function stored in the head of the document (or in an

external file that is specified in the head of the document), so the values

are checked when the user presses the Submit button. The function must

then return true in order for the form to be sent. If an error is encountered,

the function returns false and the user’s form will not be sent — at which

point the form should indicate to the user where there is a problem with

what the user entered on the form.

The onsubmit event will often call a function with a name along the lines

of validate(form) or validateForm(form). Because many forms contain

several controls that require validation, you do not usually pass the values

of each item you are checking into a validation function. The function is

usually written explicitly for that form — although you can reuse the

techniques you have learned in different forms (or even reuse entire

functions for login or registration forms).

The first task in a validation function is to set a variable for the return

value of the function to be true. Then the values entered are checked, and

whenever the function finds an error in what the user has entered, this

value can be turned to false to prevent the form from being submitted.

7.8.1 Checking Text Fields

You have probably seen forms on web sites that ask you to provide a

username and password, and then to re-enter the password to make sure

you did not mistype something. It might resemble Figure 7-1.

Figure 7.4: Validating Text fields

In such a form you might want to check a few things:

 That the username is of a minimum length

 That the password is of a minimum length

 That the two passwords match

The validate() function you are about to look at will live between the

following <script> tags in the head of the document (remember, if you

were going to reuse the function on other pages it could live in an

external JavaScript file):

<script type=”text/JavaScript”>

</script>

To start, the validation() function assigns a variable called returnValue to

true; if no errors are found this will be the value that the function returns,

94

Contents 94

which will allow the form to be sent. Then the form collects the values of

the form controls into variables, as follows:

function validate(form) {

var returnValue = true;

var username = frmRegister.txtUserName.value;

var password1 = frmRegister.txtPassword.value;

var password2 = frmRegister.txtPassword2.value;

The first thing you want to do is check whether the username is at

least six characters long:

if(username.length < 6) {

returnValue = false;

alert(“Your username must be at least\n6 characters long.\n

Please try again.”);

frmRegister.txtUserName.focus();

}

The length property of the username variable is used to check whether the

length of the username entered is longer than six characters. If it is not,

the return value of the function will be false, the form will not be

submitted, and the user will see an alert box with the specified error

message. Note how the focus is passed back to the form control that has a

problem using the focus() method on this control, saving the user from

looking through the form to find that entry again. You can also see from

this example how the line break is used in the alert box to indicate breaks

in the message presented to the user \n.

Next you want to check the length of the first password —this uses the

same approach but also sets both of the password boxes to blank again if

the password is not long enough and gives focus to the first password

box:

if (password1.length < 6) {

returnValue = false;

alert(“Your password must be at least\n6 characters long.\n

Please try again.”);

frmRegister.txtPassword.value = “”;

frmRegister.txtPassword2.value = “”;

frmRegister.txtPassword.focus();

}

If the code has gotten this far, the username and first password are both

long enough. Now, you just have to check whether the value of the first

password box is the same as the second one, as shown here. Remember

that the != operator used in this condition means “not equal”:

if (password1.value != password2.value) {

returnValue = false;

alter(“Your password entries did not match.\nPlease try again.”);

frmRegister.txtPassword.value = “”;

frmRegister.txtPassword2.value = “”;

frm Register.txtPassword.focus();

}

You can see here that when the user has entered passwords that do not

match, the user is shown an alert box with an error message reporting that

the password entries did not match. Also the contents of both password

inputs are cleared and the focus is passed back to the first password box.

When the user makes a mistake with a password input, there is no point

in leaving values in the password form controls because users will not be

able to see the values they have entered into these boxes (because it will

show dots or asterisks rather than the characters). Therefore, users will

have to enter both values again because they will not be able to see where

the error is.

The only thing left to do is return the value of the returnValue variable —

which will be true if all the conditions are met or false if not.

return returnValue;

}

Here is the form that is used with this example:

<form name=”frmRegister” method=”post” action=”register.aspx”

onsubmit=”return validate(this);”>

<div class=”label”><label

for=”txtUsername”>Username:</label></div>

<div class=”formElement”>

<input type=”text” name=”txtUserName” id=”txtUserName”

size=”12” />

</div>

<div class=”label”><label for=”txtPassword”>Password:

</td></label></div>

<div class=”formElement”>

<input type=”password” name=”txtPassword” id=”txtPassword”

size=”12” />

</div>

<div class=”label”><label for=”txtPassword2”>Confirm your

password:</label></div>

<div class=”formElement”>

96

Contents 96

<input type=”password” name=”txtPassword2”

id=”txtPassword2” s ize=”12” />

</div>

<div class=”label”> </label></div>

<div class=”formElement”><input type=”submit” value=”Log

in” /></div>

</form>

In Figure 7.5 you can see the result if the user’s password is not long

enough.

Figure 7.5: Validating Text fields

7.8.2 Required Text Fields

Often you will want to ensure that a user has entered some value into a

text field. You can do this for an individual element using the technique

you saw in the last example for the username. As you saw then, if users

entered a value that was less than six characters long they were alerted,

and the form would not submit.

You can see this function working with a form that is very similar to the

one in the last example, although the values for the name attributes have

to be descriptive for the user and match the labels for those forms

<form name=”frmEnquiry” method=”post” action=”register.aspx”

onsubmit=”return validate(this);”>

<div class=”label”><label for=”Name”>Name:</div>

<div class=”formElement”>

<input type=”text” class=”required” name=”Name” size=”12”

id=”Name” />

</div>

<div class=”label”><label for=”E-mail”>E-mail:</div>

<div class=”formElement”>

<input type=”text” class=”required” name=”E-mail” size=”12”

id=”E-mail” />

</div>

<div class=”label”><label for=”txtEmail”>Please enter your query

here:</div>

<div class=”formElement”>

<textarea rows=”8” class=”required” cols=”30” name=”Query”

id=”Query”>

</textarea>

</div>

<div class=”label”><label for=”txtEmail”> </div>

<div class=”formElement”>

<input type=”submit” class=”” value=”Submit your query” />

</div>

</form>

Figure 7.6 shows the error message generated when the user has not

entered a value for the e-mail address. The word e-mail in quotes has

been retrieved from the name attribute of that text input.

98

Contents 98

Figure 7.6: Required Text field

7.8.3 Preventing a Form Submission Until a

Checkbox Has Been Selected

If you want to ensure that a checkbox has been selected — for example, if

you want a user to agree to certain terms and conditions — you can do so

by adding a function to the onsubmit event handler similar to those you

have seen already.

The function checks whether the checkbox has been checked, and if

The function returns true the form will be submitted. If the function

returns false, the user would be prompted to check the box:

function checkCheckBox(myForm){

 if (myForm.agree.checked == false)

 {

alert(‘You must agree to terms and conditions to

continue’);

return false;

} else

return true;

 }

Another common technique is to use script to simply disable the Submit

button until users have clicked the box to say that they agree with the

terms and conditions.

