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General Introduction and Course Objective 

Course Curriculum Contents 

Coulomb’s law, electric charges and methods of charging. Electric field intensity and charge 

distribution in conductors and insulators of various configurations. Electric potential, potential 

gradient and the electrical potential energy. Capacitors and dielectric. Ohm’s law and analysis of 

direct-current circuits containing only resistors, cells and simple circuit laws e.g. Kirchhoff’s 

laws. The Wheatstone bridge and potentiometer and their applications. Electrodynamics of 

charged particles, Magnetic fields and magnetic forces of/on current-carrying conductors. 

Applications to measuring instruments. Concept of Electromagnetic induction and applications: 

motors, dynamos, generators, etc. A.C voltages applied to Inductors, Capacitors and resistors 

singly and combined. The transformers. 
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Study Session 1: Electric charges, Methods of charging and Coulomb’s law 

 

Expected Duration: 1 week or 2 contact hours 

 

Introduction 

The existence of electric charge both as static charge and electric current, caused by moving 

electric charges, are manifested in many ways. Lightning that is seen in the sky during 

thunderstorm is an example of the accumulation of static electric charge in clouds. The deflection 

of electron beam in your computer display, and the flow of electric current in conductors all are 

examples of moving charges. 

The effects of electric charges are experienced in many circumstances. A spark is seen when we 

try to remove our sweater or synthetic clothes from our body, particularly during dry weather. A 

sensation of an electric shock is experienced while opening the door of a car or holding the iron 

bar of a bus after sliding from our seat. The reason for these experiences is discharge of electric 

charges through our body, which were accumulated due to rubbing of insulated surfaces. In this 

session, you will learn about the two kinds of electric charges, their behavior in different 

circumstances and the forces that act between them.  

 

Learning Outcomes   

When you have studied this session, you should be able to explain: 

1.6   The two types of electric charges 

1.7    Properties of electric charges. 

1.8    Methods of charging. 

1.9    Classification of materials. 

1.10    Coulomb’s law of force between electric charges and the principle of superposition. 

 

1.1  Types of Electric Charges 

All matters are made up of atoms which consists of electrons, protons and neutrons. Electric 

charge is an electrical property of the atomic particles (electrons, protons and neutrons) of a 

matter measured in Coulombs (C). The charge ‘e ‘on an electron is negative and is equal in 

magnitude to 1.6 x 10
-19

 C. The symbol “e” represents only the magnitude of the charge on a 

proton or an electron and does not include the algebraic sign that indicates whether the 

charge is positive or negative. A proton carries a positive charge of the same magnitude as 

the electron. In a neutral atom, there are equal numbers of protons and electrons which 

makes the atom to be neutrally charged. Many experiments conducted by Benjamin Franklin 

revealed that there are two kinds of electric charges: positive and negative charges. A glass 

rod that has been rubbed with silk is commonly used as an example of identifying positive 

and negative charges. Another example is a hard rubber that has been rubbed with fur. When 



 

 

two objects are rubbed together, electrons can be transferred from one object to the other; the 

protons that are tightly bound in nuclei are not transferred. Due to the nature of atoms or 

molecules making up a substance, it may accept electrons or give up electrons when rubbed 

with another substance. For example, when silk cloth is rubbed against glass rod, electrons 

are removed from the glass rod and deposited on the silk. The silk gains electrons from glass 

because it has a greater affinity for electrons. Hence, silk having excess electrons is 

negatively charged, and glass having a deficiency of electrons is positively charged. 

Similarly, when a rubber rod is rubbed against fur, electrons are removed from the fur and 

deposited on the rubber rod. The rubber rod is said to be negatively charged because an 

excess of electrons. The fur is said to be positively charged because of deficiency of 

electrons. 

 

1.2 Properties of Electric Charges 

Many experiments can be used to explain the basic properties of electric charge which is 

considered to be one of the fundamental properties of matter. When two negatively charged 

rubber rods are brought close to each other, the two rods repel each other, as shown in fig. 

1.1a. Conversely, if a positively charged glass rod is brought near a suspended negatively 

charged rubber rod, the two rods attract each other, as shown in Fig.1.1b. Based on these 

observations, it can be concluded that there are two kinds of charges in nature; one is positive 

and the other is negative, and they obey the following properties: 

Like charges repel each other and unlike charges attract each other. 

Additionally, it was found that when one object is rubbed with another, charge is transferred 

between them, that is, charge is not created in the rubbing process. Therefore, 

The total electric charge in any isolated system is conserved or electric charge can neither 

be created nor destroyed, but it can only be transferred. 

In 1909, Robert Milikan discovered that an electric charge always occurs in integral 

multiples of a fundamental unit of charge, which is taken as the charge on an electron. In a 

modern view, the electric charge q is said to be quantized and we can write q = ne, where n 

is an integer        (n = ±1, ±2, ±3 ----) and e is charge on an electron. It means that a charged 

body cannot have 1.5e or 4.3e. Therefore, 

Charge is quantized. 

          



 

 

Figure 1.1 :  (a) A negatively charged rubber rod is repelled by another negatively charged 

rubber rod. (b) A negatively charged rubber rod suspended by a thread is attracted to a 

positively charged glass rod. 

 

 

1.3 Methods of Charging 

The process of supplying the electric charge (electrons) to an object or losing the electric 

charge from an object is called charging. There are three methods by which an uncharged 

object can be charged. The three methods are: charging by conduction, charging by friction 

and charging by induction. 

 

1.3.1 Charging by conduction 

The process of charging an uncharged object by bringing it in contact with another 

charged object is called charging by conduction. A charged object has unequal number of 

electrons and protons. Hence, when a charged object is brought in contact with the 

uncharged conductor, the electrons are transferred from the charged object to the 

conductor. This method is applicable for charging metals and other conductors. For 

instance, consider an uncharged (neutral) metal sphere resting on an insulating stand and 

a positively charged aluminum plate brought in contact with it. Suppose the uncharged 

metal sphere is now touched with the positively charged aluminum plate, there is transfer 

of electrons from the metal sphere to the positively charged aluminum plate. Hence, 

uncharged metal sphere loses electrons and charged aluminum plate gains electrons. 

Thus, uncharged metal sphere becomes positively charged by losing extra electrons (see 

fig.1.2 (i-iii) for the illustration).Similarly, uncharged conductor becomes negatively 

charged if it is brought in contact with a negatively charged conductor.  

 

 
Figure 1.2: charging a neutral object by conduction 

 

1.3.2 Charging by friction 

When an object is rubbed over another object, the electrons are transferred from one 

object to another. This transfer of electrons takes place due to friction between the two 

objects. The object that transfer electrons loses negative charge (electrons) and the object 

that accepts electrons gains the negative charge (electrons). Hence, the object that gains 

extra electrons becomes negatively charged and the object that loses electrons becomes 

positively charged. Thus, the two objects get charged by friction. This method of 



 

 

charging an object is called charging by friction. For example, when a glass rod is rubbed 

with silk, it will develop a positive charge (See fig. 1.3). This is because frictional forces 

between the silk and the glass remove electrons from the glass rod and deposit them on 

the silk.  

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 1.3: Charging by friction (When a neutral glass rod is rubbed with a 

neutral silk cloth, electrons are transferred from the glass rod to the silk cloth, leaving the 

glass rod positively charged) 

 

1.3.3 Charging by induction 

The process of charging an uncharged object by bringing another charged object near it, 

but not touching it, is called charging by induction. For example, consider an uncharged 

metal sphere and a negatively charged plastic rod a shown below in (diagram 1). If the 

negatively charged rod is brought near to an uncharged metal sphere as shown below in 

(diagram 2), charge separation occurs. The positive charges in the sphere get attracted 

towards the plastic rod and move to one end of the sphere that is closer to the plastic rod. 

Similarly, negative charges are repelled from the plastic rod and move to another end of 

the sphere that is farther away from the plastic rod. Thus, the charges in the sphere 

rearrange themselves in a way that all the positive charges are nearer to the plastic rod 

and all the negative charges are farther away from it. If this sphere is connected to a 

ground through the wire as shown in (diagram 3), free electrons of the sphere at farther 

end flow to the ground. Thus, the sphere becomes positively charged by induction. If the 

plastic rod is removed as shown in (diagram 4) all the positive charges spread uniformly 

in the sphere. 

 



 

 

 

Figure 1.4: Charging by induction 

 

 
1.4 Classification of Materials 

Materials vary in their ability to conduct electric charges, and this ability is determined by 

how tightly or loosely the electrons are held to the nucleus. Therefore, materials can be 

classified according to their ability to conduct electric charge. The materials can be classified 

as: conductors, insulators, semiconductors and superconductors. 

1.4.1 Conductors 

Conductors are materials containing some electrons that can move freely. In conductors, the 

electrons furthest away from the nucleus in the outer shell (valence electrons) are not strongly 

attracted by the nucleus of the atom. Therefore, the electrons in conductors can move around 

freely. Metals have millions of free electrons that can take part in the conduction of electric 

charge. Examples of conductors include: metals (silver, copper, gold, aluminum, iron, etc.), 

salt solution, acids, graphite, water, wet wood and the human body. When such materials are 

charged by rubbing in some small region, the charge readily distributes itself over the entire 

surface of the material. 

1.4.2 Insulators 

Materials such as glass, rubber, dry wood, diamond, plastics, paper, oil, ceramic, etc. fall into 

the category of electrical insulators or nonconductors. Electrical insulators are materials in 



 

 

which all electrons are bound are bound to atoms and cannot move freely through the 

materials. When such materials are charged by rubbing, only the area rubbed becomes 

charged and the charged particles are unable to move to other regions of the material. 

1.4.3 Semiconductors 

Semiconductors are materials that are intermediate between a good conductor and a good 

insulator. Examples of semiconductors are silicon, gallium, arsenide and germanium. The 

electrical properties of semiconductors can be changed drastically by adding certain amount 

of impurities element into their crystal structure. Some semiconductors act like insulators at 

low temperatures, while at room temperatures and above they act as conductors. For example, 

selenium (which is used on the drums of some photocopiers) depends on the amount of light it 

is exposed to. It is an insulator in the dark, but becomes a conductor when exposed to light. 

Generally, the conductivity of semiconductor increases with increasing temperature, in 

contrast to metallic conductor. Semiconductors have widespread application in the electronic 

industry due to their ability to conduct or insulate in different situations. 

1.4.4 Superconductors 

A superconductor is a material that conducts electricity without resistance below a certain 

temperature. Superconductors usually work only at very cold temperatures near absolute zero. 

Absolute zero is the temperature at which atoms have no kinetic energy and stop moving. 

This happens at -273.15
0
 which is 0 K. Some ceramic based superconductors have been 

created that work at around the same temperatures as liquid nitrogen (about -200
0
 C) which is 

very easy and cheap to make. Examples of superconductors are mercury, lead, niobium, 

niobium-titanium, germanium-niobium and niobium nitride. 

 
1.5 .1 Coulomb’s law 

Charles Coulomb (1736- 1806) studied the force exerted by one charge on another charge 

using a torsional balance. In Coulomb’s experiment, the charged sphere were much smaller 

than the distance between them so that the charges could be treated as point charge. From 

measurements made on the quantity of charge, the distance between the charges and the 

forces acting on the charges, Coulomb was able to show that the: 

(a) magnitude of the force was proportional to the product of the charges 

(b) magnitude of the force was inversely proportional to the square of the distance separating 

the charges 

(c)  direction of the force was along a line joining the centres of the charges 



 

 

(d)  force between the charges is either attractive or repulsive, depending on the nature of the 

charges. The force is repulsive if the charges have the same sign and attractive if the charges 

have opposite sign. 

 

The magnitude of the electric force F between charges 
1q  and 

2q separated by a distance r is 

given by: 
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1.5.2 Principle of Superposition 

Coulomb’s law is applicable to any pair of point charges. When more than two charges are 

present, the net force on any one charge is simply the vector sum of forces exerted on it by the 

other charges. This is the principle of superposition. For example, if three charges are present, 

the resultant force experienced by q3  due to q1 and q2 will be  

 

      F3 = F13 +F23                                             (1.4) 

              

 

Worked Examples   

   

1.1 Common static electricity involves charges ranging from nanocoulombs to microcoulombs. 

(a) How many electrons are needed to form a charge of -2.0 nC ? 

(b) How many electrons must be removed from a neutral object to leave a net charge of 0.50 

µC?    

Solution: 

(a) One electron has a charge qe = -1.6 x 10
-19

 C. The number of electrons needed to 

generate a total charge of -2.0 nC is: 



 

 

10

19

9

1025.1
106.1

100.2











C

C

q

Q
N

e

 electrons 

(b) Number of electrons to be removed from a neutral object is: 
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1.2 Consider the arrangement of charges shown in the figure1.5 below. Calculate the net 

force on charge A in each configuration if the distances are r1 = 12.0 cm and r2 = 

20.0 cm. 

                     

                                           Figure 1.5 

Solution: 

Charge A is the target and charges B and C are sources. Charge B and A have the same 

sign, so they repel. That is, charge A feels a force FBA directed in the +i direction. Charge 

C and A have the opposite sign, so they attract. That is, charge A feels a force FCA 

directed in the –i direction. The situation is shown in the fig. 1.6  below: 

                  

                            Figure 1.6 

Since we know the exact direction of these forces we need only calculate the magnitude of 

these forces: 
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In vector components form, the two forces are:  NiFBA 375.9  and  NiFCA 375.3  

The net force,  NiFFF CABAnet 00.6  

The net force acting on charge A due to the other forces is 6.00 N along the positive x axis. 

 

 

                   Figure 1.7 

The magnitudes of FBA and FCA are the same as in part (a), however, the direction of the 

force of charge C on charge A is different. That force is now FCA = +i 3.37125 N directed 

to the right as shown in the diagram below: 

 

             Figure 1.8 

 

Since the forces are along the same axis, the net force is given by: 

        NiNiNiFFF CABAnet 75.12375.3375.9   

The net force acting on charge A due to the other forces is 12.75 N along the positive x 

axis.                                                                     

 



 

 

1.3 A positive charge of +1 μC is placed between charges of 5.0 μC and 2.0 μC as shown in the 

diagram below. At what point would the net electrostatic force on it is zero? 

       

              
              Figure 1.9 

 

 

 

 Solution: 

                The charge 1 μC is placed where the force from the right 2.0 μC charge is 

cancelled by the force from the left 5.0 μC charge. Let’s assume that the 1 μC charge is some 

distance x from the 2.0 μC. 
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                     By eliminating the common factor 
1qk  gives:   
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                     Taking the square root on both sides and collecting the like term gives: 

                         
52

2
33

52

2







qq

q
x  

                          mx 162.1  

               The 1 μC charge must be placed at 1.162 m from the 2 μC charge for it to experience 

no net force. 

1.4 A certain charge Q is divided into two parts q and Q – q, which are then separated by a 

certain distance. What must q be in terms of Q in order to maximize the electrostatic repulsion 

between the two charges? 

Solution: 

  If the distance between the two (new) charges is r, then the magnitude of the forces between 

them is: 
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Since the force between the charges is repulsive, the charges Q and Q – q both have the same 

sign and q( Q – q) will yield a positive number. In order to determine the value of q which gives 

maximum F, we take the derivative of F with respect to q and find where it is zero: 
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which has the solution  
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So the maximum repulsive force is obtained by dividing the original charge Q in half. 

1.5 A neutron consists of one “up” quark of charge 
3

2e
  and two “ down” quarks each having 

charge 
3

e
 . If the down quarks are 2.6 x 10

-15
 m apart inside the neutron, what is the magnitude 

of the electrostatic force between them? 

Solution: 
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                   Figure 1.10 

       

      

We picture the two down quarks as shown in the above figure. We use Coulomb’s law to find 

the force between them. (It is repulsive since the quarks have the same charge.) The two charges 

are: 
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and the separation is r = 2.6 × 10
−15 

m. The magnitude of the force is: 
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1.6 Two point charges; CQA 6.0  and CQB 2.0 are separated by a distance of 5.0 cm. 

Find:   (a) The electric force acting on each charge. 

(b) The electric force acting on each charge if their distance is doubled. 

(c) The electric force acting on each charge if charge 
AQ is doubled. 

Solution: 

 
   + QA     FAB                                                         FBA        - QB 

 
 

            Figure 1.11 

 From Coulomb’s law, 
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(b) When the distance is doubled cmcmr 0.1020.5   
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(c) If charge 
AQ  is doubled, it becomes, CQA 2.1  
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Self-Assessment Questions (SAQs) 

 

1. (a) Explain the quantization of electric charge of a body. 

(c) Explain why quantization of electric charge can be ignored when dealing with large 

scale charges. 

 

2. Determine the total charge of 75.0 kg of electron. 

 

3.  Two identical objects with equal and opposite charges separated by a distance d exert a 

force of -2.5 N on each other. Determine the force exerted by the objects if the distance 

between them becomes 2d. 

 

4.  The magnitude of electrostatic force between two points charges q1 = 26.0µC and q2 = 

−47.0µC is 5.70 N. Calculate the distance between the two charges. 

 

5. Two small positively charged spheres have a combined charge of 5.0 × 10
−5 

C.  If each 

sphere is repelled from each other by an electrostatic force of 1.0 N when the spheres are 2.0 

m apart, what is the charge on each sphere? 



 

 

 

6. Four point charges CqCqCq CBA  2,5,2   and CqD 5 are located at the 

sides of a square which is of 10 cm side shown below. Calculate the force acting on a charge 

of C1  when placed at the centre of the square. 

     

                   
                       Figure 1.12 

 

7. In a fission , a nucleus of uranium -238, which contains 92 protons, divides into two smaller 

spheres, each having 46 protons and a radius of 5.9 x 10
-15

 m. Calculate the magnitude of the 

repulsive electric force pushing the two spheres apart. 

 

8. Two identical conducting spheres, fixed in place, attract each other with an electrostatic force 

of 0.108 N when separated by 50.0 cm, centre-to-centre. The spheres are then connected by a 

thin conducting wire. When the wire is removed, the sphere repel each other with an electrostatic 

force of 0.360 N. What were the initial charges on the spheres? 

 

 

SUMMARY 

 

In this session, you have learnt that: 

 

1. Electric charges is an electrical property of atomic particles of matter measured in 

Coulombs. Charges are of two types: positive and negative charges. Electric charge 

is responsible for the electric force. The force between two like charges is repulsive 

and is attractive between two unlike charges. 

2. Charge is conserved that is the total charge in any isolated system always remain 

constant. Therefore, electric charge can neither be created nor destroyed but it can 

only be transferred. 

3. Charge is quantized, that is, the magnitude of all charges found in nature are an 

integral multiple of a fundamental charge e , q = ne 

4. There are three methods by which an uncharged object can be charged. The three 

methods are: charging by conduction, charging by friction and charging by induction. 

5. Materials can be classified according to their ability to conduct electric charge. Materials 

can be classified as: conductors, insulators, semiconductors and superconductors. 



 

 

6. The electric force between two stationary point charges is directly proportional to the 

product of their charges and inversely proportional to the square of the distance between 

them. The force acts along the line joining the two charges. 
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7. If there are more than two charges ( nqqqq ,.......,,, 321 ) in an electrostatic field, the 

total force experienced by charges 
1q is the vector sum of the forces on 

1q  exerted 

by the other charges. This is the principle of superposition. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       



 

 

Study Session 2: Electric Field Intensity and Charge Distribution in  

                                   Conductors and Insulators of Various Configurations 

 

Expected Duration: 1 week or 2 contact hours 

Introduction 

The electric field is a way of describing how a point charge or a distribution of discrete or 

continuous charges influences the space around them. The electric field at various points around 

an electric charge distribution can be analyzed by measuring the force the distribution creates on 

a test charge. The test charge is a positive point charge of unit magnitude. It is assumed that the 

test charge does not disturb the charge distribution or creates a significant field of its own. The 

electric field E generated by a set of charges can be measured by putting a point charge q at a 

given position. The test charge will feel an electric force F. The electric field at the location of 

the point charge is defined as the force F divided by the electric charge q















q

F
E . 

The definition of the electric field shows that the electric field is a vector field: the electric field 

at each point has a magnitude and a direction. The direction of the electric field is the direction in 

which a positive charged placed at that position will move. In this session, the calculation of the 

electric field generated by various charge distributions will be discussed. In addition, the motion 

of a charged particle in a uniform electric field will be discussed. 