The following is a very simple page with a form. When the page loads,

the Submit button is disabled in the onload event. If the user clicks the

chkAgree checkbox, then the Submit button will be re-enable:

<body onload=”document.frmAgree.btnSubmit.disabled=true”>

<form name=”frmAgree” action=”test.aspx” method=”post”>

I understand that this software has no liability:

<input type=”checkbox” value=”0” name=”chkAgree” id=”chkAgree”

onclick=”document.frmAgree.btnSubmit.disabled=false” />

<input type=”submit” name=”btnSubmit” value=”Go to download” />

<p>You will not be able to submit this form unless you agree to the

terms and conditions and check the terms and

conditions box.</p>

</form>

</body>

Figure 7.7: Disabling form submission

7.8.4 Testing Characters Using Test and

Regular Expressions

Regular Expressions can also be used to test patterns of strings entered by

users. For example, they can be used to test whether there are any spaces

in a string, whether the string follows the format of an e-mail address,

whether it’s an amount of currency, and so on. This uses the test() method

like so: first you set variables to hold the return value of true, the value

entered by a user, and a value to hold the Regular Expression.

function validate(form) {

var returnValue = true;

var amountEntered = document.frmCurrency.txtAmount.value;

var currencyFormat = /^ \d+(\.\d{1,2})?$/;

Then you test whether the value follows the correct format — if it does

not, you alert the user, give focus back to the correct form element, and

set the returnValue variable to false:

if (currencyFormat != test(amountEntered))

{

alert(“You did not enter an amount of money”);

document.frmCurrency.txtAmount.focus();

returnValue = false;

}

return returnValue;

}

Here is the simple form to test this example:

<form name=”myForm” onsubmit=”return validate(this);”

action=”money.aspx” method=”get”>

Enter an amount of money here $

<input type=”text” name=”txtAmount” id=”txtAmount” size=”7” />

100

Contents 100

<input type=”submit” value=”Check format” />

</form>

The following table that follows lists some helpful regular expressions

that you can use to get you started:

Figure 7.8: Examples of regular expressions

7.9 When Not To Use JavaScript

7.9.1 Drop-Down Navigation Menus

One of the more common requests is for drop-down navigation menus

where subpages drop down from the main items on the menu. These rely

on JavaScript, and I discourage clients from using them for three reasons:

 The technique simply will not work for those who have

JavaScript turned off on their browser. While this is quite a small

percentage, it does mean that those users simply cannot access

those pages.

 The technique tends to perform slightly differently on different

browsers, and it’s hard to get a script to work on all browsers.

 Users can find it difficult to click the appropriate part of a menu

that moves (especially if they have a disability or a sticky

mouse).

7.9.2 Hiding Your E-mail Address

Several articles on the Web that suggest you can use JavaScript to write

your e-mail address to pages (using the write() method of the document

object to write out the e-mail address, rather than a normal <a> link and

XHTML). The goal is to avoid getting so much spam. Among sources for

spam are little programs (that often go under the name of bots, spiders, or

crawlers) that crawl through web sites looking for e-mail addresses.

These e-mail addresses are then used as a target for spam. The problem

with this idea is that anyone without JavaScript turned on in their browser

will not be able to see your e-mail address.

A better alternative is to provide an e-mail form that sends inquiries to

you — then once you have received an inquiry you can be fairly sure the

user will not be doing this just to get an e-mail address and that you are

safe giving your e-mail address to this user.

7.9.3 Quick Jump Select Boxes

Some sites offer select boxes in forms as a navigation menu —often

referred to as a quick jump menu that takes you directly to different pages

or sections of the site when you select that item from the drop-down list

box. Some of these use scripts to automatically take the user to the

selected page without the user’s actually pressing a GO or Submit button.

Rather, the script is set up to detect a change in the select box and then to

take the user to that page. This is bad practice for two reasons:

 You can use the up and down arrow keys to select items from a

select box, and any user who tried to do this would automatically

get taken to the first selection as soon as he or she pressed the

down arrow the first time. Users would never be able to get

further than this option using keys. While a savvy user might

pick this up quickly, those with disabilities who are using keys

rather than a mouse to navigate the site might be a lot more

frustrated.

 And again, if the user has JavaScript disabled, it simply won’t

work.

7.9.4 Anything the User Requires from Your

Site

The bottom line in the decision on using JavaScript is whether it will

simply enhance the user experience or whether it is required for the user

to perform an action or see some vital information. You should never

design anything that requires JavaScript in order to function —remember

the lesson from the “Disabling a Submit Button until a Checkbox Has

Been Selected” section.

Study Session Summary

Summary

In this Study Session, we discussed that

1. JavaScript is by far the most popular script for use in a browser

amongst other scripting languages such as VBScript or Perl.

2. Where you put your JavaScript within a page is very important.

If you put it in the body of a page — as in this example — then

it will run (or execute) as the page loads.

3. Variables are named memory location used to store data. The

type of value a variable store is called Data type.

102

Contents 102

4. Keywords are reserved words that perform functions, such as

break, for, if, and while, all of which have special meaning.

5. The operator itself is a keyword or symbol that does something

to a value when used in an expression. There are four types:

arithmetic, logical, String, comparison.

6. An expression is just like a mathematical expression. The values

are known as operands.

7. Validation can happen in two places, either in the browser using

JavaScript or on the server.

8. The reason for the validation on the browser is that it helps the

user enter the correct data.

9. Forms are usually validated using the onsubmit event handler

10. One of the key things to remember, however, is that you should

use JavaScript to enhance a page, rather than relying on it to

display content or offer some functionality.

Assessment

Assignment

1. What are variables, data types and constants?

2. Mention the various Life scopes of variables that you know.

3. Mention the types of operators you know, with examples

4. What are functions?

5. Why do we need to use functions?

6. Write a JavaScript to compute the age of a student who enters

his/her date of birth.

Study Session 8

Web Programming in PHP (Server

side)

Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we explained JavaScript as an object-

oriented computer programming language commonly used to create

interactive effects within web browsers. In this study session, we will

learn how to use the server side scripting language to add dynamic effect

to our website. Such effects includes server side form validation,

transmitting information or data from page to page and also accessing the

database.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

8.1 examine the difference between tags, elements and attributes

8.2 outline how a web page uses markup to describe how the

page should be structured

8.3 use the elements that allow you to mark up text such as

headings and paragraphs

8.4 use elements that can add additional presentation

information and phrasing to your documents

8.5 add bulleted and numbered lists to documents

8.6 distinguish different types of elements in XHTML

Terminology

PHP Acronym for hypertext pre-processor, its defined as an
HTML-embedded scripting language that is used to write
web pages.

PHP Constant A constant is an identifier (name) for a simple value. The
value cannot be changed during the script. A valid constant
name starts with a letter or underscore (no $ sign before
the constant name). Note: Unlike variables, constants are
automatically global across the entire script.

Operator This a property that determines how operators of the same

104

Contents 104

Precedence precedence are grouped in the absence of parentheses.

8.1 PHP: Hypertext Preprocessor
 PHP

or hypertext preprocessor

is defined as an HTML-

embedded scripting

language that is used to

write web pages.

PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

Common uses of PHP:

PHP performs system functions, i.e. from files on a system it can create,

open, read, write, and close them. The other uses of PHP are:
PHP can handle forms, i.e. gather data from files, save data to a file, thru
email

 You can send data, return data to the user.
 You add, delete, modify elements within your database thru PHP.
 Access cookies variables and set cookies.
 Using PHP, you can restrict users to access some pages of your

website.
 It can encrypt data.

8.2 Escape to PHP
The PHP parsing engine needs a way to differentiate PHP code from

other elements in the page. The mechanism for doing so is known as

'escaping to PHP.' There are four ways to do this:

Canonical PHP tags

The most universally effective PHP tag style is:

<?php...?>

If you use this style, you can be positive that your tags will always be

correctly interpreted.

Short-open (SGML-style) tags

Short or short-open tags look like this:

<?...?>

Short tags are, as one might expect, the shortest option You must do one

of two things to enable PHP to recognize the tags:

 Choose the --enable-short-tags configuration option when you're

building PHP.

 Set the short_open_tag setting in your php.ini file to on. This

option must be

 disabled to parse XML with PHP because the same syntax is used

for XML tags.

ASP-style tags

ASP-style tags mimic the tags used by Active Server Pages to delineate

code blocks. ASPstyle tags look like this:

<%...%>

To use ASP-style tags, you will need to set the configuration option in

your php.ini file.

HTML script tags

HTML script tags look like this:

<script language="PHP">...</script>

"Hello World" Script in PHP

To get a feel for PHP, first start with simple PHP scripts. Since "Hello,

World!" is an essential example, first we will create a friendly little

"Hello, World!" script.

As mentioned earlier, PHP is embedded in HTML. That means that in

amongst your normal HTML (or XHTML if you're cutting-edge) you'll

have PHP statements like this:

<html>

<head>

 <title>Hello World</title>

<body>

 <?php echo "Hello, World!";?>

</body>

</html>

It will produce following result:

Hello, World!

If you examine the HTML output of the above example, you'll notice that

the PHP code is not present in the file sent from the server to your Web

browser. All of the PHP present in the Web page is processed and

stripped from the page; the only thing returned to the client from the Web

server is pure HTML output.

8.3 Commenting PHP Code

A comment is the portion of a program that exists only for the human

reader and stripped out before displaying the programs result. There are

two commenting formats in PHP:

Single-line comments: They are generally used for short explanations or

notes relevant to the local code. Here are the examples of single line

comments.

<?

This is a comment, and

This is the second line of the comment

// This is a comment too. Each style comments only

print "An example with single line comments";

106

Contents 106

?>

Multi-lines printing: Here are the examples to print multiple lines in a

single print statement:

<?

First Example

print <<<END

This uses the "here document" syntax to output

multiple lines with $variable interpolation. Note

that the here document terminator must appear on a

line with just a semicolon no extra whitespace!

END;

Second Example

print "This spans

multiple lines. The newlines will be

output as well";

?>

Multi-lines comments: They are generally used to provide pseudocode

algorithms and more detailed explanations when necessary. The multiline

style of commenting is the same as in C. Here is the example of multi

lines comments.

<?

/* This is a comment with multiline

 Author : Mohammad Mohtashim

 Purpose: Multiline Comments Demo

 Subject: PHP

*/

print "An example with multi line comments";

?>

8.4 PHP is whitespace insensitive

Whitespace is the stuff you type that is typically invisible on the screen,

including spaces, tabs, and carriage returns (end-of-line characters).

PHP whitespace insensitive means that it almost never matters how many

whitespace characters you have in a row. One whitespace character is the

same as many such characters.

For example, each of the following PHP statements that assigns the sum

of 2 + 2 to the variable $four is equivalent:

$four = 2 + 2; // single spaces

$four <tab>=<tab2<tab>+<tab>2 ; // spaces and tabs

$four =

2+

2; // multiple lines

8.5 PHP is case sensitive

Yeah it is true that PHP is a case sensitive language. Try out following

example:

<html>

<body>

<?

$capital = 67;

print("Variable capital is $capital
");

print("Variable CaPiTaL is $CaPiTaL
");

?>

</body>

</html>

This will produce following result:

Variable capital is 67

Variable CaPiTaL is

8.6 Statements are Expressions Terminated

by Semicolons

A statement in PHP is any expression that is followed by a semicolon

(;).Any sequence of valid PHP statements that is enclosed by the PHP

tags is a valid PHP program. Here is a typical statement in PHP, which in

this case assigns a string of characters to a variable called $greeting:

 $greeting = "Welcome to PHP!";

Expressions are combinations of tokens

The smallest building blocks of PHP are the indivisible tokens, such as

numbers (3.14159), strings (.two.), variables ($two), constants (TRUE),

and the special words that make up the syntax of PHP itself like if, else,

while, for and so forth.

Braces make blocks

108

Contents 108

Although statements cannot be combined like expressions, you can

always put a sequence of statements anywhere a statement can go by

enclosing them in a set of curly braces.

Here both statements are equivalent:

if (3 == 2 + 1)

 print("Good - I haven't totally lost my mind.
");

if (3 == 2 + 1)

{

 print("Good - I haven't totally");

 print("lost my mind.
");

}

8.7 Variables

The main way to store information in the middle of a PHP program is by

using a variable.

Here are the most important things to know about variables in PHP.

 All variables in PHP are denoted with a leading dollar sign ($).

 The value of a variable is the value of its most recent assignment.

 Variables are assigned with the = operator, with the variable on

the left-hand side and the expression to be evaluated on the right.

 Variables can, but do not need, to be declared before assignment.

 Variables in PHP do not have intrinsic types - a variable does not

know in advance whether it will be used to store a number or a

string of characters.

 Variables used before they are assigned have default values.

 PHP does a good job of automatically converting types from one

to another when necessary.

 PHP variables are Perl-like.

8.8 Data types

PHP has a total of eight data types which we use to construct our

variables:

 Integers: are whole numbers, without a decimal point, like 4195.

$int_var = 12345;

$another_int = -12345 + 12345;

 Doubles: are floating-point numbers, like 3.14159 or 49.1.

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print(.$many + $many_2 = $few
.);

 Booleans: have only two possible values either true or false.

if (TRUE)

print("This will always print
");

else

print("This will never print
");

 NULL: is a special type that only has one value: NULL.

$my_var = NULL;

 Strings: are sequences of characters, like 'PHP supports string

operations.'

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Strings that are delimited by double quotes (as in "this") are

preprocessed in both the following two ways by PHP:

 Certain character sequences beginning with backslash (\) are

replaced with special characters

 Variable names (starting with $) are replaced with string

representations of their values.

The escape-sequence replacements are:

 \n is replaced by the newline character

 \r is replaced by the carriage-return character

 \t is replaced by the tab character

 \$ is replaced by the dollar sign itself ($)

 \" is replaced by a single double-quote (")

 \\ is replaced by a single backslash (\)

 Arrays: are named and indexed collections of other values.

 Objects: are instances of programmer-defined classes, which can

package up both other kinds of values and functions that are

specific to the class.

 Resources: are special variables that hold references to resources

external to PHP (such as database connections).

The first five are simple types, and the next two (arrays and objects) are

compound – the compound types can package up other arbitrary values of

arbitrary type, whereas the simple types cannot.

8.9 Constant
PHP Constant

A constant is an identifier

(name) for a simple value.

The value cannot be

changed during the script.

A valid constant name

starts with a letter or

underscore (no $ sign

before the constant name).

Note: Unlike variables,

constants are automatically

A constant is a name or an identifier for a simple value. A constant value

cannot change during the execution of the script. By default a constant is

case-sensitive. By convention, constant identifiers are always uppercase.

A constant name starts with a letter or underscore, followed by any

number of letters, numbers, or underscores. If you have defined a

constant, it can never be changed or undefined.