 

Learning Outcomes  

When you have studied this session, you should be able to explain: 

2.5  Electric field intensity and its physical significance. 

2.6  The properties of electric field lines. 

2.7  Electric dipole, dipole moment and formulate the electric field intensity due to an electric 

dipole. 

2.8  Charge density and the electric fields due to different types of continuous charge 

distributions. 

2.9  The motion of a charged particle in electric field 

 

2.1 The Electric Field Intensity and its Physical Significance 

The electrostatic force, like the gravitational force, is a force that acts at a distance, even when 

the objects are not in contact with one another. This means that electrostatic and gravitational 

forces can act across an empty vacuum, with no matter to carry them. These types of forces are 

known as field forces. Corresponding to the electrostatic force, an electric field is said to exist in 

the region of space surrounding a charged object. The electric field exerts an electric force on 

any other charged object within the field. An electric charge q produces an electric field 

everywhere. To quantify the strength of the field created by that charge, we can measure the 

force that a positive ‘test charge’ qo  experiences at some point. The electric field or electric 



 

 

field intensity E  produced by a charge q at the location of a small ‘test’ charge qo is defined as 

the electric force F exerted by q on qo divided by the test charge qo. It is assumed that qo is 

infinitesimally small so that the field generated by qo does not disturb the ‘source charges’. 

              
0q

F
E            or  EqF                             (2.1) 

From the field theory point of view, it is assumed that the charge q creates an electric field E  

which exerts a force EqF  on a test charge 0q . The S.I. unit for electric field is Newton per 

Coulomb (N/C). The direction of the electric field is the same as the direction of the electric 

force, since the two are related by a scalar. The dimensions of electric field are MLT
-3

A
-1

. 

Using the definition of electric field given in Eq. (2.1) and the Coulomb’s law, the electric field 

at a distance r from a point charge q is given by: 

               r
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The principle of superposition is also applicable to electric force, just as it holds for the electric 

force. Using the superposition principle, the total electric field due to a group of charges is equal 

to the vector sum of the electric fields of individual charges: 
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In electrostatics, the electric field at a point in a space around a system of charges can be 

obtained from the force that a unit positive test charge would experience when placed at that 

point without disturbing the system. Electric field is a characteristic of the system of charges and 

is independent of the test charge that is placed at a point to determine the field. The term field in 

Physics generally refers to a quantity that is defined at every point in space and may vary from 

point to point. Electric field is a vector field, since force is a vector quantity. 

The physical significance of the concept of electric field is illustrated when dealing with time 

dependent electromagnetic phenomena. Suppose we consider the force between two distant 

charges 
21 , qq in accelerated motion. Now the greatest speed with which a signal or information 

can go from one point to another is c, the speed of light. Thus, the effect of any motion of 
1q  

on 
2q cannot arise instantaneously. There will be some time delay between the effect (force on

2q ) and the cause (motion of
1q ). It is precisely here that the notion of electric field 

(electromagnetic field) is very useful. The field picture is this: the accelerated motion of charge 

1q produces electromagnetic waves, which then propagate with the speed c, reach 
2q and cause 

a force on 
2q .The notion of field accounts for the time delay. Although, electric and magnetic 

fields can be detected only by their effects (forces) on charges, they are regarded as physical 

entities which have independent dynamics of their own. They can transport energy. The concept 

of field was first introduced by Faraday and is now among the central concepts in Physics. 

 

 



 

 

2.2 Electric Field Lines 

The concept of electric fields lines was introduced by Faraday as an approach to visualize the 

electric fields. An electric field is an imaginary line drawn in such a way that the direction of its 

tangent at any point is the same as the direction of the electric field vector. The electric field 

lines for a positive and a negative charges are shown in Figure 2.1 

 

         
     (a)                                                                                                   (b) 

Figure 2.1 Field lines for (a) positive and (b) negative charges. 

 

The direction of the electric field lines is radially outward for a positive charge and radially 

inward for a negative charge. For a pair of charges of equal magnitude but opposite sign (an 

electric dipole), the field lines are shown in Figure 2.2 

         

         Figure 2.2: Electric field lines for an electric dipole. 

The rules for drawing electric field lines are as follows: 

 Electric field lines must emerge from a positive charge and end on a negative charge. For 

a system of charges that has an excess of one type of charge, some lines will emerge or 

end infinitely far away. 

 The number of lines emerging from a positive charge or ending at a negative charge is 

proportional to the magnitude of the charge. 

 Electric field lines cannot cross each other. 

An example of electric field lines generated by a charge distribution is shown in Figure 2.3 

 

                



 

 

   
 

       Figure 2.3 :Electric field produced by two point charges q = + 4 

  

 The properties of electric field lines may be summarized as follows: 

 The direction of the electric field vector E at a point is tangent to the electric field 

lines. 

 The number of lines per unit area through a surface perpendicular to the line (density 

of the lines) is proportional to the magnitude of the electric field in a given region. 

Thus, the electric field lines are closer together when the electric field is strong, and 

far apart when the field is weak. 

 

 The electric field lines must emerge from a positive charge (or at infinity) and end on 

a negative (or at infinity). For a system that has an excess of one type of charge, some 

lines will emerge or end infinitely far away. 

 

 The number of lines that originate from a positive charge or terminating on a negative 

charge must be proportional to the magnitude of the charge. 

 

 No two electric field lines can cross each other; otherwise the field would be pointing 

in two different directions at the same point. 

 

2.3 Electric Dipole 

An electric dipole consists of two equal and opposite charges, +q and –q, separated by a 

distance 2a, as shown in Figure 2.4 



 

 

                            
                            Figure 2.4:  Electric dipole 

Examples of dipole include CO, H2O and other polar molecules. The product of the 

magnitude of charge and separation between the charges is called dipole moment, P: 

                  aqP 2                  (2.4) 

Its S.I. unit is Coulomb metre. The dipole moment is a vector quantity whose magnitude 

is given by Eqn. (2.4) and its direction is from negative charge to positive charge along 

the line joining the two charges (axis of the dipole). The total charge of the dipole is zero 

but the total electric field of the dipole is not zero because the charges q and –q are 

separated by some distance. We can now determine the magnitude and direction of 

electric field due to dipole. 

 

2.3.1 Electric field of a dipole for points on the axis 

To derive an expression for the electric field of a dipole at point P which lies on the axis 

of the dipole, refer to Figure 2.5 

 
           Figure 2.5: Electric dipole for point on axis 

 

Let P be the point at a distance r from the centre of the dipole on side of charge q as 

shown in Figure 2.5 
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       p̂ Unit vector along the dipole axis (from –q to +q). Also, 
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       The total field at P is: 
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          Or, 
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         For r >> a 
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        In terms of electric dipole moment, the electric field of a dipole at large distances 

becomes: 
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Eqn. (2.8) shows that electric field is in the same direction of P and its magnitude is 

inversely proportional to the third power of distance of the observation point from the 

centre of the dipole. 

 

2.3.2 A Dipole in a uniform Electric Field 

A uniform electric field has constant magnitude and fixed direction. Such a field is 

produced between the plates of a charged parallel plate capacitor. The net force acting on 

a neutral object placed in a uniform electric field is zero. However, the electric field can 

produce a net torque if the positive and negative charges are concentrated at different 

locations on the object. The behavior of an electric dipole can now be examined when it 

is placed in a uniform electric field (Figure 2.6) 

 

 

                      Figure 2.6 : Dipole in a uniform electric field 

Let us choose x- axis such that the electric field points along it. Suppose that the dipole 

axis makes an angle  with the field direction. A force qE acts on charge +q along the 

positive x direction and an equal force acts on charge –q in the negative x direction. Two 

equal, unlike and parallel forces form a couple and tend to rotate the dipole in clockwise 

direction. This couple tends to align the dipole in the direction of the external electric 

field E. The magnitude of the torque   is given by: 



 

 

         Force x arm of the couple 

            sin2lqE                   (2.9) 

In vector form, 

         Ep                        (2.10) 

When 0 , the torque is zero, and 

For
090 , the torque on the dipole is maximum, equal to pE. It can be concluded that 

the electric field tends to rotate the dipole and align it along its own direction. 

 

2.3.3   Potential Energy of an Electric Dipole 

The work done by the electric field to rotate the dipole by an angle d is  

                  dEpddW sin                  (2.11) 

The negative sign indicates that the torque opposes any increase in  . Therefore, the total 

amount of work done by the electric field to rotate the dipole from angle 0  to   is: 

               







0

0coscossin EpdEpW            (2.12) 

The results shows that a positive work is done by the field when cos > 0cos . The 

change in potential energy U of the dipole is the negative work done by the field: 

            00 coscos   EpWUUU          (2.13) 

Where 00 cospEU   is the potential energy at a reference point. The reference point 

is chosen to be 
2

0


   so that the potential energy is zero  , 00 U . Thus, in the presence 

of an external field the electric dipole has a potential energy 

            EpEpU .cos                  (2.14) 

A system is at a stable equilibrium when its potential energy is a minimum. This occurs 

when the dipole p is aligned parallel to E making U to be minimum, EpU min
. On 

the other hand, when p and E are anti-parallel, EpU max is a maximum and the 

system is unstable. If the dipole is placed in a non-uniform field, there would be a net 

force on the dipole in addition to the torque. The resulting motion would be a 

combination of linear acceleration and rotation. 

 

2.4 Charge Density 

The electric field due to a small number of charged particles can be calculated by using 

the superposition principle. But what happens if we have a very large number of charges 

distributed in some region of space? Let’s consider the system shown in Figure 2.7  

 



 

 

                         

              Figure 2.7:  Electric field due to a small charge element ∆qi . 

 

2.4.1 Volume Charge Density 

Suppose we wish to determine the electric field at some point P. Let’s consider a small 

volume element ∆Vi which contains an amount of charge ∆qi . The distances between 

charges within the volume element ∆Vi are much smaller than compared to r, the distance 

between ∆Vi and P. In the limit where ∆Vi becomes infinitesimally small, the volume charge 

density ρ(r) is defined as: 
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The S.I. unit of  r  (charge/ unit volume) is C/m
3
. The total amount of charge within the 

entire volume V is: 

              
i V

i dVrqQ                      (2.16) 

 

2.4.2 Surface Charge Density 

In a similar manner, the charge can be evenly distributed over a surface S of area A with 

a surface charge density   which is defined as: 

        
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qd
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The S.I. unit of  (charge/unit area) is C/m
2
. The total charge on the entire surface is:  

          
S

dArQ                 (2.18) 

 

2.4.3  Line Charge Density 

If the charge is distributed over a length, then the linear charge density  is defined as: 

           
ld

qd
r                          (2.19) 

The S.I. unit of  (charge/unit length) is C/m. The total charge is an integral over the 

entire length: 



 

 

           
line

ldrQ                       (2.20) 

If charges are uniformly distributed throughout the region, the densities                     (

 or, ) are said to be uniform. 

 

2.4.4 Electric Fields due to Continuous Charge Distributions 

The electric field at point P due to continuous charge distribution shown in Figure 2.7 can 

be evaluated by: 

(1) Dividing the charge distribution into small elements containing q amount of charge 

as shown in Figure 2.7 

(2) Evaluating the electric field at a point P due to each charge element qd using 

Coulomb’s law: 
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Where r is the distance from qd  to P and r̂  is the corresponding unit vector. 

(3) Evaluating the total electric field at point P due to all such charge elements in charge 

distribution as follows: 
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Where index i refers to the ith charge element in the entire charge distribution. Since 

the charge is distributed continuously over some region, the sum becomes integral. 

Hence, the total electric field at point P within the limit Δq→0 is: 
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And integration is done over the entire charge distribution. 

 

2.4.5 Electric 

Field Due to a 

Uniform Line of 

Charge 

 

 

  

 

 

 

 



 

 

 

 

  

                     Figure 2.8 Electric field due to a uniform line of charge 

The electric field E at point P due to a uniform line of charge can be determined from 

Figure 2.8 By considering the symmetry, the electric field from positive z -axis to 

negative z – axis cancelled along the z directions. Only the horizontal component of the 

electric field need to be considered. For each element of length zd charge zdqd  .  

 Horizontal E- field at point P due to element cosEdzd    
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The total electric field due to entire line of charge at point P is: 
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To calculate this integral, use: 

Change of variable (from z to θ) and noting that x is fixed, but z, r, θ all varies. 

    dxzdxz 2sectan                                          (2.26a) 

     222 seccos xrrx                                (2.26b) 
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Equation (2.25) then becomes: 
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Using the fact that the total charge LQ  , equation (2.27) becomes: 



 

 

        
2

2
0

2

.
4

1













L
xx

Q
E


                                            (2.28) 

When P is a very far point from the rod, x >> L, the term 

2

2
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can be neglected in the 

denominator of equation (2.28). Thus, we obtain: 
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Therefore, the system behaves like a point charge. 

If L >> x, the term 2x  can be neglected in the denominator and we obtain the expression 

for the electric field due to infinitely long line of charge as: 
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2.4.6 Electric Field on the Axis of a Ring  
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 Figure 2.9 Electric Field at a height z above a ring of charge of radius R 

 



 

 

Figure 2.9 shows a ring with radius R. From symmetry, for every charge element dq 

considered, there exists dq
’
 where the horizontal electric field components cancel. 

Therefore, the overall electric field lies along z- direction. For each element of length 

dz, the charge dq is: 

      dsqd .                      (2.31) 

Where  = linear charge density and sd = circular length element 

But dRsd                        (2.32) 

Where   is the angle measured on the ring plane. 

The net electric field along z-axis due to dq is: 
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The total electric field is: 
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In this case, θ,R and r are fixed as   varies, therefore, ,r is converted to ZR , . 

Equation (2.34) now becomes: 
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But the total charge on the ring is:  RQ  2                 (2.37) 
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2.4.7 Electric Field Due to a Uniformly Charged Disk 

                

                          

 

   

      

             

 

 

 

 

 
 

 

 

                                         Figure 2.10 A uniformly charged disk of radius R 

 

Figure 2.10 shows a disk of radius R which has a uniform positive surface charge density
 . It is assumed that a point P lies at a distance from the disk along its central 

perpendicular axis. The electric field at P can be obtained by dividing the disk into 

concentric rings. Then the electric field at P for each ring is calculated and finally we sum 

up the contributions of all the rings. Figure 2.10 shows one of such ring with radius r, 

radial width rd and surface area A. drrA 2 . Since   is the charge per unit area, 

then the charge dq on this ring is: 

     rdrAdqd  2               (2.39) 

The electric field of a disk is then calculated by integrating concentric rings of charges. 

The electric field from ring, 
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Introducing change of variable and change of integration limit gives: 
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If R >> Z , that is, if we have an infinite sheet of charge with charge density  : 

            
02


E                             (2.45) 

 

2.5 Motion of Charged Particle in a Uniform Electric Field 

When a particle of charge q and mass m is in an external electric field E , a force Eq  

will be exerted on this particle. If the magnitude of the only force acting on this particle is 

Eq , then according to Newton’s second law, the acceleration of the particle will be 

given by: 

            
m

Eq
a                        (2.46) 

If E  is uniform, then a  will be a constant vector. 

            Consider a charge +q moving between two parallel plates of opposite charges, as  

            shown in Figure 2.11 

 

                                      



 

 

                         Figure 2.11 Charge moving in a constant electric field 

 

Let the electric field between the plates be E = −Ey 

ˆ
j, with Ey > 0 .  The charge will experience 

a downward Coulomb force given by: 

             Fe = qE                                  (2.47) 

Suppose the particle is at rest (v0 = 0) when it is first released from the positive plate.  

The final speed v of the particle as it strikes the negative plate is: 

             
m

yEq
v

2
                           (2.48) 

where y is the distance between the two plates. The kinetic energy of the particle when it strikes 

the plate is:  

              K = mvy
2 = qEy y                        (2.49) 

 

Worked Examples 

 

2.1 An object with a net charge of 24µC is placed in a uniform electric field of 610 N/C directed 

vertically upward. Calculate the mass of this object if it “floats” in the field. 

                       

EqFele                                                                   

                                E 

                                  

 

 

 

                                                Mg 

                            Figure 2.12 

 

The forces acting on the mass are shown in figure 2.12 The weight point downward and 

has magnitude mg( m is the mass of the object) and the electrical force acting on the mass 

has magnitude EqF  where q is the charge of the object and E is the magnitude of the 

electric field. The object “floats”, so the net force is zero. This gives: 
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                                                       g5.1  

The mass of the object is 1.5 g 

 



 

 

2.2 A point charge creates an electric field of 1.00 N/C at a point 1.0 m away. Calculate 

the magnitude of the point charge. 

      Solution: 

The magnitude of the electric field E due to a point charge q at a distance r is given by: 

             
2r

q
kE   
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                     C101011.1   

The magnitude of the charge is C101011.1   

2.3 A disk of radius 2.5 cm has a surface charge density of 
23.5 mC on its upper face. 

Calculate the magnitude of the electric field produced by the disk at a point on its central 

axis at distance z = 12cm from the disk. 
                      Solution: 

             Given that: r = 2.5 × 10
−2 

m, σ = 5.3
2mC  and z = 12 × 10

−2 
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1629  CN  

At the given point, the electric field has magnitude 629 N/C and points away from the 

disk. 

 

2.4 An electron and a proton are each placed in an electric field of 520 N/C. Calculate the 

speed of each particle 48 ns after being released. 

     Solution: 

Consider the electron. From F = qE, and the fact that the magnitude of the electron’s 

charge is 1.60 × 10
−19 

C, the magnitude of the force on the electron is: 

             NCNCEqF 17119 1032.85201060.1    

The mass of electron , kgme

311011.9  , using Newton’s second law: 

 The magnitude of acceleration 213

31

17

1013.9
1011.9

1032.8 









 ms

kg

N

m

F
a  

Since the electron starts from rest, 00 v and the final speed after 48 ns is: 

     169213 104.410481013.9   mssmstav  

The magnitude of the proton’s charge is the same as that of the electron, the magnitude of 

the force is the same. 



 

 

               The magnitude of its acceleration  
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            The final speed after 48 ns is: 

                139210 104.210481098.4   mssmstav  

             The proton’s final speed is 
13104.2  ms . 

 

2.5 Calculate the magnitude of the torque acting on an electric dipole aligned at angle 

030 with the direction of a uniform electric field of magnitude 
14105  CN .The dipole 

moment of the electric dipole is mC9104  . 

 Solution: 

Electric dipole moment, mCp 9104   

Electric field 
14105  CNE  

Torque acting on the dipole, 

   mNCNmCEp 40149 1030sin105104sin     

Therefore, the magnitude of the torque acting on the dipole is mN410
 

 

2.6 Two charges CqA

7105.2   and CqB

7105.2   are placed at the position: A 

(0, 0, -15 cm) and B (0, 0, + 15 cm), respectively. Calculate the dipole moment of the 

system. 

Solution: 

The charges which are located at the given points are shown in the co-ordinate system as: 

    

 

                                                     
                                                           Figure 2.13 

The charge at point A, CqA

7105.2   

The charge at point B, CqB

7105.2   

The distance between the two charges at point A and B is: cmd 301515   

Electric dipole moment of the system is given by:  



 

 

    mCmCdqdqp BA

87 105.73.0105.2    

Therefore, the electric dipole moment of the system is mC8105.7   along positive z – 

axis. 

 

 

 

 

 Self-Assessment Questions (SAQs) 

 

1. An electron is released from rest in a uniform electric field of magnitude
14100.2  CN . Calculate the acceleration of the electron.                                

(Ignore gravitation). 

 

2. Calculate the magnitude and direction of the electric field at the centre of the square 

as shown in the figure below, if q = 1.0 × 10
−8 

C  and  a = 5.0cm 

                 

                                        

                                 Fig. 2.14: Charge configuration 

 

3. An electron is constrained to the central axis of the ring of charge with radius R and 

total charge q. Show that the electrostatic force exerted on the electron can cause it to 

oscillate through the centre of the ring with an angular frequency 
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     Fig. 2.15: Electron oscillates on z axis through centre of charged ring of radius R and total 
charge q. 

 

4. The electrons in a particle beam each has a kinetic energy of 1.60 × 10
−17 

J. Calculate 

the magnitude and direction of the electric field that will stop these electrons in a 

distance of 10.0 cm. 