To define a constant you have to use define() function and to retrieve the

value of a constant, you have to simply specifying its name. Unlike with

variables, you do not need to have a constant with a $. You can also use

110

Contents 110

global across the entire

script.
the function constant() to read a constant's value if you wish to obtain the

constant's name dynamically.

constant() function

As indicated by the name, this function will return the value of the

constant.

This is useful when you want to retrieve value of a constant, but you do

not know its name, i.e. It is stored in a variable or returned by a function.

constant() example

<?php

define("MINSIZE", 50);

echo MINSIZE;

echo constant("MINSIZE"); // same thing as the previous line

?>

Only scalar data (boolean, integer, float and string) can be contained in

constants.

Differences between constants and variables are

 There is no need to write a dollar sign ($) before a constant,

where as in Variable one has to write a dollar sign.

 Constants cannot be defined by simple assignment, they may

only be defined using the define() function.

 Constants may be defined and accessed anywhere without regard

to variable scoping rules.

 Once the Constants have been set, may not be redefined or

undefined.

8.10 Operator Types

PHP language supports following type of operators.

 Arithmetic Operators: +, -, *, /, --, ++, %
<html>

<head><title>Arithmetical Operators</title><head>

<body>

<?php

$a = 42;

$b = 20;

$c = $a + $b;

echo "Addition Operation Result: $c
";

$c = $a - $b;

echo "Subtraction Operation Result: $c
";

$c = $a * $b;

echo "Multiplication Operation Result: $c
";

$c = $a / $b;

echo "Division Operation Result: $c
";

$c = $a % $b;

echo "Modulus Operation Result: $c
";

$c = $a++;

echo "Increment Operation Result: $c
";

$c = $a--;

echo "Decrement Operation Result: $c
";

?>

</body>

</html>

This will produce the following result:

Addition Operation Result: 62

Subtraction Operation Result: 22

Multiplication Operation Result: 840

Division Operation Result: 2.1

Modulus Operation Result: 2

Increment Operation Result: 42

Decrement Operation Result: 43

 Comparison Operators: >=, <=, <, >, ==, !=

<html>

<head><title>Comparison Operators</title><head>

<body>

<?php

$a = 42;

$b = 20;

if($a == $b){

echo "TEST1 : a is equal to b
";

}else{

echo "TEST1 : a is not equal to b
";

}

if($a > $b){

echo "TEST2 : a is greater than b
";

}else{

echo "TEST2 : a is not greater than b
";

}

if($a < $b){

echo "TEST3 : a is less than b
";

}else{

echo "TEST3 : a is not less than b
";

}

if($a != $b){

echo "TEST4 : a is not equal to b
";

}else{

echo "TEST4 : a is equal to b
";

}

if($a >= $b){

echo "TEST5 : a is either greater than or equal to b
";

}else{

echo "TEST5 : a is neither greater than nor equal to b
";

}

if($a <= $b){

echo "TEST6 : a is either less than or equal to b
";

112

Contents 112

}else{

echo "TEST6 : a is neither less than nor equal to b
";

}

?>

</body>

</html>

This will produce the following result:

TEST1 : a is not equal to b

TEST2 : a is greater than b

TEST3 : a is not less than b

TEST4 : a is not equal to b

TEST5 : a is either greater than or equal to b

TEST6 : a is neither less than nor equal to b

 Logical (or Relational) Operators: and, or, &&, | |, !

<html>

<head><title>Logical Operators</title><head>

<body>

<?php

$a = 42;

$b = 0;

if($a && $b){

echo "TEST1 : Both a and b are true
";

}else{

echo "TEST1 : Either a or b is false
";

}

if($a and $b){

echo "TEST2 : Both a and b are true
";

}else{

echo "TEST2 : Either a or b is false
";

}

if($a || $b){

echo "TEST3 : Either a or b is true
";

}else{

echo "TEST3 : Both a and b are false
";

}

if($a or $b){

echo "TEST4 : Either a or b is true
";

}else{

echo "TEST4 : Both a and b are false
";

}

$a = 10;

$b = 20;

if($a){

echo "TEST5 : a is true
";

}else{

echo "TEST5 : a is false
";

}

if($b){

echo "TEST6 : b is true
";

}else{

echo "TEST6 : b is false
";

}

if(!$a){

echo "TEST7 : a is true
";

}else{

echo "TEST7 : a is false
";

}

if(!$b){

echo "TEST8 : b is true
";

}else{

echo "TEST8 : b is false
";

}

?>

</body>

</html>

 Assignment Operators: =, *=, /=, +=, -=, %=

<html>

<head><title>Assignment Operators</title><head>

<body>

<?php

$a = 42;

$b = 20;

$c = $a + $b; /* Assignment operator */

echo "Addition Operation Result: $c
";

$c += $a; /* c value was 42 + 20 = 62 */

echo "Add AND Assignment Operation Result: $c
";

$c -= $a; /* c value was 42 + 20 + 42 = 104 */

echo "Subtract AND Assignment Operation Result: $c
";

$c *= $a; /* c value was 104 - 42 = 62 */

echo "Multiply AND Assignment Operation Result: $c
";

$c /= $a; /* c value was 62 * 42 = 2604 */

echo "Division AND Assignment Operation Result: $c
";

$c %= $a; /* c value was 2604/42 = 62*/

echo "Modulus AND Assignment Operation Result: $c
";

?>

</body>

</html>

This will produce the following result:

Addition Operation Result: 62

Add AND Assignment Operation Result: 104

Subtract AND Assignment Operation Result: 62

Multiply AND Assignment Operation Result: 2604

Division AND Assignment Operation Result: 62

Modulus AND Assignment Operation Result: 20

 Conditional (or ternary) Operators: ?:

It first evaluates an expression for a true or false value and then

executes one of the two given statements depending upon the

result of the evaluation.

<html>

<head><title>Arithmetical Operators</title><head>

<body>

<?php

$a = 10;

114

Contents 114

$b = 20;

/* If condition is true then assign a to result otherwise b */

$result = ($a > $b) ? $a :$b;

echo "TEST1 : Value of result is $result
";

/* If condition is true then assign a to result otherwise b */

$result = ($a < $b) ? $a :$b;

echo "TEST2 : Value of result is $result
";

?>

</body>

</html>

This will produce the following result:

TEST1 : Value of result is 20

TEST2 : Value of result is 10

8.11 Operators Categories
Operator Precedence

A characteristic of

operators that indicates

when they will be evaluated

when they appear in

complex expressions.

Operators with high

precedence are evaluated

before operators with low

precedence. For example,

the multiplication operator

(*) has higher preference

than the addition operator

(+), so the expression

2+3*4 equals 14, not 20.

All the operators we have discussed above can be categorized into

following categories:

 Unary prefix operators, which precede a single operand.

 Binary operators, which take two operands and perform a variety

of arithmetic and logical operations.

 The conditional operator (a ternary operator), which takes three

operands and evaluates either the second or third expression,

depending on the evaluation of the first expression.

 Assignment operators, which assign a value to a variable.

8.11.1 Precedence of PHP Operators

Here operators with the highest precedence appear at the top of the table,

those with the lowest appear at the bottom. Within an expression, higher

precedence operators will be evaluated first.

Figure 8.1: PHP operator precedence

An array is a data structure that stores one or more similar type of values

in a single value.