 

5. Two massless point charges +9Q and -Q are fixed on the x-axis at x = -d and       x = 

d: 

                                  

                               Figure 2.16 

There is one point on the x-axis, x = x0, where the electric field is zero. What is x0?  

 

6. Two point charges, CqA 3 and CqB 3 are separated by a distance 20 cm 

when placed in a vacuum. Calculate the magnitude of the electric field at a point O of 
the line joining the two charges. 

 

                           

                    Figure 2.17 
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7. A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 

cm from the centre of the sphere is 
13105.1  CN and points radially inward, what 

is the net charge on the sphere? 

 

8. An infinite line charge produces a field of 
14109  CN  at a distance of 2 cm. 

Calculate the linear charge density. 

 

 

 

 

 

 

SUMMARY  

 

In this session, you have learnt that: 

 

1. The electric field due to a charge q at a point in space is defined as the force 

experienced by a unit test charge 0q :   

                             
0q

F
E   

2. The electric field at a distance r from a charge q is : 

                           

                                         r
r

q
E ˆ

4

1
2

0
  

3. Using the superposition, the total electric field due to a group of charges is equal to 
the vector sum of the electric fields of individual charges: 

. 
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4. An electric dipole is a system of two equal and opposite charges separated by a small 

distance. The electric dipole moment vector P points from the negative charge to the 

positive charge and is given by: 

               
aqP 2  



 

 

5. Electric field line is an imaginary line drawn in such a way that the direction of its 

tangent at any point is the same as the direction of the electric field vector. 

6. The torque acting on an electric dipole placed in a uniform electric field  E is given 

by: 
                      Ep   

7. The potential energy of an electric dipole in a uniform external electric field E is 

given by: 
                        EpEpU .cos    

8. The electric field at a point in space due to a continuous charge element qd is given 

by: 
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9. A particle of mass m and charge q moving in an electric field E has an acceleration a 

given by: 

                                              
m

Eq
a   

 

 

 

               Study Session 3: Electric Flux and Gauss’s Law           

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

  In the last session, you learnt that Coulomb’s law is used to determine the electric field 

of a continuous charge distribution. However, the electric field of a continuous charge 

distribution can become very complicated to determine for some charge distribution. 

Gauss’s law is introduced as an alternative method for calculating electric fields of 

certain highly symmetrical charge distribution. In this session, you will learn about 

Gauss’s law and its application. The concept of electric flux are discussed. 

           

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 

3.1 Electric Flux 

3.2 Gauss’s Law 

3.3 Electric Field calculation with Gauss’s Law 



 

 

 

 

3.1 Electric Flux 

Flux is a qualitative measure of the number of lines of a vector field that passes 

perpendicularly through a surface. Electric flux Φ E represents the number of electric 

field lines crossing a surface.  Figure 3.1 shows an electric field E passing through a 

portion of a surface of area A. The area of the surface is represented by a vector A, whose 

magnitude is the area A of the surface, and whose direction is perpendicular to the 

surface. The electric flux is defined as: 

              cos. AEAEE                    (3.1) 

It is a quantitative measure of the number of lines of E that pass normally through the 

surface area A. The number of lines represents the strength of the field 

                    

                      Figure 3.1 Electric flux 

3.2 Gauss’s Law 

It was discussed in section 3.1 that an electric flux was a quantitative measure of the 

number of electric field lines passing normally through an area. Let us now consider the 

amount of electric flux that emanates from a positive point charge. Figure 3.2 shows a 

positive point charge surrounded by an imaginary spherical surface called a Gaussian 

surface. It is difficult to measure the amount of electric flux through the sphere using 

equation 3.1 because the direction of the electric field is different at every point. Instead, 

the spherical surface is broken up into a large number of infinitesimal surface areas dA , as 

shown in Figure 3.2b and the infinitesimal amount of flux 
Ed through each of these 

small areas is calculated. That is: 

             dAEd E .                (3.2) 

The total flux out of the Gaussian surface is the sum or integral of all the infinitesimal 

fluxes
Ed , through all the infinitesimal areas dA , that is, 

Mathematically:  



 

 

                 dAEd EE .                (3.3) 

 

  

(a)                                              ( b ) 

                 Figure 3.2 Gaussian Surface  

The integral symbol  means that the integration is performed over the entire closed surface that 

the flux is passing through. The electric field vector E is everywhere radial from the point charge 

q, and dA is also everywhere radial, hence 

                        00cos.. dAEdAEE                            (3.4) 

Thus, 

                        dAEE                               (3.5) 

It was discussed in session 2, that the electric field of a point charge was given by: 

                         r
r

q
kr

r

q
E ˆˆ

4

1
22

0




                  (2.2) 

               

Substituting the electric field of a point charge from eqn. (2.2) into eqn. (3.5) gives the electric 

flux through the spherical surface. 
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Where r is the radius of the spherical Gaussian surface which is constant for the sphere. 

Therefore, 

                         dA
r

q
kE 2

                      (3.7) 

But the integral of all the elements of area dA is equal to the entire surface area of the sphere. 

Since the area of a sphere is 4πr
2
, therefore, 

                         24 rdA                 (3.8) 

Thus, the electric flux emanating from a point charge becomes: 
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Hence, the electric flux associated with a point charge is: 

                        
0


q

E                     (3.10) 

Equation (3.10) is Gauss’s law. It states that the net electric flux through a closed Gaussian 

surface is equal to the total charge q inside the surface divided by 0 . 

Gauss’s law is an alternative method used to calculate the electric field of charge distribution. 

3.3 Electric Field Calculation with Gauss’s Law 

Gauss’s law can be used to calculate the electric field of any spherically symmetric distribution 

of charge. A spherically symmetric distribution of charge means that the number of charges per 

unit volume depends only on the radius from a central point. The Gauss’s law is applied to 

calculate the electric field of the following distribution of charges. 

 

3.3.1 Electric Field due to an Infinite Line of Charge 
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                Figure 3.3   Electric Field due to an Infinite Line of Charge having uniform linear 

charge density.   

A line charge is in the form of a thin charged wire of infinite length with a uniform charge 

density  (charge per unit length). The electric field intensity E at a distance r from an infinite 

line of charge shown in figure 3.3 can be determined using Gauss’s law. 

To determine the electric field, we must first draw a Gaussian surface of radius r and length L 

around the infinite line of charge as shown in figure 3.3.The surface of this cylinder is the 

Gaussian surface. The magnitude of the electric field intensity E is the same at every point on the 

curved surface of the cylinder because all points are at the same distance from the charged wire. 

The electric field direction and the normal to area element dA are parallel. Let the length of the 

Gaussian cylinder be L. The total charge enclosed in the cylinder is Lq  . The area of the 

curved surface of the cylinder is Lr2 . The flat surfaces at the top and bottom of the cylinder 

do not contribute to the total flux. Hence, 

     LrEAEE  2.                  (3.11) 

  According to Gauss’s law:  
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Equation (3.13) shows that electric field varies inversely with distance. 

3.3.2    Electric Field due to a Plane Sheet of Charge 



 

 

                

 

         

 

 

 

  

 

 

 

            Figure 3.4 Electric Field due to a Plane Sheet of Charge 

Using Gauss’s law, the electric field intensity E at a distance r of an infinite plane sheet of 

charge shown in figure 3.4 can be determined. Consider a thin infinite plane sheet of charge 

having surface charge density  (charge per unit area). It is assumed that the charge is 

uniformly distributed over the sheet. To determine the electric field, we draw a cylindrical 

Gaussian surface S through the sheet of charge. By symmetry, the electric field E on either side 

of sheet is perpendicular to the plane of the sheet and have the same magnitude at all points 

equidistant from the sheet. Gauss’s law for the total flux emerging from the Gaussian cylinder is: 
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E  and Ad are parallel to each other and the angle between E  and Ad  is zero. 
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Equation (3.18) shows that the magnitude of electric field depend only on the surface charge 

density and not on the distance from the sheet of charge. 

Worked Examples 

3.1 A 4.0 cm –square in the x-y plane sits in a uniform electric flux

  10.50.30.2  CNkjiE . Calculate the electric flux through the square. 

Solution: 

Since the square is in the x-y plane, only electric field in the perpendicular z- direction 

contributes to the flux. Therefore: 

           123241 .100.810160.5   CmNmCNAEE  

3.2 A point charge of C0.2 is at the centre of a cubic Gaussian surface 9.0 cm on edge. 

Determine the net electric flux through the surface. 

Solution: 

Net electric flux, 
E through the cubic surface is given by: 
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The net electric flux through the surface of the cube is 
125 .1026.2  CmN      

3.3 A 6.0 nC point charge is located at the centre of a cube of side length 2.0 m. Calculate the 

electric flux through each of the faces of the cube. 

Solution: 

By Gauss’s law, the total flux coming out of the cube is: 
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By symmetry, this flux must be evenly split between the six faces. Therefore, the flux through 

each face is   1212 .114.678
6

1   CmNCmN  

3.4 A long copper wire with radius of 1.0 mm carries a uniform surface charge density of 5.0 
2mC . Find the: 

(a) total charge in a 1.0 metre- long section of the wire. 

(b) magnitude of the electric field at a distance of 15 cm from the wire. 



 

 

Solution: 

(a) A 1.0 m long section of wire has a surface area of: 

        233 1028.60.1100.122 mmmhrA     

And therefore has a charge of   2326 1028.6100.5 mmCAq    

                                                     C81014.3   

(b) The linear charge density of the wire is 
181014.3  mC . Therefore, the electric 

field at a distance of 15 cm is: 
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Self- Assessment Questions 

1. Consider a uniform electric field   13100.3  CNiE . Determine the: 

   (a) flux of this field through a square of side 10 cm on a side whose plane is parallel to  

the y-z plane. 

       (b) flux through the same square if the normal to its plane makes an angle 060 with       

the x-axis. 

2. A point charge causes an electric flux of 
123 .100.1  CmN  to pass through a spherical 

Gaussian surface of 10.0 cm radius centered on the charge. 

(a) If the radius of the Gaussian surface were doubled, how much flux would pass 

through the surface? 

(b) What is the value of the point charge? 

3. A conducting sphere of radius 10 cm has an unknown charge. If the electric field 20 cm 

from the centre of the sphere is
13105.1  CN  and points radially inward, what is the 

net charge on the sphere? 

4. A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of 
20.80 mC . Calculate the magnitude of the: 

(a) Charge on the sphere 

(b) Total electric flux leaving the surface of the sphere 

 

              SUMMARY 

 



 

 

In this session, you have learnt that: 
 

1. Electric flux Φ E represents the number of electric field lines crossing a surface 
and is defined as  cos. AEAEE  . 

2. Gauss’s law states that the net electric flux through a closed Gaussian surface is equal 

to the total charge q inside the surface divided by 0 . That is: 

                
0


q

E   

Gauss’s law is an alternative method used to calculate the electric field of charge 

distribution. 

 

3. The electric field  due to an infinite line of charge is given by: 

          
r

E
02 


        

4.  The electric field due to a plane sheet of charge is given by: 
            

                                 

                    

                    

 

 

 

      Study Session 4: Electric Potential and Electrical Potential Energy           

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

  Electric potential is a location-dependent quantity that expresses the amount of potential 

energy per unit charge at a point. In this session, you will learn about the concept of 

electric potential and electrical potential energy as applied in the study of electrostatics 

.Equipotential surfaces will also be discussed. 

           

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 

02


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4.1 Electrical Potential energy and conservative forces 

4.2 Electric Potential 

4.3 Equipotential surfaces 

4.4 Relation between Electric field and Electric potential 

 

4.1 Electrical Potential Energy and Conservative Forces 

In the introductory mechanics course, a conservative force was explained. A force is 

said to be conservative if the work done on a particle by the force is independent of 

the path taken. Electric force is an example of conservative forces. The work done by 

the electric force as charge moves through an  

 

 

 

 

 

 

                              

 

 

 

 

  

          Figure 4.1 a                                                   Figure 4.1 b                                          

Infinitesimal distance sd


along path A as shown in Figure 4.1a is Wd .  

              sdFWd


.                      (4.1)   

Therefore, the total work done W by a force F


in moving the particle from point 1 to point 2 as 

shown in Figure 4.1b is: 

             
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. sdFW
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 (For path A)                              (4.2) 

sd


 is in the tangent direction to the curve of path A. 

For conservative forces, 
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 (For path B)                                             (4.3) 



 

 

Let’s consider a path starting at point 1 to 2 through path A and from 2 to 1 through path C. 

  W =  
2

1

. sdF


 (for path A) +  
1

2

. sdF


 (for path C) 

       =  
2

1

. sdF


 (for path A) - 
2

1

. sdF


 (for path B)                    (4.4) 

       = 0 

Equation (4.4) shows that the work done by a conservative force on a particle when it moves 

around a close path returning to its initial position is zero. This is the basis for defining a 

conservative force. Since the work done by a conservative force F


is path independent, then

0 F . We can define a quantity, potential energy that depends only on the position of the 

particle. We define potential energy U such that: 

     sdFWUd


.               (4.5) 

Therefore, for particle moving from position 1 to position 2: 
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           (4.6) 

Where 
1U  and 

2U are potential energy at positions 1 and 2. 

Suppose charge 
2q moves from position 1 to position 2 as shown in Figure 4.2 below, the change 

in potential energy Ud can be derived as follows: 

                 

                 

              

 

                   Figure 4.2 

From the definition: 

2

1

12 . rdFUU


 

                                                  rdFdrF

r

r




2

1

 

                                                   
2

1

2

21

04

1
r

r

rd
r

qq


 



 

 

                                                   










12

21

0

11

4

1

rr
qqWU


          (4.7) 

The following points should be noted: 

1. If 
2q moves away from 

1q , then 
12 rr  , we have:  

 If 
1q and 

2q are of the same sign, then 0,0  WU   

( W work done by electric repulsive force) 

 If 
1q and 

2q are of different sign, then 0,0  WU   

( W work done by electric attractive force) 

 

2. If 
2q  moves towards 

1q , then 
12 rr  , we have: 

 If 
1q and 

2q are of the same sign, then 0,0  WU   

( W work done by electric repulsive force) 

 If 
1q and 

2q are of different sign, then 0,0  WU   

( W work done by electric attractive force) 

3. The difference in potential energy is important. 

Reference point:   0rU  
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If 
1q and 

2q are of the same sign, then,   0rU  for all r. 

If 
1q and 

2q are of different sign, then,   0rU  for all r. 

4. Conservation of Mechanical Energy: 

For a system of charges with no external force, 

     E = K + U = constant 

            Or 

    0 UKE       (K = kinetic energy; U = potential energy)         (4.9) 

We can obtain an expression for the potential energy of system consisting of three 

charges 321 ,, qqq as follows: 

 Assume that charges 321 ,, qqq  all at r will have 0U  

 Move 
1q  from  to its position  0U  

 Move 
2q from  to its new position  
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 Move 3q from  to its new position  Total P.E 
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                          Figure 4.3 A system of three point charges 

             

 

 

 

4.2 Electric Potential 

Any charged particle located in a region of electrostatic field experiences a 

force. The force on the particle at any place is determined by the particle’s 

charge and the value of the electric field: EqF  . If the particle moves from 

one place to another within that region, the electrostatic force does work on 

the particle and its potential energy changes.  

The electric potential at any point in an electric field is equal to the work done 

against the electric field in moving a unit positive charge from outside the 

electric field to that point. It is a scalar quantity, as it is related to work done.  

The potential at a point is taken to be positive when work is done against the 

field by a positive charge. However, it is negative when work is done by the 

electric field in moving the unit positive charge from infinity to the point in 

the field. Therefore: 
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It is assumed that   0rV . For a single point charge, the potential V is: 
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q
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                (4.12) 

The S.I unit of electric potential is Volt (V) which is 1 Joule per Coulomb. 

 

4.2.1 Electric Potential due to a System of Charges 

For a total of N point charges, the potential V at any point P can be obtained 

from the principle of superposition. Recall that potential due to 
1q at point P 

is: 
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Therefore, total potential at point P due to N charges is: 

     NVVVV  ........21    (Principle of superposition)          (4.14) 
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4.3 Equipotential Surfaces 

For a given configuration of charges, a set of points where the electric 

potential  rV has a given value is called an equipotential surface. It is a 

surface on which the potential is constant. A charge can move freely on an 

equipotential surface without any work done, that is, 0V .This implies 

that no work can be done by the electric field to move an object along the 

surface, and thus 0. dsE . Therefore, equipotential surfaces are always 

perpendicular to the direction of the electric field. 

          

 

      

 

 

 

 

 

 

 

 

 

 

                       Figure 4.4. Equipotential surface (Equipotential surfaces are circles / 

spherical surfaces) 

 

4.4 Relation Between Electric field and Electric Potential 



 

 

(A) In order to derive the expression for electric potential V from electric field, we 

recall from the definition of change in electric potential that: 

  
0
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U
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              (4.16) 

Where U is the change in electric potential energy; 
12W  is the work done in 

bringing charge 0q from point 1 to point 2. Therefore, 
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But, from the definition of electric force: EqF 


 


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12 . sdEVVV
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                      (4.18) 

The integral on the right hand side of equation (4.18) can be calculated along any 

path from point 1 to point 2 (path- independent). 

(B) To derive electric field E from electric potential V 

Recall from the definition of V: 

VqU  0 W                                                          (4.19) 

But, sEqW s  .0


 (Refer to Fig. 4.5)                       (4.20) 

Where sE  is the electric field component along the path s


  

  sEqVq S  00                            (4.21) 
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For infinitesimal s , gives: 

       
Sd

Vd
Es                                  (4.23) 

Therefore, the electric field component along any direction is the negative 

derivative of the potential along the same direction. 

Generally, for a potential  zyxV ,, , the relation between  zyxE ,,  and V is: 
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,,  are partial derivatives. 

 

       



 

 

 

 

 

 

 

 

 

 

                                     Figure 4.5 

 

 

 

 

Worked examples 

4.1 The electric potential difference between the ground and a cloud in a particular 

thunderstorm is V9102.1  . Determine the magnitude of the change in energy of an 

electron (in terms of electron-volt) that moves between the ground and the cloud. 

Solution: 

The magnitude of the change in potential as the electron moves between the ground and 

the cloud is: 

VV 9102.1   

  VeGVVeVqU 2.1102.1102.1 99   

4.2 Two large, parallel conducting plates are 12 cm apart and have charges of equal 

magnitude and opposite sign on their facing surfaces. An electrostatic force of 3.9 x 10
-15

 

N acts on an electron placed anywhere between the two plates.  

(a) Find the electric field at the position of the electron 

(b) What is the potential difference between the plates?    

Solution: 

(a) The magnitude of the electric field is: 
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(b) The electric field in the region between two large oppositely- charged plates is 

uniform, therefore: 
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V
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The electric field points in the x-direction i.e perpendicular to the plates and the 

potential difference between the plates has magnitude: 

   VmmVxEV x

314 109.212.0104.2  
 

4.3 A conducting sphere of radius 0.15 m has a potential difference of 200 V (with V = 0 at 

infinity). Calculate the: (a) charge (b) charge density on its surface. 

Solution: 

(a) Given that radius R of the conducting sphere = 0.15 m, to find the charge, we apply 

the Gauss’s law. The electric field outside the sphere is the same as that of a point 

charge Q at the centre of the sphere. Therefore: 
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Q
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                                                   CQ 9103.3   

The charge on the sphere is C9103.3   

4.4 The electric potential at points in an x-y plane is given by: 

                  2222 0.30.2 ymVxmVV    . 

Determine the magnitude and direction of the electric field at the point                  (3.0 m, 

2.0 m ). 

Solution: 
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By substituting the given values of mx 0.3  and my 0.2 , gives: 

      
112  mVEx  and 

112  mVEy  

The magnitude of the electric field is: 

         122
0.170.120.12  mVE  

And its direction is given by: 
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0135  (   lies in the second quadrant) 

4.5 (a) Calculate the electric potential energy of two electrons that are separated by 2.00 nm. 

(b) If this separation increases, does the potential energy increase or decrease? 

Solution: 

(a) Since the charge on an electron is negative, therefore: 
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(b) As the product of the charges is positive, the potential energy is a positive number 

and is inversely proportional to r. Therefore, potential energy decreases as r 

increases. 

 

Self- Assessment Questions (SAQs) 

1. An infinite non conducting sheet has a surface charge density 
210.0  mC  on one side. How far apart are equipotential surfaces whose 

potential differs by 50 V ? 

2. An empty hollow metal sphere has a potential of +400 V with respect to 

ground (defined to be at V = 0) and has a charge of C9100.5  . Determine 

the electric potential at the centre of the sphere. 

3. What is the excess charge on a conducting sphere of radius R = 0.15 m if the 

potential of the sphere is 1500 V and V= 0 at infinity? 

 

 

 

SUMMARY 

 

In this session, you have learnt that: 

 

1. A force is said to be conservative if the work done on a particle by the force is 

independent of the path taken. 

 

2. The change in potential energy associated with a conservative force F acting 

on an object as it moves from point 1 to 2 is: 
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3. The electric potential at any point in an electric field is equal to the work done 

against the electric field in moving a unit positive charge from outside the electric 

field to that point. The  change in electric potential V is given by: 
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4. The electric potential due to a point charge q at a distance r away from the charge 

is: 
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5. For a collection of charges, using the superposition principle, the electric potential 

is: 
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6. From the electric potential V, the electric field may be obtained by taking the 

gradient of V: 
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Study Session 5: Capacitance and Dielectrics          

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

  A capacitor is a device that stores electric charge on their plates when connected to a 

voltage source. Capacitors vary in shape and size. It consists of two conductors carrying 

equal but opposite charges that are separated by a non-conducting material (an insulator). 

Capacitors have many important applications in electrons. Some examples include 

storing electric potential energy, delaying voltage changes when coupled with resistors, 

filtering out unwanted frequency signals, forming resonant circuits and making 

frequency- dependent and independent voltage dividers when combined with resistors. In 

this session, you will learn about the capacitance of a capacitor, different connections of 

capacitors, and the effects of dielectric materials on capacitance. Energy stored in a 

capacitor will also be discussed. 

 

           

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 



 

 

5.1 Capacitance of a Capacitor 

5.2 Combination of Capacitors in Series and Parallel  

5.3 Dielectrics 

5.4 Energy Stored in a Capacitor 

 

5.1 Capacitance of a Capacitor 

The simplest example of a capacitor consists of two conducting plates of area A, which 

are parallel to each other, and separated by a distance d, as shown in Figure 5.1. 

 

  

  
  

Figure 5.1:  A parallel-plate capacitor  

 

 Experiments show that the amount of charge Q stored in a capacitor is linearly proportional to 

V , the electric potential difference between the plates. Therefore, 

  VCQ                   (5.1) 

Where C is a positive proportionality constant called capacitance. Capacitance is a measure of 

the capacity of storing electric charge for a given potential difference ∆V. The ratio of the 
charge stored on the plates to the potential difference across the plates is called the capacitance 

C of the capacitor. The dimensions of capacitance are
2221 QTLM 
. The S.I unit of 

capacitance is the farad (F). 

       1 F =1 farad = 1 coulomb volt= 1 C V  

A typical capacitance is in the picofarad (1 pF =10−12 F) to millifarad range,  

(1 mF =10−3 F=1000µF; 1µF =10−6 F).  

  

Figure 5.2(a) shows the symbol which is used to represent capacitors in circuits. For a polarized 
fixed capacitor which has a definite polarity, Figure 5.2(b) is sometimes used.    

  

(a)   (b)  



 

 

  

Figure 5.2:  Capacitor symbols.  

For a parallel-plate capacitor with plates of area A separated by distance d, the capacitance is 

given by: 

          
d

A
C 0                   (5.2) 

Equation (5.2) shows that C depends only on the geometric factors A and d. The capacitance C 

increases linearly with the area A since for a given potential difference ∆V, a bigger plate can 

hold more charge. On the other hand, C is inversely proportional to d, the distance of separation 

because the smaller the value of d, the smaller the potential difference | ∆V | for a fixed Q. 

 Cylindrical Capacitor 

In this geometry, there are two coaxial cylinders where the radius of the inner conductor is a and 

the inner radius of the outer conductor is b. The length of the cylinders is L; ( L is large compared 

to b). For this geometry, the capacitance is given by: 

 

            











a

b
In

L
C 02                 (5.3) 

 Spherical Capacitor 
In this geometry, there are two concentric spheres where the radius of the inner sphere is a and 

the inner radius of the outer sphere is b. For this geometry, the capacitance is given by: 

              
ab
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C


 04                        (5.4) 

Again, the capacitance C depends only on the physical dimensions, a and b. 

An “isolated” conductor (with the second conductor placed at infinity) also has a capacitance. In 

the limit where b , the above equation becomes: 

              aC
b

04lim 
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                   (5.5) 

Thus, for a single isolated spherical conductor of radius R, the capacitance is: 

                  RC 04                    (5.6) 

             

5.2 Combination of Capacitors 

 

5.2.1 Capacitors in Series 
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    Figure 5.3:  Three capacitors are combined in series across a potential difference V 

 

Figure 5.3  shows a configuration where three capacitors are combined in series across the 

terminals of a battery. The charge is the same on each capacitor and the potential difference 

across the system is the sum of the potential difference across the individual capacitance. 

Therefore: 

        321 VVVV                (5.7) 
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    This gives: 
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The generalization to any number of capacitors connected in series is: 
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5.2.2 Capacitors in Parallel 

 

            
  Figure 5.4: Three capacitors are combined in parallel across a potential difference difference V 

 

  Figure 5.4 shows a configuration where three capacitors are combined in parallel across the   
terminals of a battery. The battery gives a constant potential difference V across the plates of 
each of the capacitors. The total charge is the sum of the charges on the individual capacitor. 
Therefore: 

              321 qqqq                        (5.12) 

But VCqVCqVCq 332211                       (5.13) 

      VCVCVCVC 321                                          (5.14) 

           321 CCCC                          (5.15) 

In general, the equivalent capacitance for a set of capacitors which are in connect in parallel is 
given by: 
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5.3 Dielectrics 

A dielectric is an insulator or non-conductor of electricity. In many capacitors there is an 
insulating material such as paper or plastic between the plates. Such material, called a dielectric, 
can be used to maintain a physical separation of the plates. Its effects are defined in terms of the 
ratio of the capacitance of a capacitor with a dielectric between the plates to the capacitance of a 
capacitor without a dielectric between the plates. Experimentally, it was found that capacitance 
C increases when the space between the conductors is filled with dielectrics. This can be 
explained by considering the fact that when there is no material between the plates, a capacitor is 

assumed to have a capacitance 0C .  When a dielectric is inserted to completely fill the space 

between the plates, the capacitance increases to    

                   0CKC e                  (5.17) 

Where eK is called the dielectric constant. 

5.4 Energy Stored in a Capacitor 

 The work required to charge up a capacitor by moving a charge – q from one plate to another is 
the potential energy U of the charges. This potential energy is the energy stored in the electric 
field between the plates of the capacitor. This energy is given by: 

      2
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2
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q
U                    (5.18) 

5.4.1 Energy Density of the Electric Field 

The energy stored in the capacitor can be considered as being stored in the electric field itself. In 

the case of a parallel-plate capacitor with 
d

A
C 0  and dEV  , then the energy is: 
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The quantity dA  represents the volume between the plates, we can define the electric energy 

density as: 

                2

0
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E
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U
u E

E                           (5.20) 

In equation (5.4.3), 
Eu  is proportional to the square of the electric field. 

 

Worked Examples 

 

      5.1 A parallel-plate capacitor has square plates 7.5cm on a side, separated by 0.29mm. The 

capacitor is charged to 12V, then disconnected from the charging power supply. 

(a) Calculate the capacitance of this capacitor. 

(b) What is the total charge on each plate? What is the charge density on the plates? 

(c) What is the electric field between the plates? 



 

 

Solution: 

(a) The capacitance for a parallel-plate capacitor is given by: 
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(b) 1. The total charge on each plate is: 
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              (b)2.  The charge density is the charge on the plate divided by the plate’s area: 

                              
d

V

l

VC

A

Q 0

2


   

                                
   27

4

112

107.3
109.2

121085.8 









 mC

m

VmF
 

(c ) The electric field between two oppositely charged plates is: 
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5.2 Consider a parallel-plate capacitor in which the separation between its plates can be 

varied. The maximum capacitance it can withstand is 120 pF.The capacitor is charged to 

a potential difference of 50 mV at maximum capacitance and then isolated. With the 

capacitor still isolated, what is the distance between its plates so that it now has a 

potential difference of 30 V? The area of the plate is 3.1 cm
2
. 

Solution: 

Since the capacitor is kept in isolation, the charge on the plates is the same after the plate 

separation is changed. Therefore: 

        ffiifi VCVCQQ   
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Using the equation for the capacitance of a parallel-plate capacitor, the plate separation 

fd is: 
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             cm4.1  

5.3 Calculate the energy stored in one cubic metre of air due to the “fair weather” electric 

field of magnitude 150 V/m. 

Solution: 

Energy density of an electric field, 2

0
2

1
EuE   

                                                              

   3821112 1096.91501085.8
2

1   mJmVmF  

Therefore, in one cubic metre, J81096.9  of energy is stored. 

5.4 A F0.2 spherical capacitor is composed of two metal spheres, one having a 

radius twice as large as the other. If the region between the spheres is a vacuum, 

determine the volume of this region. 

Solution: 

The capacitance of a spherical capacitor is: 
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Where a  and b are the radii of the concentric spherical plates. Given that: b = 2a 
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      So that mab 4108.12   

Therefore, the volume of the enclosed region between the two plates is: 
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The volume of the enclosed region is 
313101.2 m  

5.5 A parallel-plate air filled capacitor has a capacitance of Fp50 . 

(a) If each of its plates has an area of 
235.0 m , what is the separation? 

(b) If the region between the plates is now filled with a material having 6.5k , what is 

the capacitance? 

Solution: 

(a) Given that: 6.535.0,50 2  kmApFC  
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(b) With a dielectric between the plates, the new capacitance is given by: 
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               pFpFCnew 280506.5   

 

Self –Assessment Questions (SAQs) 

1. Two capacitors, of F0.2 and F0.4  capacitance, are connected in parallel 

across a V300  potential difference. Calculate the total energy stored in the 

capacitors. 

2. A parallel- plate capacitor has a circular plates of cm20.8  radius and mm30.1  

separation. 

(a) Calculate the capacitance 

(b) Find the charge for a potential difference of V120  

3. A pF100 capacitor is charged to a potential difference of V50 , and the charging 

battery is disconnected. The capacitor is then connected in parallel with a second 

(initially charged). If the potential difference across the first capacitor drops to

V35 , what is the capacitance of this second capacitor? 

4. The space between two concentric conducting spherical shells of radii 

cma 70.1  and cmb 20.1 is filled with a substance of dielectric constant

5.23k . A potential difference of 73.0 volts is applied across the inner and outer 

shells. Determine the: 

(a) Capacitance of the capacitor 

(b) Free charge on the inner shell 

(c) The charge ‘q” induced along the surface of the inner shell 



 

 

5. Two parallel plates of area 
2100 cm are given charges of equal magnitude 

C7109.8  but of opposite sign. The electric field within the dielectric material 

filling the space between the plates is
16104.1  mV . 

(a) Calculate the dielectric constant of the material 

(b) Determine the magnitude of the charge induced on each dielectric surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 SUMMARY 

 

In this session, you have learnt that: 

1. Capacitance is a measure of the capacity of storing electric charge for a given potential 

difference ∆V. The ratio of the charge stored on the plates to the potential difference 

across the plates is called the capacitance C of the capacitor 
2. Capacitance of a capacitor depends on its shape, size and nature of medium. 
3. The capacitance of a dielectric filled parallel-plate capacitor is K times the capacitance 

with vacuum or air as dielectric. 
4. The potential energy stored in the electric field between the plates of a capacitor is given 

by: 
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5. In series combination of capacitors, the charge is the same on each capacitor and the 
potential difference across the system is the sum of the potential difference across the 
individual capacitance. The generalization to any number of capacitors connected in 
series is: 
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6. In parallel combination of capacitors, the total charge is the sum of the charges on the 
individual capacitor. The same potential difference V is maintained across the plates of 



 

 

each of the capactors. The generalization to any number of capacitors connected in 
parallel is: 
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 Study Session 6: Current Electricity        

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

  Electric current is the flow of charged particles. In this session, you will learn about the 

properties of electric currents, ohm’s law, drift velocity and temperature dependence on 

resistance. 

 

           

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 

6.1 Electric current and Current Density 

6.2 Resistance, Resistivity and Conductivity 

6.3 Electromotive Force and Internal Resistance 

 



 

 

6.1.1 Electric current 

The flow of electric charges constitute an electric current. The moving electric charges 

may either be electrons or ions. Therefore, the current in metal wire is due to the flow of 

electrons. Whenever there is a net flow of charge through some region, an electric current 

is said to exist. If a net amount of charge Q flows perpendicularly through a particular 

surface of area A within a time interval t , the electric current I is: 

              
t

Q
I




                     (6.1) 

The unit of electric current is Ampere (A) or Coulombs per second (C/s). Therefore, 1 A 

of current is equivalent to 1C of charge passing through the surface in 1 s. Electric 

current has an associated direction. By convention, the direction of current flow is in the 

direction of positive charge movement as shown in Figure 6.1.The electrons move in the 

opposite direction. 

                      

                          

Therefore, the direction of the current is opposite to the direction of the flow of electrons. 

A moving charge, positive or negative, is usually referred to as a mobile charge carrier. 

 

6.1.2 Electric Current Density 

The current across an area can be expressed in terms of the motion of the charge carrier. 

To achieve this, let us consider a portion of a conductor of cross-sectional area A as 

shown in figure 6.2. The volume element for a length x  is xA . If n is the number of 

electrons per unit volume, the number of electrons in this volume element will be xAn  . 

The total charge in this volume element is  exAnq  , where e is charge on the 

electron. If electron drift with a speed dV due to thermal energy, the distance travelled in 

Fig. 6.1 Flow of Electric Current  

  

+  - 

Copper Strip  

Conventional Current  



 

 

time t is tVx d  . On substituting this value of x in the expression for q , we find 

that total charge in the volume element under consideration is given by: 

     tVeAnq d                     (6.2) 

Therefore, 
dVeAn

t

q
I 




               (6.3) 

The electric current density J


is a vector quantity whose magnitude is the ratio of the 

magnitude of electric current flowing in a conductor to the cross-sectional area 

perpendicular to the current flow and whose direction points in the direction of the 

current. 

 
A

I
J 


               (6.4) 

Using the relation dVeAnI  , gives: 

     dVenj


                    (6.5) 

The S.I unit of current density is
2mA . Equation (6.5) is valid only if J is uniform and the 

direction of I is perpendicular to the cross-sectional area A. The amount of current that 

passes through an element of area Ad , can be written as AdJ


. , where Ad


 is the 

vector area of the element. The current that passes throughout the entire area A is then: 

        

         AdJI


.               (6.6) 

 

                           

                              Figure 6.2 Motion of electron in conductor 

 

 

6.2 Resistance, Resistivity and Conductivity 

When a potential difference V is maintained across a conductor, an electric field E


and a current density J


are established in the conductor. The current density J


is 

directly proportional to the electric field, E


at a given temperature for some materials 

with electrical properties that are the same in all directions. That is: 



 

 

     JE


                           (6.7) 

Where the constant  is called the resistivity of the conductor. Materials that obey 

this relation are said to obey ohm’s law and are called ohmic materials. For ohmic 

materials, the resistivity at a given temperature is nearly constant. If a material does 

not obey ohm’s law, the material is called non-ohmic material for example, 

semiconductor. An equivalent form of ohm’s law given by equation (6.7) is derived 

as follows: 

Recall that for uniform electric field, we have: 
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The quantity in bracket is called the electrical resistance of the conductor. 
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  RiV    (Equivalent form of Ohm’s law)                    (6.11)  

Therefore, the resistance of a conductor is defined as the ratio of potential difference 

across the conductor to the current flowing through it. The unit of resistance is ohm      

( ). The reciprocal of resistance is conductance and its unit is mho ( 1 ). The 

resistance, R is directly proportional to its length and is inversely proportional to its 

area of cross-section. The electrical resistivity of a material is defined as the 

resistance offered to current flow by a conductor of unit length having unit area of 

cross-section. The unit of electrical resistivity,  is ohm-metre ( m ). It is constant 

for a particular material. The reciprocal of electrical resistivity is called conductivity. 

Ohm’s law states that, at a constant temperature, the steady current flowing through a 

conductor is directly proportional to the potential difference between the two ends of 

the conductor.  

 

6.2.1    Variation of Resistance with Temperature 

The resistivity of substances varies with temperature. For conductors, the 

resistance increases with increase in temperature. If 0R  is the resistance of a 

conductor at a reference temperature and R is the resistance of some conductors 

at C0 . Thus: 

                00 1   RR                  (6.12) 

Since, R    00 1                    (6.13) 

Where  = resistivity at temperature   

            0 Resistivity at a reference temperature 

             Temperature coefficient of resistivity 



 

 

The temperature coefficient of resistivity is defined as the ratio of increase in 

resistance per degree rise in temperature to its resistance at a reference 

temperature. Its unit is per C0 . Metals have positive temperature coefficient 

because their resistance increase with increase in temperature. Semiconductors 

and insulators have negative temperature coefficient since their resistance 

decreases with increase in temperature. 

 

6.3 Electromotive Force and Internal Resistance 

To maintain a steady current in an external circuit, a battery (cells) is needed to 

supply electrical energy. The electric current in an external circuit flows from the 

positive terminals to the negative terminal of the cell through different circuit 

elements. Figure 6.3 shows the two terminals of a battery. Because of the positive and 

negative charges on the battery terminals, an electric potential difference exits 

between them. In moving from point 1 to 2, electric potential energy increases by 

 

 

                                      

  

     

                                      

                                     Figure 6.3:   Battery terminals 
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ech

donework
E

arg
                            (6.15) 

The maximum potential difference is called the electromotive force, E (or emf), of the 

battery. The emf of a source is defined as the amount of work done or energy required 

to move a unit positive charge from the low-potential terminal to the high–potential 

terminal. The S.I unit of emf is Volt (V). The different sources of emf are: batteries, 

electric generators, fuel cells and solar cells. The electromotive force of a battery or 

other electric power source. A source with a time-independent emf is represented by 

the symbol shown in Figure 6.4. The long line in Figure 6.4 represents the positive 

terminal of the source, while the short line represents the negative terminal. 

 

                          
     Figure 6.4 Schematic Symbol of Source of emf 

The potential difference between two electrodes of a cell when it is in closed circuit, 

that is, when current is drawn from the cell is called terminal potential difference. It is 



 

 

denoted by 
TV . The potential difference between the positive and negative electrodes 

in an open circuit, that is, when no current is drawn from the cell is called the emf of 

the cell. The main current that flows in a simple circuit shown in Figure 6.5 can be 

determined by using the Ohm’s law. 

                       

                        

                       
 

 

 

  

Figure 6.5. A simple circuit diagram with external resistance, emf source and 

internal resistance r. 

  

  Consider an external resistance ‘R’ connected across the cell. Let I, be the current 

that flows in the circuit. ‘E’ is the emf of the cell, r is the internal resistance of the 

cell. ‘V’ is the potential difference across R. When the resistance, R, is infinite, then 

there is no current in the circuit (open circuit). The potential difference across is 

     
  VVEV     (terminal potential difference) 

If ‘R’ is finite, the current is not equal to zero. The potential difference between ends 

of the cell is  
       rIVVV  

 

        rIEV                               (6.16) 

r  is the internal resistance of the cell. It is the finite resistance offered by the 

electrolyte for the flow of current through it. The negative sign in the expression ( rI ) 

indicates that the direction of current is in opposite direction in the electrolyte. 
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The maximum current that can be drawn from a cell is 
r

E
I max

  ( 0R ). 

The internal resistance of a cell depends on: 

(1)The nature of electrolyte         (2) nature of electrodes                 (3) temperature    

(4) concentration of electrodes     (5) distance between the electrodes 

        

 

Worked Examples 

6.1 The number density of free electrons in a copper conductor is 
328105.8  m . How 

long does an electron take to drift from one end of a wire m0.3 to its other end? The 

area of cross-section of the wire is 
26100.2 m  and it is carrying a current of A0.3 . 