For example if you want to store 100 numbers then instead of defining

100 variables its easy to define an array of 100 length.

There are three different kind of arrays and each array value is accessed

using an ID which is called array index.

 Numeric array - An array with a numeric index. Values are stored

and accessed in linear fashion

 Associative array - An array with strings as index. This stores

element values in association with key values rather than in a

strict linear index order.

 Multidimensional array - An array containing one or more arrays

and values are accessed using multiple indices

NOTE: Built-in array functions is given in function reference PHP Array

Functions

8.12 PHP Code

PHP code starts out looking like HTML code and ends up looking

nothing like it. If you’ve looked at HTML code, you’ve seen things that

look like “” or “<h2>”. You will put your PHP code between “<?”

and “?>”.

For example, the following web page will display the current time:

116

Contents 116

<html>

 <head>

 <title>My PHP Page</title>

 </head>

 <body>

 <h1>PHP Test Page</h1>

 <p>The current time is <?echo date('h:i A')?></p>

 </body>

</html>

Except for the php part, this looks like a normal web page. The only PHP

part is the “<?echo date('h:i A')?>”. If you save this file as “test.php” on

your web site, and then view it, you will see the current time every time

you reload your page.

8.13 Functions
PHP uses functions to get things done. The functions we just used are the

“echo” function and the “date” function. The ‘echo’ function is simple.

Whatever you give it, it ‘echoes’ to the web page.

In this case, we gave it the ‘date’ function. The ‘date’ function returns the

current date and time in whatever format you want. The format code we

used was “h:i A”. This means we want the hour, a colon, the minute, a

space, and either AM or PM. If it is currently March 9, 10:11 AM and 14

seconds, this will give us “10:11 AM”, which the “echo” function inserts

as part of the web page.

8.14 PHP with Forms
PHP is designed to be used with HTML forms. Add the following to the

body of your test file:

<?

$color = $_REQUEST["color"];

IF ($color):

?>

<p style="color: <?echo $color?>">

You said your favorite color was <?echo $color?>.

</p>

<?

ENDIF

?>

<form method="post" action="test.php">

<p>

What is your favorite color?

<input type="text" name="color" value="<?echo $color?>" />

</p>

<input type="submit" />

</form>

This is a one-field form. It just asks for the reader’s favorite color. The

form’s “action” is the file itself: any php file can also be a form

interpreter. The only field we have is the field ‘color’, so PHP

automatically creates a container called “$color” which contains what the

reader typed in that field.

The line “$color = $_REQUEST["color"];” tells PHP to take the

“request” called “color” and place that in the container called “$color”.

PHP puts form data into a list called “$_REQUEST”.

You can ask for each form item by name in that list.

The line “IF ($color):” tells PHP that we only want to do the next few

lines (until the “<?ENDIF ?>”) if the variable “$color” exists and has

something in it. If this is the first time the reader viewed the page, or the

reader pressed the submit button without typing a favorite color, “$color”

will be empty, and those lines will be skipped.

We make use of the “echo” function to set the color of the “You said…”

line, and to pre-fill the field if they’ve already filled out the form once.

Notice that we moved in and out of HTML in this example. We start with

PHP, switch—while still in the “if” area—to HTML, and then switch

back to PHP.

Sometimes you’ll want to know whether the field exists rather than, or in

addition to, whether it actually has anything in it. You can use a function

called “isset” to determine this. Rewrite your web page so that it reads:

<?

$color = $_REQUEST ["color"];

IF (isset($color)):

IF ($color == ""):

echo "<p>You need to enter a color!</p>\n";

ELSE:

?>

<p style="color: <?echo $color?>">

You said your favorite color was <?echo $color?>.

</p>

<?

118

Contents 118

?>

ENDIF;

ELSE:

echo "<p>Welcome to our color extravaganza!</p>\n";

ENDIF;

<form method="post" action="test.php">

<p>

What is your favorite color?

<input type="text" name="color" value="<?echo $color?>" />

</p>

<input type="submit" />

</form>

You’ll notice a couple of changes here. First, we have an IF inside of our

IF block. This is perfectly reasonable, and you will often do this. First, we

see if the container “$color” is “set”, that is, has it been used at all. If it

has, we go ahead and decide whether it has anything in it. In this case, we

specifically check to see if it contains “”, that is, nothing.

Here, we used two equal signs. This is the source of one of the most

common mistakes in programming. When we set a container to another

value, we use a single “=”. When we check to see what a container

contains, we use a double “==”. If you use one in place of the other, you

will have major problems.

If our $color container contains nothing, we tell them they need to enter a

color. Otherwise, we display their color.

Go ahead and try this script out. When you first visit the page, it should

welcome you. If you try to submit the form with no color, it should tell

you that you need to enter a color.

8.15 POST and GET

There are a number of “methods” that you can use to send your form data

to the server for PHP to parse. Two of the most common are “POST” and

“GET”. These each have their own place.

The GET method is very useful if you want the viewers to be able to

“come back” to the results page. For example, if you are providing a list

of rooms in a building, you might use “GET” to allow them to bookmark

a specific building. Or if you are providing a form that lets them search a

list of classes by topic, you might use GET so that they can bookmark the

topic and come back to it later to see if there are any new classes in that

topic.

The GET method also allows them to copy the URL out of their web

browser and send it by email.

So they could, for example, look up classes on a certain topic and then e-

mail a link to those classes to a friend. Search engines often use the GET

method. This allows viewers to bookmark certain searches, and it allows

them to send the search results to friends or colleagues.

The POST method is not bookmarkable. You should use POST if you do

not want the user to be able to “come back” to this page. For example, if

they are purchasing something you don’t want them to submit the

purchase twice. If they are deleting something from your database,

coming back a second time will probably just result in an error; if they

are inserting something into your database, they may end up inserting it

twice if you aren’t careful with your PHP code.

POST information is also somewhat more secure. GET information is

part of the URL. This means that it is also stored in the web server’s logs.

Anyone who can see those logs can see the form information. Even if the

server itself is a secure server, GET information is still posted to the logs.

If your form requests secure or private information, you should use POST

to submit it.

If they are going to be submitting a lot of data, you will need to use

POST. Web browsers and web servers can “truncate” GET submissions.

The limit on the size of a GET submission is highly variable but the

general recommendation is that if the form data is likely to approach

1,024 bytes, go with the POST method. This is probably part of the

reason that search engines, which want to be bookmarkable, will

abbreviate their form fields to two-letter or one-letter fieldnames.

8.16 PHP with E-MAIL

There is also a function that sends e-mail from PHP. You can take form

results and compile them into an e-mail message, and send that e-mail to

yourself.

The ‘mail’ function has three parts: the address you’re sending to, the

subject of the message, and the body of the message. Add the bold

sections below:

<?

$color = $_REQUEST["color"];

$name = $_REQUEST["name"];

IF (isset($color)):

IF ($color == "" || $name == ""):

echo "<p>You need to enter a color and a name!</p>\n";

ELSE:

//send me an e-mail with their favorite

$subject = "$name's favorite color";

$sendto = "youraddress@wherever.com";

$message = "$name said their favorite color was $color.";

120

Contents 120

mail($sendto,$subject,$message);

//display their favorite color

$color = strtolower($color);

$color = trim($color);

IF ($color == "white"):

$bgcolor = "grey";

ELSE:

$bgcolor = "white";

ENDIF;

?>

<p style="color: <?echo $color?>; background-color: <?echo

$bgcolor?>;">

You said your favorite color was <?echo $color?>.