 

 

Solution: 

Number density of free electrons in a copper conductor,
328105.8  mn . 

Length of the copper wire ml 0.3  

Area of cross- section of the wire, 
26100.2 mA   

Current carried by the wire AI 0.3  

Using dVeAnI   
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   s4107.2   

Therefore, the time taken by an electron to drift from one end of the wire to the other 

end is s4107.2  . 

6.2 A silver wire has a resistance of 1.2  at C05.27 ,and a resistance of 7.2  at C0100 . 

Determine the temperature coefficient of resistivity of silver. 

Solution: 

Temperature, CT 0

1 5.27  , Resistance of the silver wire at  1.2, 11 RT  

Temperature CT 0

2 100 , Resistance of the silver wire at  7.2, 22 RT  

Temperature coefficient of silver, 
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12 0039.0
5.271001.2
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Therefore, the temperature coefficient of silver is 100039.0 C . 

6.3 Two wires of equal length, one is aluminium and the other is copper have the same 

resistance. Which of the two wires is lighter? Hence explain why aluminium wire is 

preferred for overhead power cables.      

 7.2Re,1072.1,1063.2 88   Alofdensitylativemm cuAl    

  9.8Re Cuofdensitylative  

Solution: 

Resistivity of aluminium, mAl  81063.2  

Resistivity density of aluminium, 7.21 d  

Let 
1l be the length of aluminium wire and 

1m be its mass 

Resistance of the aluminium wire
1R  

Area of cross-section of the aluminium wire 
1A  

Resistivity of copper, mCu  81072.1  

Relative density of copper, 9.82 d  

Let 
2l , be the length of copper wire and 

2m be its mass 



 

 

Resistance of the copper wire 
2R  

Area of cross-section of the copper wire 
2A  
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Mass of the aluminium wire, 
1111 dlADensityVolumem        (3) 

Mass of the copper wire, 
2222 dlADensityVolumem             (4) 

Dividing equation (3) by equation (4) gives: 
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It can be inferred from this ratio that 
1m is less than

2m . Hence, aluminium is lighter 

than copper. 

6.4 A heating element using nichrome connected to a 230 V supply draws an initial 

current of 3.2 A which settles after a few seconds to a steady value of 2.8 A. What is 

the steady temperature of the heating element if the room temperature is C027 ? 

Temperature co-efficient of resistance of nichrome averaged over the temperature 

ranged involved is 
1041070.1  C . 

Solution: 

Supply voltage, voltsV 230  

Initial current drawn, AI 2.31   

Initial resistance,  87.71
2.3

230

1

1
1

I

V
R  

Steady state value of the current, AI 8.22   

Resistance at the steady state 
2R  is given by: 

  14.82
8.2

230

2

1
2

I

V
R  

Temperature co-efficient of nichrome, 
1041070.1  C  

Initial temperature of nichrome, CT 0

1 0.27  

Steady state temperature reached by nichrome 
2T  



 

 

Using 
    

5.840
87.711070.1

87.7114.82
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1

12
12

121

12 













R

RR
TT

TTR

RR


  

 CT 0

2 5.867  

6.5 A battery of emf of 10V  having an internal resistance of 3  is connected to a 

resistor. 

(a) If the current in the circuit is 0.5 A, determine the resistance of the resistor. 

(b) Calculate the terminal voltage of the battery when the circuit is closed. 

Solution: 

(a) Emf of the battery, VE 10      Internal resistance of the battery,  3r  

Current in the circuit, AI 5.0  , Resistance of the resistor R  

The relation for current using ohm’s law is: 




 20
5.0

10

I

E
rR

rR

E
I   

     17320R  

(b) Terminal voltage of the resistor V  

According to ohm’s law, RIV  V5.8175.0   

Therefore, the resistance of the resistor is 17  and the terminal voltage is V5.8  

6.6 A beam of electrons moving at a speed of 
1610 ms along a line produces a current of

A6106.1  . Calculate the number of electrons in the 1 metre of the beam. 

Solution: 

       Using 
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Self- Assessment Questions (SAQs) 

1. The storage battery of a car has an emf of 12V. If the internal resistance of the battery 

is 4.0 , what is the maximum current that can be drawn from the battery? 

2. A coil of wire has a resistance of 40  at C025 . Determine its resistance at C055 ,if 

the temperature coefficient of the material is 100043.0 C  at C00 . 

3. A copper wire of length 1 m and radius 1 mm is joined in series with an iron wire of 

length 2m and radius 3 mm and a current is passed through the wire. Calculate the 

ratio of current densities in the copper and iron wire. 

4. A conducting wire of cross-sectional area 
21 cm  has 

323103  m  charge carrier. If 

the wire carries a current of mA24 , determine the drift speed of the carrier. 

5. The resistance of a wire at C020 is 20  and at C0500 is 60 . At what temperature 

will the resistance be 25 ? 

6. Masses of three wires are in the ratio 1:3:5 and their lengths are in the ratio 5:3:1. 

Determine the ratio of their electrical resistance. 



 

 

7. A rod of certain metal is m1 long and cm6.0  in diameter. Its resistance is  3103

. A disc of the same metal is mm1  thick and cm2 in diameter. Calculate the 

resistance between its circular faces. 

                            

      

 

 

 

                                              SUMMARY 

 

In this session, you have learnt that: 

1. The flow of electric charges constitute an electric current. The unit of electric current 

is Ampere (A) or Coulombs per second (C/s). 

2. The electric current density J


is a vector quantity whose magnitude is the ratio of 

the magnitude of electric current flowing in a conductor to the cross-sectional area 

perpendicular to the current flow and whose direction points in the direction of the 

current. The S.I unit of current density is
2mA . 

3. The resistance of a conductor is defined as the ratio of potential difference across the 

conductor to the current flowing through it. The unit of resistance is ohm. The 

electrical resistivity of a material is defined as the resistance offered to current flow 

by a conductor of unit length having unit area of cross-section. The unit of electrical 

resistivity,  is ohm-metre ( m ). 

4. Ohm’s law states that, at a constant temperature, the steady current flowing through a 

conductor is directly proportional to the potential difference between the two ends of 

the conductor.  

5. The electromotive force (emf) of a source is defined as the amount of work done or 

energy required to move a unit positive charge from the low-potential terminal to the 

high–potential terminal. The S.I unit of emf is Volt (V) 
6. The internal resistance of a cell is the infinite resistance offered by the electrolyte for 

the flow of current through it. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

               Study Session 7: Analysis of Direct – Current Circuits Containing Resistors and  

                                              Kirchhoff’s Laws        

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

  The motion of electric charges creates electric current. In session 6, you learnt about the     

properties of electric current and ohm’s law. In this session, you will learn about the 

analysis of simple electric circuit that contains batteries, capacitors and resistors in 

various combinations. The analysis of more complicated circuits is simplified using 

Kirchhoff’s which results from the laws of conservation of energy and conservation of 

electric charges for isolated systems. Electrical energy and power will also be discussed. 

 

 

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 

7.1 Effective Resistance for a Series and Parallel Combination of Resistors 

7.2 Kirchhoff’s Rules to Closed Electrical Circuits 

7.3 Electrical Energy and Power 

 

7.1      Effective Resistance for a Series and Parallel Combination of Resistors 

7.1.1   Series Combination 

          Two or more resistors are said to be connected in series when they are connected in 

such a way that the same current flows through all these resistors. Let’s consider three 

resistors 
21 , RR and 3R connected in series and a potential difference of “V” volts is 



 

 

applied across it as shown in figure 7.1. In this circuit, the current through each resistor 

will be the same but the potential difference across each is different. Using Ohm’s law: 

Potential difference across 
111 , RIVR   

Potential difference across 
222 , RIVR   

Potential difference across 333 , RIVR   

If ‘V’ is the effective potential drop and 
TR is the effective resistance, then the effective 

potential difference across the combined resistors is: 

        321 VVVV                                            (7.1) 

        321 RIRIRIRI T                               (7.2) 

         321 RRRRT                                       (7.3) 

Therefore, the effective resistance of the series combination of a number of resistors is 

equal to the sum of the resistances of each resistor. 

         

          

 

                                  Figure 7.1 

7.1.2 Parallel Combination 

A number of resistors are said to be connected in parallel when they are connected 

in such a way that the same potential difference is maintained across each of the 

resistors. Consider three resistors
1R , 

2R  and 3R  are connected in parallel across a 

potential difference of V as shown in Figure 7.2. In Figure 7.2, all the resistors are 

connected across the same terminal, the potential difference across all the resistors 

are equal, the current in each resistor is given by: 

    
3

3

2

2

1

1 ,,
R

V
I

R

V
I

R

V
I                (7.4) 

The total current through the circuit is 
TR

V
I  , where 

TR is the effective 

resistance in this circuit.  

      321 IIII                                            (7.5) 

     
321 R

V

R

V

R

V

R

V

T

                                 (7.6) 



 

 

          
321

1111

RRRRT

                                 (7.7) 

Thus, in parallel combination, the reciprocal of the effective resistance is equal to 

the sum of the reciprocals of individual resistance. Therefore, the effective 

resistance in a parallel combination is smaller than the value of the smallest 

resistance. 
       

 
.                                   Figure 7.2 

7.2 Kirchhoff’s Rules to Closed Electrical Circuit 

Current flow in circuits is produced when charge carriers travel through 

conductors. Current is defined as the rate at which this charge is carried through the 

circuit. A fundamental concept in Physics is that charge will always be conserved. 

In the contexts of circuits this means that, since current is the rate of flow of 

charge, the current flowing into a point must be the same as current flowing out of 

that point. 

Robertz Kirchhoff’s proposed two general rules for solving circuit network. 

 

7.2.1 Kirchhoff’s Current Law ( KCL) 

Kirchhoff’s Current Law (Kirchhoff’s First Rule) states that at any junction of 

several circuit elements, the sum of currents entering a junction is equal to the 

sum of currents leaving the junction. If the current entering a junction is taken as 

positive and current leaving the junction as negative, then Kirchhoff’s Current 

Law can be stated as “The algebraic sum of current meeting at any junction in a 

circuit is zero”. 

 

 

         

                 

                                            

 

 



 

 

 

 

 

                                                                           

                        Figure 7.3 Kirchhoff’s Current Law 

 

            Consider the diagram shown in Figure 7.3 in which 1,2,3,4 and 5 are the 

conductors meeting at a junction O and 4321 ,,, IIII  and 5I are the currents passing 

through the conductors respectively. According to Kirchhoff’s Current Law, the currents 

41 , II  and 5I  are entering the junction while currents 
2I  and 3I are leaving the junction.  

      054321  IIIII              (7.8a) 

             Or 

     32541 IIIII                     (7.8b) 

 Therefore, the sum of currents entering the junction is equal to the sum of the 

currents leaving the junction. This law is a consequence of conservation of charges. 

7.2.2 Kirchhoff’s Voltage Law (KVL) 

Kirchhoff’s Voltage Law ( Kirchhoff’s Second Rule) states that the algebraic sum 

of the products of resistances and currents in each part of any closed loop of 

electrical network is equal to the algebraic sum of the electromotive forces acting 

in that loop. This law is a consequence of conservation of energy for electrical 

circuits. 

                              

                 

                                         

  

    

                

                                 

                                Figure 7.4 Kirchhoff’s Voltage Law 

In more general form, Kirchhoff’s Voltage Law states that the algebraic sum of all the 

potential differences along a closed loop in a circuit is equal to zero.  



 

 

In applying Kirchhoff’s laws to electrical circuits, sign convention is very important. The 

direction of current flow may be assumed either clockwise or anticlockwise. The current 

in clockwise direction is taken as positive while the current in the anticlockwise direction 

is taken as negative. The electromotive force is taken as positive when we traverse from 

negative to positive electrode through the cell. Let us consider the electric circuit shown 

in Figure 7.4. If Kirchhoff’s rule is applied to the closed loop ABCDEFA, we have: 

  3111116453334321 EERIrIRIRIrIRIRI           (7.9) 

Both cells 
1E  and 3E  send currents in clockwise direction. For the closed loop ABEFA, 

  21111164223221 EERIrIRIrIRIRI        (7.10) 

Negative sign in 
2E  indicates that it sends current in the anticlockwise direction. 

 

7.3 Electrical Energy and Power 

Electrical energy is defined as the capacity to do work. 

When an electric current I, flows through a conductor of resistance R in time t, 

electrical energy is used in overcoming the resistance of the wire. Therefore, the 

quantity of charge flowing is tIq  . The work done W, or the energy expended in 

moving the charge q between two points having a potential difference V is: 

   tIVVqW              (7.11) 

The electrical energy expended is converted into heat energy and this conversion is 

called the heating effect of electric current. The heat generated in Joules when a 

current of 1 ampere flows through a resistance of R ohm for t seconds is given by: 

      
R

tV
tRIH

2
2                  (7.12) 

This relation given by equation (7.12) is known as Joule’s law of electrical heating. 

The S.I unit of electrical energy is Joule. It can also be measured in kilowatt hour 

(kWh).  

Then, electric power is defined as the time rate of doing electric work. Its S.I unit is 

Watt. Watt is practically defined as the rate at which work is being done in a 

conductor in which a current of 1 ampere is flowing when the voltage applied is 1 

volt. 

  VI
t

tIV

Time

donework
power             (7.13) 

Electric power is the product of potential difference and current. 

   
R

V
RIVIP

2
2                  (7.14) 

 

  

  

 
 



 

 

Worked Examples 

1. An electric cable contains a single copper wire of radius 9 mm and its resistance is 5 . 

This cable is replaced by six insulated copper wires, each of radius 3 mm. Determine the 

effective resistance of the cable. 

Solution: 

Initially the resistance of the cable is: 
 







5
109

23

 l

A

l
R  

Resistance of each insulated copper wire is:  
 23

'

103 



 l

A

l
R  

Equivalent resistance of cable, 
 

R
lR

Requi 9
6

1

1096

1

6 6

'

. 














 

                                                    5.75
2

3
.equiR  

2. Two uniform wire A and B are of the same metal and have equal masses. The radius of 

wire A is twice that of wire B. Determine the total resistance of wire A and B when 

connected in parallel. 

Solution: 

The density and masses of the wire are the same, therefore, their volumes are also equal. 
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Resistance 
AR  and 

BR  are connected in parallel, their equivalent resistance, R is: 

  
  A

AA

AA

BA

BA R
RR

RR

RR

RR
R
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16

16

16






  

3. In the circuit shown in figure7.5 below, determine the current in the circuit. 

                                                                

                                            
                                Figure 7.5            

Solution: 



 

 

The distribution of the current is shown in the circuit below: 

      

    
               Figure 7.6 

The elements are connected in series, therefore, the current in all of them will be the 

same. 

Let the current be I . Applying Kirchhoff’s voltage law in ABCDA loop gives: 
033021520410  iiii  

   Aii 5.22510   

                           

                      

                     

4. Consider the circuit shown in figure 7.7 below, determine the current in the circuit.   

                    
                        Figure 7.7 

                                                                                  

                        

                                

                    Solution: 

 The distribution of current in the circuit gives: 

           
                     Figure 7.8 

Applying Kirchhoff’s voltage law in loop ABEFA gives: 

      010230 211  iii  

       02023 21  ii        (i) 



 

 

 Applying Kirchhoff’s voltage law in BCDEB gives: 

  0250230 221  iii  

  08024 12  ii            (ii) 

    0402 12  ii         (iii) 

Solving equations (i) and (iii) simultaneously yields: 

      AiAi 25,10 21   

 Therefore, Aii 1521   

Current in wire AF = 10A from A to E 

Current in wire EB = 15A from B to E 

Current in wire DE = 25A from D to C 

      

5. An electric iron of resistance 80  is operated at V200  for two hours. Calculate the 

electrical energy consumed. 

Solution: 

Electrical energy = Power x time 

 
W

R

V
P 500

80

200
22

  

Electrical energy    hwK12500   

6. A 220 V potential difference is maintained across an electric heater that is made from 

nichrome wire of resistance 20 .  

(a) Determine the current in the wire and the power rating of the heater. 

(b) At an estimated price of N 2.00k per kilowatt-hour of electricity, what is the cost?  

Solution: 

(a)  Using A
V

R

V
IRIV 11

20

220






  

    WkWARIP 42.2420,22011
22   

(b) The amount of energy transferred in time is:
   hWkhrWktPt 84.4242.2   

If energy is purchased at N 2.00k per kilowatt-hour, then the cost is: 

Cost   









hWk
hWk

1

2
84.4  N 9.68k 

 

 

                Self- Assessment Questions (SAQs) 

1. The effective resistance when two resistors are connected in series and parallel are 

10  and 4.2  respectively. Determine the resistance of individual resistor. 

 

2. Determine the resistance of the combined resistors shown in figure 7.9 below. The 

resistance of each resistor is R. 



 

 

         

                                            

                                                  Figure 7.9 

 

3. A heating element is maintained by a potential difference of  V0.75 across the length 

of a nichrome wire that has a cross-sectional area of 
261060.2 m . Nichrome has a 

resistivity of m 7100.5 . 

(a) If the element dissipates W500 , determine its length. 

(b) If a potential difference of 100 V is used to obtain the same dissipation rate, what 

should the length be? 

 

4. An unknown resistor is connected between the terminals of a 3.0 V battery. Energy is 

dissipated in the resistor at the rate of 0.540 W. The same resistor is then connected 

between the terminals of a 1.50 V battery. At what rate is energy now dissipated? 

 

5. A wire with a  resistance of 0.6  is drawn out through a die so that its new length is 

three times its original length. Calculate the resistance of the longer wire, assuming 

that the resistivity and density of the material are unchanged. 

 

6. Consider the circuit shown in fig. 7.10, given that VEVE 0.10,0.6 21   and 

 0.21R . Determine the value of the resistance 
2R if the current that passes 

through this resistance is 2.0 A. 

 

  

  

       



 

 

    Figure 7.10 
  

7. A certain x-ray tube operates at a certain current of 7.0 mA and a potential difference 

of 80 kV, determine its power. 

 

 

 

                                                    SUMMARY 

 

In this session, you have learnt that: 

1. Two or more resistors are said to be connected in series when they are connected in 

such a way that the same current flows through all the resistors. The effective 

resistance of the series combination of a number of resistors is equal to the sum of the 

resistances of each resistor. The effective resistance of three resistors 
21 , RR and 3R

is: 

        321 RRRRT   

2. A number of resistors are said to be connected in parallel when they are connected in 

such a way that the same potential difference is maintained across each of the resistor. 

 In parallel combination, the reciprocal of the effective resistance is equal to the sum 

of the reciprocals of individual resistance. The effective resistance of three resistors 

21 , RR and 3R  is: 

           
321

1111

RRRRT

  

3. Kirchhoff’s Current Law states that the algebraic sum of current meeting at any 

junction in a circuit is zero. 

4. Kirchhoff’s Voltage Law states that the algebraic sum of all the potential differences 

along a closed loop in a circuit is equal to zero.  

5. The heat generated in Joules when a current of 1 ampere flows through a resistance of 

R ohm for t seconds is given by: 

      
R

tV
tRIH

2
2   

6. The power consumed in an electrical circuit through Joule heating is given by: 

        
R

V
RIVIP

2
2   

 

 

 

 

 



 

 

           Study Session 8: The Wheatstone Bridge and Potentiometer and Their Applications 

                                                     

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

  Physics is an experimental science which unfold laws of nature that requires the use of 

instruments. In this session, you will learn about potentiometer which is a very versatile 

instrument. It can be used to measure resistance as well as electromotive force. The 

application of Wheatstone bridge will also be discussed. 

 

 

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 

8.1 Wheatstone Bridge  

8.2 Methods Applied in Wheatstone Bridge to Determine Unknown Resistance 

8.3 Metre Bridge or Slide Wire Bridge 

8.4  Potentiometer  

 

8.1 Wheatstone Bridge  

Wheatstone bridge was invented by Charles Wheatstone and it is used to measure the 

unknown resistance connected in electrical circuits. Wheatstone bridge is also known 

as a metre bridge or slide wire bridge. It consists of four resistors of which two 

resistors are known resistors, one variable resistor and one unknown resistor. It also 

consists of a galvanometer. 

Consider the diagram of Wheatstone bridge shown in Figure 8.1. It consists of four 

arms PQ, QR, RS and PS which has fixed and variable resistors.
1R  and

2R are the 

fixed resistors, 3R is the variable resistor and xR is the unknown resistor. The variable 

resistor restricts and control the flow of electric current. The arms PQ and QR are 

known as Ratio Arms. A galvanometer is connected between the terminals Q and S. 

Q and S is called the galvanometer arm. A battery is connected to the other two 

terminals P and R. P and R is called the Battery Arm. By adjusting the value of 

variable resistor, the deflection in galvanometer can be made as null.   

 



 

 

                        
 

                               Figure 8.1 Wheatstone bridge 

 

8.2 Methods applied in Wheatstone bridge to determine unknown resistance 

There are three methods that can be employed by Wheatstone bridge to determine the 

unknown resistance. They include: 

8.2.1    Method 1 

The bridge is said to be balanced when there is no current flowing through the 

galvanometer. This means that the potential difference between the points Q and S is 

zero. In this case, the current flowing through the fixed resistors 
1R  and 

2R is the 

same and is considered as 
1I .The current flowing through the variable resistor 3R

and the unknown resistor xR will be the same and is 
2I . As the potential at Q and S 

is the same, the voltage drop from the point P to Q is equal to the voltage drop from 

point P to point S. Therefore, 

        3211 RIRI              (8.1) 

Now, the voltage drop from point Q to point R is equal to the voltage drop from 

point S to R. Thus: 

         xRIRI 221               (8.2) 

               Dividing equation (1) by equation (2) gives: 

file:///C:/Users/user/AppData/Roaming/Microsoft/Word/Wheatstone Bridge - Study Material for IIT JEE _ askIITians_files/2017612-114211310-1276-wheatstone-bridge.png
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1                     (8.3) 
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23

R

RR
Rx                                 (8.4) 

              The unknown resistance xR  can be determined in terms of other known resistors in the 

bridge. 

           8.2.2 :   Method 2 

The value of the unknown resistance can also be determined by applying Kirchhoff’s rule 

in the same Figure 8.1 above. When the current passing through the galvanometer, gI is 

zero, the bridge is said to be balanced. Kirchhoff’s rule is now applied to the closed loops 

PSQP and RQSR. Applying the Kirchhoff’s Voltage Law, the algebraic sum of all 

voltages across the circuit will be zero. Considering the first loop PSQP, 

      00 1132  RIRI                 (8.5) 

Similarly, loop RQSR gives: 

       00 221  xRIRI                   (8.6) 

The first loop gives:  

        
3

1

1

2

R

R

I

I
                         (8.7)  

Also, second loop gives: 

        
xR

R

I

I 2

1

2                       (8.8) 

Thus, 
xR

R

R

R 2

3

1                                (8.9) 

1

32

R

RR
Rx                                                        (8.10) 

8.2.3   Method 3 

In this method, Ohm’s law is applied to the same figure 8.1 to determine the value of the 

unknown resistance. By adjusting the variable resistor, the bridge will be balanced. This 



 

 

implies that, the voltage at points Q and S are equal. Recall, from Ohm’s law: 
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V
IRIV               (8.11) 
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              (8.12) 
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This gives: xxx RRRRRRRR 23221             (8.17) 

           321 RRRR x             (8.18) 
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Rx                    (8.19) 

8.2.4  Applications of Wheatstone Bridge 

With the help of Wheatstone bridge, we can have a light detector circuit. Bridge circuits 

are used to measure intensity of light. In the bridge circuit, one of the resistor is replaced 

by light dependent resistor. Thus, the deviation in the levels of light can be monitored and 

measured. The bridge circuit can be used to measure changes in pressure in strain gauge, 

thermistor and potentiometer. Wheatstone bridge is used with operational amplifier to 

measure and amplify small changes that takes place in resistors. The bridge circuit is used 

in transducers and sensors in industries. 

One important application of the Wheatstone bridge includes the strain gauge. A strain 

gauge is used to measure strain. Strain is the amount of change a material undergoes 

when an external force is applied. When a metal conductor is stretched or compressed, 

the resistance of the material changes as the length, diameter and the resistivity of the 

material changes. The resistance changes to a very small value for a particular strain. 

Wheatstone bridge is used to measure accurately the small resistance changes. In this 

case, the unknown resistance is replaced with a strain gauge.  

 



 

 

8.3   Metre Bridge or Slide Wire Bridge 

Metre-bridge is a sensitive device used to determine the resistance of a conductor (wire). 

It is based on the principle of Wheatstone –bridge. 

            

                                

                                           Figure 8.2: Metre- Bridge 

A metre bridge as shown in figure 8.2 consists of one metre long wire of manganin or 

constantan which is fixed along a scale on a wooden base AC.The area of cross-section of 

the wire is the same at all places. The ends A and C of the wire are joined to two L-

shaped copper strips carrying binding-screws. In between these strips, leaving a gap on 

either side, there is a third copper strip having three binding screws. The middle screw D 

is connected to a sliding jockey B through a stunted-galvanometer G. The knob of the 

jockey can be made to touch any point on the wire. 

The connection as shown in figure 8.2 can be used to measure an unknown resistance. A 

resistance R is taken out from the resistance box and the key K is closed.  Now the jockey 

is slided along the wire and a point is determined such that, on pressing the jockey on the 

wire at that point there is no deflection in the galvanometer G. In this position, the points 

B and D are at the same potential. The point B is called ‘null-point’. The lengths of both 

parts AB and BC of the wire are measured. Suppose the resistance of the length AB of 

the wire is P and that of length BC is Q. Then, by the principle of Wheatstone-bridge, 

gives: 

         
S

R

Q

P
                   (8.20) 

Let the length AB be l cm. Then the length BC will be ( 100 – l ) cm. 

Therefore, resistance of AB, that is, 
A

l
P


 , and resistance of BC, Q 

 
A

l
r




100
 

Where r is the specific resistance of the material of the wire and ‘A’ is the area of cross-

section of the wire. Thus, 
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By substituting equation (8.20) into equation (8.21) gives: 

              
 
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l 




100

100
                                            (8.22) 

R is the resistance taken in the resistance box and l is the measured length. Hence, the 

value of resistance S can be determined from the above equation. 

8.4   Potentiometer 

A potentiometer is a device used for measuring the potential difference between two 

points. It can also be used to compare the electromotive forces of two cells or to measure 

internal resistance of a cell. It consists of a number of segments of constantan or 

manganin wire of uniform area of cross section stretched on a wooden board between two 

thick copper strips. Each segment of wire is 100 cm long. A metre rod is fixed parallel to 

its length. A battery connected across the two ends terminals provides current through the 

wire which is kept constant by using a rheostat.    

 

                         

                              Figure 8.3 Potentiometer 

8.4.1 Principle of Potentiometer 

The potentiometer is based on the principle that when a constant current is passed 

through a wire of uniform area of cross-section, the potential drop across any portion of 

the wire is directly proportional to the length of that portion. 

Let V be potential difference across certain portion of wire whose resistance is R. If I is 

the current passing through the wire, then V = I R 

   But 
A

l
R


              (8.23) 



 

 

Where l, A and  are length, area of cross-section and resistivity of the material of wire 

respectively.  

  Therefore, 
A

lI
V


                  (8.24) 

If a constant current passed through the wire of uniform area of cross-section, then, I and 

A are constants. Since, for a given wire,   is also constant. We have 

   V = constant x  l               (8.25) 

    Therefore, V is directly proportional to l  

Hence, if a constant current flows through a wire of uniform area of cross-section, then 

potential drop along the wire is directly proportional to the length of the wire.  

A potentiometer is said to be more sensitive if it measures a small potential difference 

more accurately. In order to increase the sensitivity of a potentiometer, the length of 

potentiometer wire will have to be increased so that the length may be measured more 

accurately. 

 

8.4.2 Comparison of Electromotive Forces of Two Cells Using Potentiometer 

Two cells, whose electromotive forces (emfs) are 
1E  and 

2E can be compared by making 

use of the circuit shown in figure 8.4. The positive poles of both cells are connected to 

the terminal A of the potentiometer. The negative poles of the two terminals are 

connected to terminals 1 and 2 of a two way key while its common terminal is connected 

to a jockey j through a galvanometer G. An auxiliary or driver battery of emf E , an 

ammeter A, rheostat Rh and a one way key K are connected between the end terminals A 

and B of the potentiometer. Thus, the positive poles of the two cells as well as the 

positive pole of auxiliary battery are connected at the common point A. It is important to 

note that the e.m.f of auxiliary battery is always greater than the e.m.f of either of the two 

cells. 



 

 

                                     

                                              Figure 8.4 Comparison of emf of two cells 

To compare the e.m.fs of the two cells, a constant current is passed through the potentiometer 

wire between points A and B. The current is kept constant by using the rheostat. When the plug 

is put in the gap between the terminals 1 and 3 of the two way key, the cell of emf 
1E is 

connected in the circuit. Suppose the balancing length (between A and J) is 
1I .  If  x is the 

resistance per unit length of the potentiometer wire and I is the constant current flowing through 

it, then: 

           IlxE 11                   (8.26) 

When the key is connected in the gap between the terminals 2 and 3 and removed from the gap 

between 1 and 3, the cell of emf 
2E is connected in the circuit. Let the balancing length be 

2l in 

this case. Then, 

            IlxE 22                    (8.27) 

 Dividing equation (8.26) by equation (8.27) gives: 

            
2

1

2

1

l

l

E

E
                    (8.28) 

8.4.3 Measurement of Internal Resistance of a Cell using Potentiometer 

The internal resistance of a cell can be determined by using a potentiometer as shown in figure 

8.5 below. A constant current I is maintained through the potentiometer wire by using rheostat. 

The key 
2K is opened and the jockey is moved over the potentiometer wire so as to balance the 

e.m.f of the cell whose internal resistance is to be determined. Let 
1l  be the balancing length of 

the potentiometer wire between A and jockey j. If x is the resistance per unit length of the wire, 

then, 



 

 

                IlxE 1                   (8.29) 

                   

               Figure 8.5 Measurement of internal resistance of a cell 

 A resistance S is introduced from a resistance box S and the key 
2K is closed. The balance point 

for the terminal potential difference V between the two terminals of the cell is determined. If 
2I  

is the balancing length, then:   

                IlxV 2                   (8.30) 

     By dividing equation (8.29) by equation (8.30) gives: 
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E
                               (8.31) 

The internal resistance of the cell is given by: 

        S
V

E
r 





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
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Substituting equation (8.31) into equation (8.32) gives: 
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1                    (8.33) 

   If the values of 
21 , ll  and S are known, then the internal resistance r of cell can be determined. 

Worked Examples 

1. A Daniel cell is balanced on 125 cm length of a potentiometer wire. When the cell is 

short circuited with a 2 resistance, the balancing length obtained is 100 cm. Calculate 

the internal resistance of the cell. 

Solution: 



 

 

Using 2
100

100125
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

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 
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l
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           5.0r  

2. The resistivity of a potentiometer wire is m 81040  and its area of cross-section is

26108 m . If the current flowing through the wire is 0.2 A, determine the potential 

gradient. 

Solution: 

Potential gradient 
A

i

LA

Li

L

Ri

L

V 
   

                             12

6

8

10
108

10402.0 









 mV  

3. In an experiment to measure the internal resistance of a cell by potentiometer, it is found 

that the balance point is at a length of 2 m when the cell is shunted by a 5  resistance; 

and is at a length of 3 m when the cell is shunted by a 10  resistance. Calculate the 

internal resistance of the cell. 

Solution: 

Using 5
2

21

2
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





 
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





 
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l
rS

l

ll
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And 10
3

31 






 


l
r     (ii) 

Solving equation (i) and (ii) gives:  10r  

4. In the circuit diagram shown below, calculate the current through the galvanometer 

across P and R of 10 resistances with a potential difference of 20 V. 

           



 

 

             

                     Figure 8.6 

 

Solution: 

Considering loop PRQP:  

   
 101350103050 2121  gg iiiiii

    

Consider the loop PSQP:      )2(01040100 21  ggg iiiii  

Consider the loop RQSVR:   )3(204030 22  giii  

Solving equations (1) (2) and (3) yields Aig 0315.0  

Therefore, the current that flows across the galvanometer gi  is 0.0315 A 

5.  In the circuit diagram below, calculate the voltage across the point P and R. Also, 

determine the resistance 
4R  required to balance the bridge circuit.  
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                 Figure 8.7 

Solution: 

Consider the arm 
211 PQP : 
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Consider the next arm 
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Thus, VVout 113344   
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Self – Assessment Questions (SAQs) 

1. In a Wheatstone’s bridge, if the galvanometer shows zero deflection, determine the 

unknown resistance. Given that,  000,101000 QP  and  20R . 
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2. In a metre bridge, the balancing length for a 10  resistance in left gap is 51.8 cm. 

Find the unknown resistance and specific resistance of a wire of length 108 cm and 

radius 0.2 mm. 

3. In a potentiometer circuit, balance point is obtained at 45 cm from end A when an 

unknown e.m.f is measured. The balance point shifts to 30 cm from this end when a 

cell of 1.02 V is put in the circuit. Standard cell E always supplies a constant current. 

Calculate the value of unknown emf. 

4. A potentiometer circuit is used to compare the e.m.f of two cells 
1E  and 

2E . The 

balance point is obtained at lengths 30 cm and 45 cm, respectively for 
1E  and 

2E . 

Calculate the e.m.f of 
1E  if 

2E is 3.0 V. 

 

 

SUMMARY 

 

 

In this session, you have learnt that: 

1. The Wheatstone bridge circuit is used to measure accurately an unknown 

resistance, xR  by comparing it with known resistances (
1R ,

2R and 3R ). 

        
1

23

R

RR
Rx   

 

2. Wheatstone bridge is used with operational amplifier to measure and amplify small 

changes that takes place in resistors. The bridge circuit is used in transducers and 

sensors in industries. 

3. Metre-bridge is a sensitive device used to determine the resistance of a conductor 

(wire). It is based on the principle of Wheatstone –bridge. 

4. A potentiometer is a device used for measuring the potential difference between 

two points. It can also be used to compare the electromotive forces of two cells 

or to measure internal resistance of a cell 

5. The potentiometer is based on the principle that when a constant current is passed 

through a wire of uniform area of cross-section, the potential drop across any portion 

of the wire is directly proportional to the length of that portion. 

 

 

 

 



 

 

 

Study Session 9: Electrodynamics of Charged Particles 

                                                     

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

  Both Electricity and Magnetism have been known for more than 2000 years. However, 

it was discovered by Oersted in 1820, that they were intimately related. Now, it is known 

that all magnetic phenomena result from forces arising from electric charges in motion. 

When a charged particle moves in a magnetic field, it is acted on by the magnetic force 

and the motion is determined by Newton’s law. In this session, you will learn how 

magnetic field exerts forces on moving charged particles like electrons and protons. You 

will also learn how particles can be accelerated to very high energies in a cyclotron. 

Velocity selector, Mass Spectrometer and Hall Effect will also be discussed under the 

applications of charged particles in an electric and magnetic fields. 

 

 

           Learning Outcomes  

When you have studied this session, you should be able to explain: 

9.1 The Magnetic Force on a Moving Charge 

9.2 The Motion of a Charged Particle in a Uniform Magnetic Fields 

9.3 The Motion of a Charged Particle Projected at an Angle into a Magnetic Field 

9.4 Charged Particles in an Electric and Magnetic Fields 

 

9.1 The Magnetic Force on a Moving Charge 

A magnetic field exists at a particular point in space if a force is exerted on a moving 

charge at that point. A moving charge or current creates a magnetic field in the 

surrounding space in addition to its electric field. The field by which magnetic 

interaction occurs is also called magnetic field denoted by the symbol B


 . The S.I 

unit for B


 is Tesla or Webers/m
2
 . In CGS, the unit is Gauss (G). 1T = 10

4 
G. The 

magnetic field of the earth is of the order of 10
-4 

T or 1 G. The magnetic force acting 

on a charge q  moving with velocity v is given by: 

                    BVqF


                   (9.1) 

In vector form, F


can be written as: 



 

 

                  

zyx

zyx

BBB

VVV

kjiqBVqF 


                 (9.2) 

Therefore, the magnitude of the magnetic force on charge q is given by: 

     sinBVqF                        (9.3) 

Where  angle measured from the direction of  V


to the direction of B


. 

           q magnitude of the charge. 

The direction of BV


  and the direction of F


  for both positive and negative charge 

q can be determined from the right-hand rule. F


 has the direction of BV


  if q is 

positive while F


 has the direction of BV


  if q is negative . Similarly, equation 

(9.2) indicates that: 

            0F                 (when V


 is parallel to B


 and when V


 = 0) 

            BVqF max       (when V


is perpendicular to B


 ) 

9.2  Motion of a Charged Particle in a Uniform Magnetic Field 

A static magnetic field does not exert any force on a charged particle at rest. It can 

experience a magnetic force only when it enters the magnetic field with velocity v. 

The force is given by sinBVqF  .This force is always perpendicular to the 

direction of motion of the charged particle. It will only change the direction of 

motion but not the magnitude of the velocity. Let us consider the motion of a charged 

particle in a uniform magnetic field with strength B that is perpendicular to the 

velocity v, then the magnitude of the magnetic force is given by: 

                BVqF               (9.4) 

And its direction is perpendicular to V. When the initial velocity of a positively 

charged particle is perpendicular to the magnetic field, the particle’s orbit is a circle. 

The magnetic force is always directed towards the centre of a circular path, therefore, 

the magnetic force causes a centripetal acceleration. Whenever a particle moves in a 

circular path, it experiences a centripetal force. The magnitude of the magnetic force 

is equal to the product of the mass and centripetal acceleration. That is, 

         
r

V
mBVqF

2

                                                            (9.5) 

  Solving for r, gives: 

             
Bq

P

Bq

Vm
r                        (9.6) 

That is, the radius of curvature is proportional to the magnitude of the momentum 

Vm of the charged particle and inversely proportional to the magnitude of the charge 

and to the magnitude of the magnetic field. Therefore, the radius depends on the 



 

 

mass to charge ratio of the charged particle. The distance travelled by the charged 

particle in one revolution is given by: 
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
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The angular frequency  is the time it takes the charged particle to complete an 

orbit. The angular frequency of a charged particle in a constant magnetic field is 

given by: 

      
m

Bq

r

V
                    (9.8) 

The period of motion of a charged particle in a constant magnetic field is given by: 

      
Bq

m

V

r
T





 222
              (9.9) 

In other words, the charged particle undergoes oscillatory motion with a period 

proportional to the mass to charge ratio (m/q) and inversely proportional to the 

magnetic field. The frequency 
m

Bq

T
f

2

1
                    (9.10)                       

is called the cyclotron frequency. Equation (9.9) shows that the cyclotron frequency 

is independent of the energy of the charged particle but depends only on its mass m 

and charge q. 

These equations show that fT ,  and  are independent of the speed V of the 

particle and the radius r of the orbit. If the velocity of the charged particle has two 

components, one perpendicular  V  to the uniform magnetic field and the other 

parallel  V  to it, then the particle will move in a helical path about the direction of 

the magnetic field B


. 

 

9.3 Motion of Charged Particle Projected at an Angle into a Magnetic Field 

An electron of mass m and charge q with a uniform velocity V enters a 

uniform magnetic field B at an angle  . It is assumed that the magnetic field 

is in z-direction. Thus, the electron’s velocity can be resolved into a 

rectangular components xV and 
zV . The component of velocity parallel to the 

magnetic field is cosVVz   is not influenced by the field since 

        0 BVqF zz
            (9.11) 

Hence, the electron continues to travel along the field lines with a velocity

cosVVz  .  

The velocity component sinVVx   gives rise to a force on the electron. 

        sinBVqBVqF xx                                (9.12) 



 

 

Under the action of this force, the electron tends to describe a circular path in 

a plane perpendicular to the magnetic field. The radius of this path is given 

by: 
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R x sin

              (9.13) 

The period of one revolution is given by: 
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           (9.14) 

The resultant motion of the electron is obtained by superposition of the 

uniform translational motion parallel to B and the uniform circular motion in 

a plane normal to B. The resultant motion is along a helical path withaxis of 

the helix being the field direction. The pitch of the helix is the distance 

covered by the electron along the field direction in one revolution. Thus, the 

path pitch is given by: 

           
Bq
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VTVTVP z
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
          (9.15) 

9.4 Charged Particles in an Electric and Magnetic Fields 

A charged particle moving in a region with an electric field E


and magnetic field B


will experience a total force F


 given by: 

           BVqEqF


                (9.16) 

This force is called the Lorentz force. 