</p>

<?

ENDIF;

ELSE:

echo "<p>Welcome to our color extravaganza!</p>\n";

ENDIF;

?>

<form method="post" action="test.php">

<p>

What is your favorite color?

<input type="text" name="color" value="<?echo $color?>" />

What is your name?

<input type="text" name="name" value="<?echo $name?>" />

</p>

<input type="submit" />

</form>

Here, the function (mail) takes more than one “argument”. Each item

between commas, between the parentheses, is an “argument” to the

function. We’re sending “mail()”arguments to specify the address the

message should go to, the subject of the message, and the body of the

message.

Don’t forget to replace “youraddress” with your e-mail address!

Finally, notice the two lines that begin with double slashes. PHP ignores

any line that begins with double slashes. We can use this to put comments

in our script. When you have any script larger than a few lines, it is very

useful to comment each piece of the script so that you can remember

what that piece’s purpose is later.

8.17 Error Reporting
If you did not receive that error (and if PHP still did not work) it may be

that you do not have error reporting turned on. At the very top of your

web page, in the php, add:

error_reporting(E_ALL ^ E_NOTICE);

This turns on all errors, and then turns off notices.

Study Session Summary

Summary

In this Study Session, we discussed that

1. PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

2. PHP is a server side scripting language that is embedded in

HTML. It is used to manage dynamic content, databases, session

tracking, even build entire ecommerce sites.

3. It is integrated with a number of popular databases, including

MySQL, PostgreSQL, Oracle, Sybase, Informix, and Microsoft

SQL Server.

4. PHP is pleasingly zippy in its execution, especially when

compiled as an Apache module on the Unix side. The MySQL

server, once started, executes even very complex queries with

huge result sets in record-setting time.

5. PHP supports a large number of major protocols such as POP3,

IMAP, and LDAP.

6. PHP4 added support for Java and distributed object architectures

(COM and CORBA), making n-tier development a possibility

for the first time.

7. PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

8. There are four ways to escape PHP, namely Canonical PHP tags,

Short-open (SGML-style) tags, ASP-style tags, HTML script

tags.

9. A comment is the portion of a program that exists only for the

human reader. There are two types, namely Single-line

comments- used for short explanations and Multi-lines

comments - to provide pseudocode algorithms and more detailed

explanations when necessary.

10. A statement in PHP is any expression that is followed by a

semicolon (;).Any sequence of valid PHP statements that is

enclosed by the PHP tags is a valid PHP program.

11. The main way to store information in the middle of a PHP

program is by using a variable.

12. PHP has a total of eight data types which we use to construct our

122

Contents 122

variables: Integers, Doubles, Booleans, NULL, Strings.

13. Arrays: are named and indexed collections of other values.

14. Objects: are instances of programmer-defined classes

15. A constant is a name or an identifier for a simple value.

16. The Arithmetic Operators in PHP are: +, -, *, /, --, ++, %

17. The Comparison Operators in PHP are: >=, <=, <, >, ==, !=

18. The Logical (or Relational) Operators in PHP are: and, or, &&, |

|, !

19. The Assignment Operators in PHP are: =, *=, /=, +=, -=, %=

20. The Conditional (or ternary) Operator in PHP is ?:

21. The operator precedence in PHP can be represented by an

acronym: UMARELLCA (U-Unary, M-Multiplication, A-

Addition, Relational, C-Comparison, L-Logical, C-Conditional,

A-Assignment).

22. There are two methods that can use to send form data to the

server for PHP to parse. They are “POST” and “GET”. This

each has its own place.

23. PHP has feature for capturing error.

Assessment

Assignment

1. What are variables, data types and constants?

2. Mention the types of operators you know, with examples

3. What are functions?

4. Why do we need to use functions?

5. Write a PHP Script to compute the age of a student who enters

his/her date of birth.

6. What is a Statement?

7. Differentiate between a Variable and a Constant.

Study Session 9

Concurrency Programming for the

Web
Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we learnt how to use Hypertext Pre-

processor (PHP) to create dynamic webpages by adding various functions

like; sending email, sharing data from page to page. e.t.c to our website.

In this study session, we will discuss how an operating system manage

multiple requests by the same user without having to have multiple copies

of the programming running in the computer.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

9.1 use concurrency

9.2 use thread

9.3 express multithreading

9.4 create threads

Terminology

Concurrency The ability of a database to allow multiple users to affect
multiple transactions.

Multithreading The ability of a program or an operating system process to
manage its use by more than one user at a time and to
even manage multiple requests by the same user without
having to have multiple copies of the programming
running in the computer.

Multiprocessor The simultaneous execution of two or more programs or
instruction sequences by separate CPUs under integrated
control.

124

Contents 124

9.1 Concurrency
Concurrency

The property of program,

algorithm, or problem

decomposability into order-

independent or partially-

ordered components or

units.

Multiprocessor

A computer with more than

one central processor.

If you have a multiprocessor or a distributed system you will have

concurrency, since in these systems there is more than one CPU

executing instructions. Similarly, most hardware has separate parts that

can change state simultaneously and independently. But suppose your

system consists of a single CPU running a program. Then you can

certainly arrange for concurrency by multiplexing that CPU among

several tasks, but why would you want to do this? Since the CPU can

only execute one instruction at a time, it isn’t entirely obvious that there

is any advantage to concurrency. Why not get one task done before

moving on to the next one?

There are only two possible reasons:

1. A task might have to wait for something else to complete

before it can proceed, for instance for a disk read. But this

means that there is some concurrent task that is going to

complete, in the example an I/O device, the disk. So we have

concurrency in any system that has I/O, even when there is

only one CPU.

2. Something else might have to wait for the result of one task

but not for the rest of the computation, for example a human

user. But this means that there is some concurrent task that is

waiting, in the example the user. Again we have concurrency

in any system that has I/O.

In the first case one task must wait for I/O, and we can get more work

done by running another task on the CPU, rather than letting it idle during

the wait. Thus the concurrency of the I/O system leads to concurrency on

the CPU. If the I/O wait is explicit in the program, the programmer can

know when other tasks might run; this is often called a ‘non-preemptive’

system, because it has sequential semantics except when the program

explicitly allows concurrent activity by waiting. But if the I/O is done at

some low level of abstraction, higher levels may be quite unaware of it.

The most insidious example of this is I/O caused by the virtual memory

system: every instruction can cause a disk read. Such a system is called

‘preemptive’; for practical purposes a task can lose the CPU at any point,

since it’s too hard to predict which memory references might cause page

faults.

In the second case we have a motivation for true preemption: we want

some tasks to have higher priority for the CPU than others. An important

special case is interrupts, discussed below.

A concurrent program is harder to write than a sequential program, since

there are many more possible paths of execution and interactions among

the parts of the program. The canonical example is two concurrent

executions of

x := x + 1

Since this command is not atomic, x can end up with either 1 or 2,

depending on the order of execution of the expression evaluations and the

x := x + 1 assignments. The interleaved order

evaluate x + 1

evaluate x + 1

x := result

x := result

leaves x = 1, while doing both steps of one command before either step of

the other leaves

x = 2. This is called a race, because the two threads are racing each other

to get x updated.

Apart from recent hardware trends towards multi-core and multiprocessor

systems, the use of concurrency in applications is generally motivated by

performance gains. There are three different fundamental ways on how

the concurrent execution of an application can improve its performance:

9.2 Reduce Latency
A unit of work is executed in shorter time by subdivision into parts that

can be executed concurrently.

9.2.1 Hide latency

Multiple long-running tasks are executed together by the underlying

system. This is particularly effective when the tasks are blocked because

of external resources they must wait upon, such as disk or network I/O

operations.

9.2.2 Increase throughput

By executing multiple tasks concurrently, the general system throughput

can be increased. It is important to notice that this also speeds up

independent sequential tasks that have not been specifically designed for

concurrency yet. The presence of concurrency is an intrinsic property for

any kind of distributed system. Processes running on different machines

form a common system that executes code on multiple machines at the

same time.

Conceptually, all web applications can be used by various users at the

same time. Thus, a web application is also inherently concurrent. This is

not limited to the web server that must handle multiple client connections

in parallel. Also the application that executes the associated business

logic of a request and the backend data storage are confronted with

concurrency.

126

Contents 126

9.3 Multithreading
Multithreading

A technique by which a

single set of code can be

used by several processors

at different stages of

execution.

Threads are lightweight processes; they share the same address space. In

Multithreaded environment, programs make maximum use of CPU so

that the idle time can be kept to minimum. The main purpose of

multithreading is to provide simultaneous execution of two or more

parts of a program to maximum utilize the CPU time. A multithreaded

program contains two or more parts that can run concurrently. Each part

of such a program called a thread. Each thread has a separate path of its

execution. So this way a single program can perform two or more tasks

simultaneously.

There are several thread states, A thread can be in any one of the state at a

particular point of time. It can be running state. It can be ready to run

state as soon as it gets CPU time. A running thread can be suspended. A

suspended thread can be resumed. A thread can be blocked when waiting

for a resource. At any time a thread can be terminated.

Handling of multithreading in java is quite simple. A thread can be

created in two ways: 1) By extending Thread class 2) By implementing

Runnable interface.

9.3.1 Method 1: Thread creation by

implementing Runnable Interface

 One way of creating a thread is to create a class that implements

the Runnable interface. We must need to give the definition of

run() method.

 This run method is the entry point for the thread and thread will

be alive till run method finishes its execution.

 Once the thread is created it will start running when start()

method gets called. Basically start() method calls run() method

implicitly.

A Simple Example

class MultithreadingDemo implements Runnable{

 public void run(){

 System.out.println("My thread is in running state.");

 }

 public static void main(String args[]){

 MultithreadingDemo obj=new MultithreadingDemo();

 Thread tobj =new Thread(obj);

 tobj.start();

 }

}

Output:

My thread is in running state.

9.3.2 Method 2: Thread creation by extending

Thread class

This is the second way of creating a thread. Here we need to

create a new class that extends the Thread class.

 The class should override the run() method which is the entry

point for the new thread as described above.

 Call start() method to start the execution of a thread.

We will explain this method by using the same above examples.

Example 1:

class MultithreadingDemo extends Thread{

 public void run(){

 System.out.println("My thread is in running state.");

 }

 public static void main(String args[]){

 MultithreadingDemo obj=new MultithreadingDemo();

 obj.start();

 }

}

Output:

My thread is in running state.

Study Session Summary

Summary

In this Study Session, you learnt that

1. A web application is also inherently concurrent because all web

applications can be used by various users at the same time

2. Threads are lightweight processes.

3. There are several thread states: running state. ready state,

suspended state, resumed, blocked, waiting, terminated.

4. A thread can be created in two ways:

a) By extending Thread class

128

Contents 128

b) By implementing Runnable interface.

Assessment

Assignment

1. Explain the term Concurrency?

2. What do you understand by thread

3. Give reason(s) for implementing multithreading.

Study Session 10

Website Maintenance

Expected duration: 1 week or 2 contact hour

Introduction
In the previous study session, we explained concurrency as the ability of

a database to allow multiple users to affect multiple transactions. In the

study session, we will discuss how to maintain a website, the team

responsible for website maintenance.

Learning Outcomes

Outcomes

When you have studied this session, you should be able to:

10.1 define website maintenance

10.2 state the activities involved in website maintenance

10.3 identify five website maintenance team members and what

they do.

Terminology

Website

Maintenance
Keeping the current website content updated and
accurate. It is not meant to be used to completely
redesign or reinvent your website.

10.1 Website Maintenance Team
 Website Maintenance

Keeping the current website

content updated and

accurate. It is not meant to

be used to completely

redesign or reinvent your

website.

A Website Maintenance Team is responsible for expediting the

tasks of site maintenance.

The variety of roles on such a team is usually quite broad and may

include the following:

 Website Maintenance Team Leader

 Publishing Representative (Editor)

 Quality Assurance Representative

 Feedback Monitoring Representative

 Website Performance Representative

 Infrastructure Monitoring Representative

130

Contents 130

 Change Control Representative

It is worth bearing in mind that if your site is small, you may not have

to allocate one person for each activity. Instead, you could combine

several roles together.

For example, an Editor could also act as a Team Leader, as well as

look after Quality Assurance or Feedback Monitoring.

Yet, even such small teams must still have all necessary skills

represented. This is because each one is vital for maintaining a

quality web presence.

Figure 10.1: Website maintenance team

10.2 Website Scale
 Website Scale is a means of classifying a site in terms of three

parameters:

 Size

 Complexity

 Levels of activity

Any site can be represented in this way—from a small, plain text website

to a massive corporate intranet.

10.3 Website Size
A website’s size is an estimate of the total man-hours required to produce

and maintain all the content that it contains. This can then be used to

calculate the number of people required for support—particularly the

activities of Website Publishing and Quality Assurance.

10.4 Website Complexity
Complexity is a function of the intricacy of the technology used to

develop a site. There are three levels of website complexity:

10.4.1 Basic Website

Sites that simply contain plain text with perhaps a few supporting

images and downloads, e.g. PDFs.

10.4.2 Dynamic Website

On a Dynamic site content is stored in a database and published

according to the requirements of site visitors. Some also offer basic

interactive services, e.g. Discussion Forums.

10.4.3 Transactional Website

A Transactional website is one that uses the internet for facilitating

business operations or generating revenue. Sites of this type rely on

databases and other advanced technology for collecting and

processing orders. Some indicative figures for the staffing of a

Technical Team are indicated in the following table:

10.5 Website Activity

Website Activity is a measure of the traffic experienced by a site, e.g.

Page Impressions, Visitors, Visits, etc. A website with heavy activity is

unlikely to function properly without a full complement of maintenance

personnel.

A Busy site that is also Large in size and Transactional in nature may

need dozens of staff to keep it going.

The three most frequently monitored figures include:

 Visits: A visit is an instance of a unique visitor accessing a

website.

 Visitors: A visitor is the originator of a visit, i.e. the person who

browses a website.

 Page Impressions: A Page Impression is a ‘hit’ on a page that

contains content. (The recent growth of Rich Internet

Applications built on AJAX and Flash means there is now less

emphasis on this as a metric of success.)