 

9.4.1 The Velocity Selector 
A Velocity Selector is an electro-optic device which uses uniform electric and 

magnetic fields in cross-field configuration (perpendicular to each other) for 

setting a stream of charged particles of single velocity from a beam of particles 

having a wide range of velocities. 

The electric field deflects the positively charged particles upward while the 

magnetic field deflects them downward as shown in Figure 9.1. If the magnitude 

of the electric field E and magnetic field B are adjusted such that the net force 

exerted on the electrons becomes zero, then, 

    VBqEqFF ME            (9.17) 

                         
B

E
V                (9.18)                                 

and the electrons will continue moving in a horizontal straight line through the 

region of the fields.  

 



 

 

 
                            

 

Figure 9.1:  Charged particle moving in both Electric and Magnetic fields. 

 

 

 

9.4.2 The Mass Spectrometer 
A mass spectrometer is an instrument used to measure the mass or the mass-to-

charge ratio for charged particles or ions. 

 

  
   Figure 9.2: A mass spectrometer 

The mass spectrometer shown in Figure 9.2 has source of charged particles where they 

are accelerated through a potential difference V. These particles pass through a slit into 

the velocity selector. Particles that have a speed of 
B

E
v   pass through the slit and enter 

a deflecting chamber of uniform magnetic field B. In this region, the particles move in a 

circular path of radius r. From equation (9.6), the mass can be expressed as follows: 

                
v

Bqr
m             (9.19) 

Using equation (9.18) , the mass-to-charge ratio can be expressed as:  

              
E

rB

q

m
2

                (9.20) 



 

 

If the charge q is known, then the mass m of the charged particle can be calculated in 

terms of  EB , and r . 

9.4.3 The Hall Effect 

In 1879, Edwin Hall demonstrated that when a current I passes through a strip 

of metal which is placed perpendicular to a magnetic field B


, a potential 

difference is established in a direction perpendicular to both I and B


.This 

phenomenon is known as Hall effect. It is a technique used to determine the 

density and sign of charge carriers in a metal based on the forces exerted by 

crossed E


and B


fields on the charge carriers. 

 
                Figure 9.3 Current in a magnetic field 

 

The diagram shown in Figure 9.3 consists of a metallic strip carrying a 

current in the direction shown and placed in a uniform magnetic field which 

is perpendicular to the electric field (which generates the current I ). Suppose 

the charge carriers in the materials are electrons, then, the electrons will move 

in a direction opposite to that of the current. The magnetic field is 

perpendicular to the electric field and also perpendicular to the direction of 

motions of the electrons. As a result of the magnetic force the electrons are 

deflected downwards and an excess negative charge will be created on the 

bottom of the strip. At the same time, a deficit of negative charge will be 

created at the top of the strip. This charge distribution will generate an 

electric field that is perpendicular to the external electric field. At the 

equilibrium, the electric force produced by this field will cancel the magnetic 

force acting on the electrons. Equating the electric and magnetic forces gives: 

   BVeEeFF dHBE 


            (9.21)                  

when d is the width of the strip, the potential difference
HV , called the 

Hall voltage across the strip is related to the electric field 
HE  by: 

   dEV HH                (9.22) 

From equation (9.22), the drift speed dV  is related to the current I  by: 



 

 

    AVenI d                 (9.23)                              

where dtA   is the cross-sectional area of the strip. Substituting 
HE from 

equation (9.22) and dV from equation (9.23) into equation (9.21) gives: 

   
ten

BI
VH                                           (9.24) 

Therefore, 
t

BI
RV HH                           (9.25)                                                                      

where 
en

RH

1
  is called the Hall Coefficient. Equation (9.25) can be used 

to measure the magnitude of the magnetic fields and give information about 

the sign of the charge carriers and density. 

 

 

 

Worked Examples 

1. An electron moves through a uniform magnetic field given by   jBiBB xx 3


. At 

a particular instant, the electron has velocity   10.40.2  msjiV


and the magnetic 

force acting on it is  kNF 19104.6 


. Determine the magnitude of xB . 

Solution: 

         kNjBiBjiBVeF xx

1919 104.6342106.1  


 

 Simplifying the cross product gives: TBB xx 242   

2. A proton moves at a constant velocity of 
150 ms along an axis through crossed 

electric and magnetic fields.  Determine the electric field if the magnetic field is 

 TmB 0.2 . 

Solution: 

Since the velocity is constant, 00  BVqEqF


 

                                                 TmsE
B

E
V 31 10250    

                                                 
11.0  VmE  

3. In an experiment with cosmic rays, a vertical beam of particles that have a magnitude 

3e and a mass 12 times the proton mass enters a uniform horizontal magnetic field of 

0.250 T. It bends in a semi- circle of 95 cm. Calculate the speed of the particle. 

Solution: 

Using 
   

 27

19

1067.112

475.025.0106.13









m

rBq
v

Bq

vm
r  

161084.2  ms  



 

 

4. A proton travels with a speed of 
16100.3  ms at an angle of 037 with the direction 

of a magnetic field of 0.30 T in the positive y-direction. Determine the magnitude of 

the: 

(a) Magnetic force      (b) proton’s acceleration 

Solution: 

(a)      NVqBF 140619 107.837sin100.31060.130.0sin     

(b)  
  213

27

14

102.5
1067.1

107.8 









 ms

m

F
a  

5. A proton moves perpendicularly to a uniform magnetic field B at a velocity of 
17100.1  ms .If it experiences an acceleration of 

213100.2  ms , determine the 

magnitude of the magnetic field. 

Solution: 

  
  

T
Vq

am

Vq

F
B 20.0

100.11060.1

100.21067.1
719

1327











 

6. In a mass spectrometer, the electric field between the plates of the velocity selector is 
1950  mVE  and the magnetic field B in both the velocity selector and in the 

deflection chamber has a magnitude of 0.9 T. Calculate the radius r for a singly 

charged ion of mass kgm 261018.2   in the deflection chamber. 

Solution: 

Using the fact that for ion to pass through the velocity selector undeflected, the force 

due to the electric and magnetic fields must balance. Therefore, 

         
B

E
VBVqEq   

When the ion enters the deflection chamber, it experiences a magnetic force, causing 

it to go in a circular orbit. The magnetic force then give rise to the centripetal 

acceleration as: 

              
r

V
mBq

r

V
mBVqF 

2

 

              
  

  
m

Bq

Em

Bq

Vm
r 4

219

26

2
106.1

9.0106.1

9501018.2 









  

Thus, the radius of the orbit is 0.16 mm 

      

  

Self – Assessment Questions (SAQs) 

1. An electron emitted by a heated cathode and accelerated through a potential 

difference of 2.0 kV, enters a region with a uniform magnetic field of 0.15 T. 

Determine the trajectory of the electron if the field: 

(a) Is transverse to its initial velocity 

(b) Makes an angle of 30
0
 with the initial velocity 



 

 

2. In a chamber, a uniform magnetic field of  TGG 41015.6   is maintained. An 

electron is shot into the field with a speed of 
16108.4  ms  normal to the field. 

Determine the radius of the circular path. 

3. An electron is accelerated from rest by a potential difference of 350 V. It then enters a 

uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the 

field. Calculate: 

(a) The speed of the electron 

(b) The radius of its path in the magnetic field. 

4. An electron is accelerated through a potential difference of 1.0 kV and directed into a 

region between two parallel plates separated by 20 mm with a potential difference of 

100 V between them. The electron is moving perpendicular to the electric field of the 

plates when it enters the region between the plates. Determine the uniform magnetic 

field applied perpendicular to both the electron path and the electric field that will 

allow the electron to travel in a straight line. 

5. An electron that has velocity      jmsimsV 1616 100.3100.2    moves 

through the magnetic field     jTiTB 15.0030.0  . 

(a) Determine the force on the electron 

(b) Repeat your calculation for a proton having the same velocity 

6. An ion source in a mass spectrometer produces doubly ionized gold ions, each with a 

mass of kg251027.3  . The ions are accelerated from rest through a potential 

difference of 1.00 kV. Then, a 0.500- T magnetic field causes the ions to follow a 

circular path. Determine the radius of the path. 

 

                      
                                  

                SUMMARY 

 

In this session, you have learnt that: 

1. A moving charge or current creates a magnetic field in the surrounding space in 

addition to its electric field. The field by which magnetic interaction occurs is also 

called magnetic field denoted by the symbol B


 

2. The Lorentz force on a moving charge q is BVqEqF


 . F


 has the 

direction of BV


  if q is positive while F


 has the direction of BV


  if q is 

negative 

3. A charged particle in a uniform magnetic field traces a circular path of radius 

Bq

P

Bq

Vm
r   

4. The period of motion of a charged particle in a constant magnetic field is given 

by: 

      
Bq

m

V

r
T





 222
       



 

 

5. The frequency 
m

Bq

T
f

2

1
   is called the cyclotron frequency 

6. Crossed electric and magnetic fields can be used as a velocity selector. The 

electric and magnetic forces exactly cancel when 
B

E
V   

       

 

 

 

 

 

Study Session 10:  Magnetic Fields and Magnetic Forces of / on Current Carrying  

                                 Conductors 

                                                     

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

Moving charges experience a force in a magnetic field. If these moving charges are in a wire, 

that is, if the wire is carrying a current, the wire will experience a force. In the last session, we 

studied the motion of charged particles in a uniform magnetic field. In this chapter, you will 

learn that a current-carrying wire generates a magnetic field and the magnetic field exerts a force 

on the current –carrying wire. However, before we discuss the force exerted on a current by a 

magnetic field, we first examined the magnetic field generated by an electric current. 

 

           Learning Outcomes  

When you have studied this session, you should be able to explain: 

10.1 Generation of a Magnetic Field 

10.2 The Biot- Savart Law 

10.3 The Magnetic Field at the Centre of a Circular-Current Loop 

10.4 The Magnetic Field Around a Long Straight Wire 

10.5 Ampere’s Circuital Law 

10.6 Force on a Current-Carrying Conductor in an External Magnetic Field 

 

 

 



 

 

10.1 Generation of a Magnetic Field 

Although magnets had been known for hundreds of years, it was not until 1820, that Hans 

Christians Oersted (1771-1851) discovered a relation between electric current and 

magnetic fields. If a series of compasses are placed around a wire that is not carrying a 

current, all the compasses will point toward the north, the direction of the earth’s 

magnetic field, as shown in Figure 10.1. However, if, a current I passes through the wire, 

the compass needles will no longer point to the north. Instead, they point in a direction 

which is everywhere tangential to a circle drawn around the wire, passing through each 

compass, as shown in figure 10.1(b). Because a compass always align itself in the 

direction of a magnetic field, the current in the wire has created a circular magnetic field 

directed anticlockwise around the wire. If the direction of the current is reversed, the 

direction of the magnetic field will also be reversed and the compasses will point in a 

clockwise direction. The direction of the magnetic field around a long straight wire is 

determined by the “Right Hand Rule”. In “Right Hand Rule”, your thumb points in the 

direction of the current while your fingers will curl around the wire, pointing in the 

direction of the magnetic field produced. 

This observation that electric currents can create a magnetic field was responsible for 

linking the then two independent sciences of electricity and magnetism into the one 

unified science of electromagnetism. 

 

             

(a) No current in wire                                      (b) Current in wire 

Figure 10.1 The creation of a magnetic field by an electric current 

10.2 The Biot – Savart Law 

The definition of the magnetic forced showed that two moving charges experience a 

magnetic force. In other words, a moving charge produces a magnetic field which results 

in a magnetic force acting on all charges moving in this field. 

A current flowing through a wire is equivalent to a collection of electrons moving with a 

certain velocity along the direction of the wire. Each of the moving electrons produces a 

magnetic field. The Biot-Savart law relates the amount of magnetic field dB at the 

position r produced by a small element dl, of a wire carrying a current I and is given by: 

N  
N  

I  



 

 

          
34 r

rdlI
dB







                    (10.1)                                     

and is shown in Figure 10.2.   is a constant called the permeability of the medium. 

            

Figure 10.2  The magnetic field produced by a current element. 

In a vacuum or air, it is called the permeability of free space, and is denoted by 0 , where 

         
17

0 104  AmT  

Equation (10.1) is called the Biot-Savart law. 

10.3 The Magnetic Field at the Centre of a Circular Current Loop 

Biot-Savart law can be used to determine the magnetic field at the centre of a circular current 

loop shown in Figure 10.3. A small element of the wire dl produces an element of magnetic field 

dB at the centre of the wire given by equation (10.2) as: 

             
3

0

4 r

rldI
dB







                (10.2) 

              

     Figure 10.3 The magnetic field at the centre of a circular current loop 

From the nature of the vector cross product, rld  , and hence dB points upward at the centre of 

the circle for every current element as shown in figure 10.3. The total magnetic field B which is 

the sum of all the dB’s, must also point upward at the centre of the loop. Therefore, the magnetic 

field at the centre of the current loop is perpendicular to the plane formed by the loop and points 

upward. Since the direction of the vector is now known, the total magnetic field gives: 

                      dBB                 (10.3) 

r  r 

B  

d B 

d l 

d l  

I  

I  

r  

d B  

d l  

P 

I 

) ( a 

P  

I  

(  b  )  



 

 

The magnitude of  dB in equation (10.2) gives: 

                    
3

0 sin

4 r

rdlI
dB






                      (10.4) 

Since dl is perpendicular to r, the angle   is equal to 90
0 

, therefore, dB becomes: 

                   
2

0

4 r

dlI
dB




                            (10.5) 

Replacing equation (10.5) into equation (10.3) gives the magnitude of the magnetic field as: 

                   
2

0

4 r

dlI
dBB




                    (10.6) 

Since the loop is a circle of constant radius r and 




4

0 I
, is a constant, these terms can be 

factorized out of the integral to yield: 

                dl
r

I
B

2

0

4


                 (10.7) 

But the summation of all the dl’s is simply the circumference of the wire. 

                 rdl 2                   (10.8) 

Therefore, equation (10.7) becomes: 

                
r

I
r

r

I
B

2
2

4

0

2

0 





            (10.9) 

Equation (10.9) gives the magnetic field at the centre of a circular current loop. The magnetic 

field at the centre of the circular current loop is directly proportional to the current I –the larger 

the current, the larger the magnetic field; and inversely proportional to the radius r of the loop – 

the larger the radius, the smaller the magnetic field. If there are N turns of wire constituting the 

loop, the magnetic field at the centre is: 

                
r

IN
B

2

0                               (10.10) 

The magnetic field found in this way is the magnetic field at the centre of the current loop. The 

magnetic field all around the loop is shown in figure 10.4. It is observed that it resembles the 

magnetic field of a bar magnet, where the top of the loop would be the north pole. 

 



 

 

 

                                 Figure 10.4  The magnetic field of a current loop 

 

10.4 The Magnetic Field Around a Long Straight Wire 

 The Biot-Savart law can be used to determine the magnetic field at a distance R away from a 

long straight wire carrying a current I as shown in figure 10.5. The wire lies along the y-axis and 

is carrying a current in the positive y-direction as shown. A small element dl of the current 

carrying wire causes a small element of magnetic field dB at the point P given by the Biot-Savart 

law as: 

                
3

0

4 r

rldI
dB







                            (10.11) 

The total magnetic field at the point P will be the sum or integrals of all these dB’s and is given 

by equation (10.12) as: 

                       dBB                                   (10.12) 

                 

   Figure 10.5  The magnetic field around a long straight wire by applying Biot-Savart law. 

Vector dl is rotated into r in order to determine the direction of the cross product term rdl   and 

dB. It is noticed that it points into the plane of the paper at the point P. Since dB is always into 

the page, B will also be into the page, and we only have to deal with the magnitude of dB in the 

integration.  The magnetic field B can be determined from: 

x  

y  

z  

dy 

R P 

θ   
π−θ 

dl 

d B  

y r 

I  



 

 

                    





2

0 sin

4 r

dlI
dBB






             (10.13) 

The long straight wire is assumed to go from  y  to y  and these are now the limits 

of integration. The element dl will now be represented by dy since y is the variable we are 

integrating over. Equation (10.13) becomes: 

                   





2

0 sin

4 r

dyI
B






                       (10.14) 

The variables ,, r and y  are not independent, but are related from the geometry of figure 10.5 

as: 

                22 Ryr                                      (10.15)                                               

and from trigonometric identity 

                   sinsin  

Hence,    
22

sinsin
Ry

R


                                          (10.16) 

Substituting equation (10.15) and equation (10.16) into equation (10.14) yields: 

    













2222
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  















 dyRy
RI

Ry

dyRI
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


           (10.17) 

Because of the symmetry of the problem, we can integrate from 0y  to y , instead of 

integrating from y  to y , by doubling the value of the integral. That is, 

                 







0

2 dydy  

Equation (10.17) can be written as: 

               
 


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3
220
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dyRy

RI
B




               (10.18) 



 

 

But from table of integrals, we find 

              
 




0
222

2

3
22

RyR

y
dyRy                       (10.19) 

Substituting equation (10.19) into equation (10.18) yields: 
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               (10.20) 

If we were to place the limits of integration into the present form of equation (10.20) , we would 

obtain an indeterminate form. Hence, we now divide both numerator and denominator by y to 

give: 
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Equation (10.21) gives the value of the magnetic field B at a distance R from a long straight wire 

carrying a current I. 

 

10.5 Ampere’s Circuital Law 

In session 10.4, you learnt that the Biot-Savart law can be used to determine the magnetic field 

for different current distributions in which many of the derivations require vector integrations. 

Another simpler techniques for determining the magnetic fields, when symmetry is appropriate is  

Ampere’s Circuital Law. Ampere’s Law states that along any arbitrary path encircling a total 

current Itotal ,the integral of the scalar product of the magnetic field B with the element of length 

dl of the path, is equal to the product of the  permeability 0  and the total current Itotal  enclosed 

by the path. That is: 



 

 

              totalIdlB 0.                  (10.22) 

Ampere’s law is a fundamental law that is based on experiments and cannot be derived. 

10.6 Force on a Current-Carrying Conductor in an External Magnetic Field 

If a wire carrying a current I is placed in an external magnetic field B as shown in figure 10.6, a 

force will be found to act on the wire. This force is the magnetic force acting on a charged 

particle in a magnetic field. 

                 

     Figure 10.6 Force on a current-carrying wire in an external magnetic field. 

If the wire is carrying a current, then there are charges in motion within the wire. These charges 

will be moving with a drift velocity dV  in the direction of the current flow. Any one of these 

charges q will experience the force 

               BVqF dq               (10.23) 

This force on an individual charge will cause the charge to interact with the lattice structure of 

the wire, exerting a force on the lattice and hence on the wire itself. The drift velocity of the 

moving charge can be written as: 

                
t

l
Vd                       (10.24)                                                              

where l is a small length of the wire in the direction of the current flow and is shown in figure 

10.6, and t is the time. Replacing this drift velocity in equation (10.23) gives: 
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                 (10.25) 

The net force on the wire is the sum of the individual forces associated with each charge carrier, 

that is, 
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But  







q t

q
 is equal to all the charges passing through a plane of the wire per unit time and is 

defined to be the current in the circuit, I. Hence a wire carrying a current I in any external 

magnetic field B, will experience a force given by: 

         BlIF                 (10.26) 

The force is again given by a cross product term, and the direction of the force is found from

Bl  . If l is in the direction of the current and B is pointing into the page in figure 10.6, Bl  is 

a vector that points upward. If the direction of the current flow is reversed, l would be reversed 

and Bl  would then point downward. The magnitude of the force is determined from equation 

(10.24) as: 

          sinBlIF                      (10.27)                                                                                                    

where   is the angle between l and B. Solving equation (10.27) is gives another set of units for 

the magnetic field, namely: 

        
lI

F
B   

Thus, 1 Tesla 
111 


 mANT

metreAmpere

Newton
 

Worked Examples 

1. A 20.0 cm wire carrying a current of 10.0 A is placed in a uniform magnetic field of 

0.300 T. If the wire makes an angle of 40.0
0 

 with the vector B. Determine the direction 

and magnitude of the force on the wire. 