10.6 Regular Website Maintenance Tasks

There are some regular website maintenance tasks you should perform on

a scheduled basis. Scheduling at least monthly would be the timeline to

start with.

132

Contents 132

10.6.1 Backing up Website

Backing up your website is something you should do all the time,

especially if you are the type that uses the online interface of your store

or blog to make changes. Things happen. Even though the web hosting

company says they backup the sites on their servers, their last backup

could have been before your last edit. If the server crashes for some

reason or your site gets hacked, your edits will be gone if the web hosting

company restores what they had backed up. Image loosing a whole day’s

work, just because you didn’t take a few minutes to backup the site.

10.6.2 Monitor Website Outages

If your site goes down, you want to be the first to know and not receive

an email from someone else they cannot access your site.

SiteUp is a small program that runs on your computer in the background

checking your site on a regular basis. It will notify you when the site is

down with a popup. Obviously though, your computer has to be on for it

work.

10.6.3 Check Domain Registration Information

Look up in the WHOIS records what information is recorded for your

domain name. Make sure it is correct. Sometimes when you initially sign

up for your domain you would have used an email address that is no

longer vaild. This needs to be updated as when there is a problem with

your domain or an expiry notice is sent out you won’t get the emails.

They are sent to the email address on record.

10.6.4 Test Website Speed

Testing the download speed of your site regularly is important, especially

if you have added a new feature. Web surfer has a very short attention

span. If your site is slow to load, they are not going to wait. You need to

do everything you can to improve the download speed of your site or blog

so visitors stay to read your content and hopefully provide you with

organic incoming links by spreading the word for you what a wonderful

site you have.

10.6.5 Link Check

Links become broken over time. With changes within the site and if you

referenced someone in one of your articles or somewhere else within the

site links could have changed or are broken.

The task to find broken links isn’t too hard. Just use a link checker to test

your external links and internal links at least once a month.

10.6.6 Software Updates

Third party software, like your ecommerce software, WordPress and

Joomla for example, are always updating their software. You need to

keep on top these updates and install them as soon as they come out. The

updates won’t just be new features, they will include security updates too.

10.6.7 Analyze Stats

Analyze not just your sales stats but your website stats too

10.6.8 Traffic Stats

Look at your web server stats to determine your website traffic. If your

web hosting account doesn’t have website stats then get one installed.

Something like Awstats that provides:
 Pages entered on and left on

 Time spent on the site

 Bounce rate

 Referring sites

 Countries your visitors are from

 Keywords/phrase that were used to find you

Google Analytics will provide some of this information. It may not

be as complete as a website stats program that is run from your actual

server. Are you showing up on the first page for the keywords/phrase

you want to? If you have given it some time, e.g. a few months, to get

onto the first page of the search results naturally then maybe it is time

to look at your content and revise it.

One thing a website stats program installed on your server will do

that Google Analytics doesn’t is show you who is hotlinking (linking

directly to your images on your site). e.g. your images, PDFs, reports,

etc.. These people are stealing your content and your bandwidth if

they do not have your permission to do so. With this information you

can stop the hotlink.

Are you showing up on the first page for the keywords/phrase you

want to? If you have given it some time, e.g. a few months, to get

onto the first page of the search results naturally then maybe it is time

to look at your content and revise it.

10.6.9 Reputation Management

Using Google Alerts, you can monitor your website name, your name,

your brand and your content on the web. You will know who is talking

about you. This gives you an opportunity to jump into the conversation.

Thank those who are praising you. Fix a problem that is being discussed

related to your business.

Tracking your website address with Google Alerts is 2 fold.
1. You see who is linking to you and can pop over there and say

thanks.

2. You can catch the use of your content without your permission.

10.7 Development Server or Live Server
If you have a version of your site already live and you are working on an

update, then you will need to have a different place for the new site to be

134

Contents 134

tested — this could be as simple as a different folder on your computer or

it could be a separate server altogether.

If you are making changes to an existing site, you should always work on

a separate copy of the site rather than the version the public will be

looking at. It is also good practice to have a backup copy of each version

of the site.

Once you have finished the following tests, you can then make the site

live, ready for the public.

Study Session Summary

Summary

In this Study Session, we learnt that;

1. Website Maintenance comprises all the activities needed to

ensure the operational integrity of your website.

2. The following are some of the website maintenance team:

Website Maintenance Team Leader, Publishing Representative

(Editor), Quality Assurance Representative, Feedback

Monitoring Representative, Website Performance

Representative, Infrastructure Monitoring Representative,

Change Control Representative.

Assessment

Assignment

1. What do you understand by website maintenance?

2. What are some of the activities involved in website

maintenance?

3. Name five website maintenance team members and what they

do.

References

Basic CSS (2008) Dwight VanTuyl. The LINGUIST List

Castro, E. (2003). HTML for the World Wide Web, Fifth Edition, with

XHTML and CSS: Visual QuickStart Guide. 14

Concurrent Programming for Scalable Web Architectures. Institute of

Distributed Systems Faculty of Engineering and Computer

Science, Ulm University. VS-D01-2012.

Corey Benson & Robert Girardin. A Guide to Understanding Web

Application Development, SAS Institute, Inc., Cary, NC, SAS

Institute, Inc., Cary, NC

Emmanuel Benoist.(2013-14) Web Programming in Javascript. Fall Term

2013-14

Introduction to HTML/XHTML Handout Companion to the Interactive

Media Center’s Online Tutorial. Interactive Media Center

http://library.albany.edu/imc/ 518 442-3608.

Jon Duckett (2008) Beginning Web Programming with HTML, XHTML,

and CSS. Published by Wiley Publishing, Inc. 10475 Crosspoint

Boulevard Indianapolis, IN 46256 www.wiley.com. Copyright ©

2008 by Wiley Publishing, Inc., Indianapolis, Indiana. ISBN:

978-0-470-25931-3.

Paul De Bra, Natalia Stash and David Smits. Creating Adaptive Web-

Based Applications. Eindhoven University of Technology.

Department of Computer Science. PO Box 513, NL 5600 MB

Eindhoven, Netherlands

Php for dynamic web pages. (2008) by Jerry Stratton

Php Tutorial Point: Simply Easy Learning. © Copyright 2015 by

Tutorials Point (I) Pvt. Ltd.

Practical Concurrency 6.826—Principles of Computer Systems

Sabah Al-Fedaghi (2011) Developing Web Applications. International

Journal of Software Engineering and Its Applications Vol. 5 No.

2, April, 2011

Shane Diffily Website Maintenance: An Abridged extract from the

Website Manager’s handbook by Gerry McGovern.

http://www.answers.com/topic/computer-1

http://www.webopedia.com

http://www.whatis.com

http://www.ianswer4u.com/2012/01/tree-topology-advantages-

and.html#axzz3enldQQxn

http://www.buzzle.com/articles/advantages-and-disadvantages-of-

different-network-topologies.html

136

Contents 136

http://www.journaldev.com/1854/java-web-application-tutorial-for-

beginners Access date: 5th September, 2015

http://www.vogella.com/tutorials/JavaWebTerminology/article.html

Access date: 5th September, 2015

http://www.sqa.org.uk/e-learning/ClientSide01CD/page_18.htm

Access date: 6th September, 2015

https://www.techopedia.com/definition/23898/web-programming

Access date: 6th September, 2015

http://www.webpagemistakes.ca/maintain-website/