Solution: 

The direction of the force is obtained from the equation below: 

        
      BlIF   

In rotating the vector l towards the vector B in the cross product, the thumb points upward, 

indicating that the direction of the force is also upward. The magnitude of the force is: 
      sinBlIF   

        040sin300.0200.00.10 TmAF   

     NF 386.0  

2. Determine the magnetic field at the centre of a circular current loop of 0.500 m radius, 

carrying a current of 7.00 A. 

Solution: 

The magnetic field at the centre of the loop is given by: 

   



 

 

           
  

 m

AAmT

r

I
B

500.02

00.7104

2

17

0





 

            TB 61080.8   

3. Determine the magnetic field at the centre of a circular current loop of 10 turns, with a 

radius of 5.00 cm carrying a current of 10.0 A. 

Solution: 

The magnetic field is given by: 

   
   

 m

AAmT

r

IN
B

050.02

0.1010104

2

17

0





 

  TB 31026.1   

4. A long straight wire is carrying a current of 15.0 A. Calculate the magnetic field 30.0 cm 

from the wire. 

Solution: 

The magnetic field around the wire is given by: 

   

     
  

 m

AAmT

R

I
B

30.02

0.15104

2

17

0







 
  

     TB 51000.1   

5. A toroid has an inner radius of 10.0 cm and an outer radius of 20.0 cm and carries 500 

turns of wire. If the current in the toroid is 5.00 A. Determine the minimum and 

maximum values of the magnetic field inside the toroid. 

Solution: 

The minimum value of the magnetic field B within the toroid occurs for the maximum 

value of r , given by: 

 

    
   

 m

AAmT

R

IN
B

200.02

00.5500104

2

17

0







 
  

   TB 0025.0  

The maximum value of the magnetic field B within the toroid occurs for the minimum 

value of r, and is given by: 

   
   

 m

AAmT

R

IN
B

100.02

00.5500104

2

17

0







 
  

    TB 0050.0  

 

 

 

 

 

 



 

 

Self – Assessment Questions (SAQs) 

1. An electric power line carries a current of 1400 A in a location where the earth’s 

magnetic field is 5.0 x 10
-5 

T. The line makes an angle of 75
0 

with respect to the field. 

Determine the magnitude of the magnetic force on a 120-m length of line. 

2. In the diagram below, a 6.00 m long wire carrying a current of 120 A is immersed 

in a uniform magnetic field of magnitude 0.200 T and width 3.50 m. Determine the 

magnetic force on the wire. 

                      
                      Fig.10.7 

3. A long straight wire of linear mass density 20 g/m is immersed in a constant 

magnetic field B = 3 T, as shown in Fig 10.8 Determine the current I that would be 

required by the wire to be suspended. 

           
       Fig. 10.8: Long straight wire in a magnetic field. 

4. In the two long straight wires shown in Figure 10.9, each wire carries a current of 

5A in the opposite directions and are separated by a distance d = 30 cm. Find the 

magnetic field a distance l = 20 cm to the right of the wire on the right hand side. 

                 
         Fig. 10.9: Magnetic field of two long straight wires 

5. In the arrangement shown in Fig.10.10, the long straight wire carries a current of  

AI 51  .This wire is at a distance d = 0.1 m away from a rectangular loop of dimensions 

a = 0.3 m and b = 0.4 m which carries a current AI 102  . Determine the net force 

exerted on the rectangular loop by the long straight wire. 



 

 

               
   Fig. 10.10: Force on a current loop due to a long straight wire. 

 

 

SUMMARY 

 

In this session, you have learnt that: 

1. Magnetic field is the field of force experienced by a magnetized body or a 

current carrying wire. The SI unit of magnetic field is Tesla (T). 

2. The direction of the magnetic field around a long straight wire is determined by the 

“Right Hand Rule”. In “Right Hand Rule”, your thumb points in the direction of the 

current while your fingers will curl around the wire, pointing in the direction of the 

magnetic field produced. 

3. The Biot-Savart law relates the amount of magnetic field dB at the position r 

produced by a small element dl, of a wire carrying a current I and is given by: 

          
34 r

rdlI
dB







     

4.     The magnetic field at the centre of a circular current loop is given by:    

                         
r

I
B

2

0  

5. The magnetic field around a long straight wire is given by: 

        
R

I
B





2

0  

6. Ampere’s Circuital law states that along any arbitrary path encircling a total current 

Itotal , the integral of the scalar product of the magnetic field B with the element of 

length dl of the path, is equal to the product of the permeability 0  and the total 

current Itotal  enclosed by the path. That is: 



 

 

                totalIdlB 0.   

7. Force on a charged particle in an external magnetic field is given by: 

      

               sinBVqBVqF ddq       

8. Force on a current-carrying conductor in an external magnetic field is given by: 
           sinBlIBlIF   

 

                    

Study Session 11:  Concept of Electromagnetic Induction  

                                                                

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

In the last session, you learnt that a current in a wire produces a magnetic field. Michael 

Faraday (1791-1867) also experimented with electric and magnetic phenomena and 

discovered that a changing magnetic field produced an induced emf (voltage –sources of 

electrical energy). The process whereby a magnetic field can produce a current is called 

electromagnetic induction. Faraday’s law of electromagnetic induction of 

electromagnetic induction is one of the important laws of Physics. This phenomenon is 

the scientific principal that is the basis for many practical devices such as transformer, 

communication and data storage device (reading computer memory), electronic devices, 

alternators and generators. Generators produce large quantities of electrical energy 

required for our modern society to function. In this session, you will learn the method of 

producing electricity by varying magnetic field.  

 

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 

11.1 Magnetic Flux 

11.2 Motional Emf and Faraday’s Law of Electromagnetic Induction 

11.3 Lenz’s Law of Electromagnetic Induction 

11.4 Mutual Inductance and Self Inductance 

11.5 Energy Stored in the Magnetic Field of an Inductor 

 

 



 

 

 

 

11.1 Magnetic Flux 

In session 3, electric flux was defined as a quantitative measure of the number of electric 

field lines passing normally through a surface. Similarly, the magnetic flux   can be 

defined as a quantitative measure of the number of magnetic field lines B crossing a 

particular surface area A normally. Figure 11.1(a) shows a magnetic field B passing 

through a portion of a surface area A. The magnetic flux is defined to be 

                               AB               (11.1)                                                                             

and is a quantitative measure of the number of lines B that pass normally through the 

surface area A. The number of lines represent the strength of the field. The vector B, at 

the point P of figure 11.1(a), can be resolved into the components, 
B the perpendicular 

component to the surface, and  B  the parallel components. The perpendicular 

component is given by 

                               
B cosB  

While the parallel component is given by 

                               B sinB  

The parallel component B lies in the surface itself and therefore does not pass through 

the surface, while the perpendicular component 
B completely passes through the surface 

at the point P. The product of the perpendicular component 
B and the area A 

               
B A     ABABAB coscos         (11.2)                             

is therefore a quantitative measure of the number of lines of B passing normally through 

the entire surface area A.   is the angle between the magnetic field and area vector. If   

in equation (11.2) is zero, then B is parallel to the vector A and all the lines of B pass 

normally through the surface area A, as shown in figure 11.1(b). If the angle θ in equation 

(11.2) is 090 then B is perpendicular to the area vector A, and none of the lines pass 

through the surface A as shown in figure 11.1(c). The SI unit of magnetic flux is Weber 

(Wb). It can be deduced from equation (11.2) that 1 Tesla = 1 Weber/ m
2 



 

 

                              

Figure 11.1     The Magnetic Flux 

11.2 Motional Emf and Faraday’s Law of Electromagnetic Induction 

Figure 11.2 shows two parallel metal rails separated by a distance l . A metal wire rests 

on the two rails. A uniform magnetic field B is applied such that its direction is into the 

paper as shown. A galvanometer G is connected across the two rails. The galvanometer 

 

 
(a)                                               ( b )         v 

Figure 11.2 Motional emf          

reads zero indicating that there is no current in the circuit which consists of the rails and 

wires, that is, the circuit is the electrical path designated LMNOL in figure 11.2(a). The 

metal wire MN is now pulled along the rails at a velocity v to the right. The galvanometer 

now indicates that a current is flowing in the circuit.  This implies that the motion of the 

wire through the magnetic field generated an electric current. The electric current 

generated can be explained by assuming that as the wire MN is moved to the right, any 

charge q within the wire experiences the force 

                           BvqF            (10.21)                                                  

as shown in section 10.6. If both sides of equation (10.21) are divided by q, gives: 

                          Bv
q

F
              (11.3) 
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But an electrostatic field was originally defined as:  

                         
0q

F
E            (2.1.1) where F was the force acting on a test charge 0q  

placed at rest in the electrostatic field. The induced electric field E can be defined by 

equation (11.3) as: 

                         Bv
q

F
E                  (11.4) 

This is quite different from the electrostatic field. The induced electric field exists only 

when the charge is in motion at a velocity v . When v = 0, the induced electric field will 

also be zero (see equation 11.4). The induced electric field is the cause of the electric 

current in the wire. The cross product Bv  shows the direction of the induced electric 

field in figure 11.2(b) and hence the direction that a positive charge q within the wire, 

will move. Therefore, the direction of the current will be in the direction 

MLONM  as shown in figure 11.2(b). The magnitude of the induced 

electric field van be obtained from equation (11.4) and the definition of the cross product 

as: 

                       sinBvE                 (11.5) 

The angle between v  and B is 090 and the induced electric field is therefore: 

        

                      BvE                  (11.6) 

It was shown in session 4 that for a uniform electric field that: 

                        
d

V
E                                                                                                      

where V is the potential difference between two points and d  and d is the distance 

between them. For the connecting wire MN, the induced electric field within the wire can 

be assumed to be uniform and the induced potential difference V between M and N  is 

called an induced emf designated by  . The distance d between M and N is the length l of 

the wire. Therefore, the induced electric field can be written as: 

                   
l

E


                            (11.7) 

Equating equation (11.6) to equation (11.7) gives: 

                   Bv
l



 

The induced emf   in the wire is therefore: 

                  lBv                         (11.8) 

If the circuit has a resistance R , then there is an induced current in the circuit given by 

Ohm’s law as: 

                          
R

I


                      (11.9) 

This is the current that is recorded by the galvanometer. 



 

 

The induced emf can also be derived by noting that the speed v of the wire is 
td

xd
v   

where xd is the distance the wire moves to the right in the time td . The product of v and 

l  in equation (11.8) can then be written as: 

                   l
td

xd
lv 








                     (11.10) 

But                Adlxd                                                           (11.11)                                                

is the area of the loop swept out as the wire is moved to the right and is shown in figure 

11.2(a). Substituting equation (11.11) into equation (11.10) gives: 

                    
td

Ad
lv                                                    (11.12)                                                                               

and the induced emf in equation (11.8) becomes: 

                     
td

Ad
B                    (11.13) 

Recall that the magnetic flux  AB       (11.2) 

For a constant magnetic field B, the change in magnetic flux is: 

                      AdBd                  (11.14) 

The rate at which the magnetic flux changes with time is: 

                      
td

Ad
B

td

d



            (11.15) 

In figure 11.2(a), B is into the paper, while dA, the change in area vector, is out of the 

paper, hence the angle between B and dA is 180
0
. Using this fact in equation (11.15) 

gives: 

                      
td

Ad
B

td

Ad
B

td

d
 0180cos


           (11.16) 

Therefore, 

                       
td

d

td

Ad
B


                        (11.17) 

Combining equation (11.13) and (11.17) gives an important relationship known as 

Faraday’s law, that is, 

                        
td

d
                                                   (11.18) 

Therefore, Faraday’s law of electromagnetic induction states that whenever the magnetic 

flux changes with time, there will be an induced emf. 

In a case of a closely wound coil of N turns, change of magnetic flux associated with 

each turn is the same. The expression of the total induced emf is given by: 

                   

                      
td

d
N


                                  (11.19) 

 



 

 

11.3 Lenz’s Law of Electromagnetic Induction 

Faraday’s law of electromagnetic induction was derived in section 11.2 as: 

                       
td

d
                                                (11.18) 

The effect of minus sign in Faraday’s law gives rise to a relation known as Lenz’s law 

.Lenz’s law states that: The direction of an induced emf is such that any current it 

produces, always opposes, through the magnetic field of the induced current, the change 

inducing the emf. 

                               Or 

The polarity of induced emf is such that it tends to produce a current which opposes the 

change in magnetic flux that produced it. 

   

 

 

            Figure 11.3 Illustration of Lenz’s law 

In the above figure 11.3(a), when the North-pole of a bar magnet is being pushed towards a 

closed coil, the magnetic flux through the coil increases. Hence current is induced in the coil in 

such a direction that it opposes the increase in flux. This is possible only if the current in the coil 

is in a counter-clockwise direction with respect to an observer situated on the side of the magnet. 

Similarly, in the above figure 11.3(b), if the North-pole of the bar magnet is being withdrawn 

from the coil, the magnetic flux through the coil will decrease. To counter this decrease in 

magnetic flux, the induced current in the coil flows in clockwise direction and its South-pole 

faces the receding North-pole of the bar magnet. This would result in an attractive force which 

opposes the motion of the magnet and the corresponding decrease in flux. The above illustration 



 

 

shows that Lenz’s law complies with the principle of conservation of energy. In this case, when 

the N-pole of a bar magnet is pushed into a coil as shown in figure 11.3, the direction of induced 

current in the coil will act as N-pole. So, work has to be done against the magnetic repulsive 

force to push the magnet into the coil. The electrical energy is produced in the coil at the expense 

of the work done. 

 

11.4  Mutual Inductance and Self Inductance 

An electric current can be induced in a coil by magnetic flux change produced by another 

coil in its vicinity of magnetic flux change produced by the same coil. However, in both 

cases, the magnetic flux through the coil is proportional to the current. That is, I  

For a closely wound coil of N turns, the same magnetic flux is linked with all the turns. 

When the magnetic flux   through the coil changes, each turn contributes to the induced 

emf. Therefore, a term called flux linkage is used which is equal to N  for a closely 

wound coil and in such a case IN  . The constant of proportionality is called 

inductance. Inductance depends on the geometry of the coil and intrinsic material 

properties. Inductance is a scalar quantity and its SI unit is henry (H). It has the 

dimensions of  222  ATLM . 

11.4.1  Mutual Inductance 

Consider the two coaxial solenoids of the same size shown in figure 11.4. If the current

1I in coil 1, is changed with time, this will change the magnetic field 
1B of solenoid 1 

with time. But solenoid 2 is in the magnetic field of coil 1 and any change in 
1B will 

cause an induced emf in coil 2. From Faraday’s law of induction, this can be stated as: 

                        
td

Bd
ANAB

td

d
N

td

d
N 1

21222 


         (11.20) 

             

         Figure 11.4 : Two coaxial solenoids 



 

 

                   

 

 

 

The magnetic field inside solenoid 1 is given by: 

                      
1

1
01101 i

l

N
inB                      (11.21)                   

when 
1i  changes with time, 

1B will change as: 

                      
1

1
01 di

l

N
Bd                               (11.22) 

Substituting equation (11.22) into equation (11.20) gives: 

                      
td

id

l

NN
A

td

id

l

N
AN 121

0
11

022  







           (11.23) 

Let us define the quantity 

                        M
l

NN
210                            (11.24)                                                               

to be the coefficient of mutual induction for the coaxial solenoids. Faraday’s law now 

becomes: 

                     
td

id
M 1

2                                         (11.25) 

Equation (11.25) says that changing the current 
1i  in coil 1 with time induces an emf in 

coil 2. From equation (11.25), M is only a function of the geometry of solenoids 1 and 2, 

and is a constant for particular set of solenoids chosen. The coefficient of mutual 

inductance M is defined as: 

                               

dt

id
M

1

2                       (11.26) 

Similarly, the induced emf in coil 1 caused by a changing current in coil 2 is given by: 

                              
td

id
M 2

1                      (11.27) 

 

 



 

 

11.4.2 Self Inductance 

In the previous sub-section, we considered the magnetic flux in one solenoid due to 

current in the other. It is also possible that emf is induced in a single isolated coil due to 

change of magnetic flux through the coil by means of varying the current through the 

same coil. This phenomenon is called self –induction and can be explained by Faraday’s 

law of electromagnetic induction. 

                   

              Figure 11.4  Self Induction 

A single solenoid is shown in figure 11.4. If the two ends of the solenoid coil are attached 

to the AC Generator, the varying current in the coil will cause a varying magnetic field to 

exist in the coil. The magnetic field of a solenoid is given by: 

          inB 0                              (11.28) 

By changing the current i  causes the magnetic field to change by 

           idnBd 0                     (11.29) 

The induced emf is given by Faraday’s law as: 

             
 

td

ABd
N

td

d
N 


       

Because the area A of the coil does not change, this becomes: 

            
td

Bd
AN                   (11.30) 

The changing magnetic field within the solenoid is given by equation (11.29) and 

substituting it into equation (11.30) gives: 

           
td

id
nAN 0                (11.31) 

The total number of turns N is related to n , the number of turns per unit length by  

           lnN       where l is the length of the solenoid. Substituting this into 

equation(11.31) gives: 

I  



 

 

            
td

id
nlA 2

0               (11.32) 

The coefficient of 
dt

di
 is a constant which depends only upon the geometry of the solenoid 

coil. This constant is called the self-inductance of the solenoid coil  and is designated by 

L 

           
2

0 nlAL                             (11.33) 

The self- induced emf is now given by: 

            
dt

di
L                    (11.34) 

Equation(11.34) shows that changing the current in a coil will induce an emf in the coil, 

and the minus sign means that the induced emf will act to oppose the cause of the 

induced emf. Equation (11.34) can be used to define the self- inductance as: 

                

dt

di
L


                           (11.35)                                                                                

  and 
dt

di
 can be measured experimentally for any coil configuration and L can be 

determined from equation (11.35). L, the self-inductance is usually called the inductance 

of the coil measured in henry. A circuit element in which a self-induced emf accompanies 

a changing current is called an inductor. 

 

11.5 Energy Stored in the Magnetic Field of an Inductor 

It was shown in section 5.4 that energy can be stored in the electric field between the 

plates of a capacitor. In a similar manner energy is stored in the magnetic field of the 

coils of an inductor. When the switch in figure 11.5(a) is closed, the total applied voltage 

V is impressed across the ends of the solenoid coil. The initial current i is zero. In order 

for the current to increase an amount of charge dq must be taken out of the positive side 

of the battery and moved against the induced emf  in the coil. The amount of work done 

by the battery in moving this small amount of charge is: 

            qdWd                    (11.36) 



 

 

         

  Figure 11.5:  Energy stored in the magnetic field of an inductor 

But the magnitude of the induced emf is given by equation (11.34) as: 

         
dt

di
L                               (11.37) 

Therefore, the small amount of work done is: 

           diLidiL
dt

dq

dt

di
LqdWd                   (11.38) 

We have used the fact that i
dt

dq
 ( current). This current i is not constant, but varies with 

time. Therefore, the small amount of work done is not a constant, but varies with the 

current I in the circuit. The total work done is: 

         

I

diiLWdW
0

 

        2

2

1
ILW                   (11.39) 

This work done W by the battery on the charge, shows up as potential energy of the 

charge. This energy is said to reside in the magnetic field of the coil has shown in figure 

11.5(b) and is designated as U. Thus, the energy stored in the inductor is given by: 

         2

2

1
ILU                (11.40) 

This stored energy can also be expressed in terms of the magnetic field B by recalling 

that for a solenoid 

         
2

0 nlAL                 (11.33)                                                                                           

and 

           InB 0                              (11.28) 

Solving equation (11.28) for the current gives: 

s 
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s  
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V  
E  

(  b  )  



 

 

       
n

B
I

0
                               (11.41) 

Substituting equation (11.33) and equation (11.41) into equation (11.40) gives: 

        
0

2

2

1



lAB
U                (11.42) 

Equation (11.42) gives the energy stored in the magnetic field of a solenoid. 

The energy density is defined as the energy per unit volume and can be represented as: 

         
0

2

2

1

V

lAB

V

U
u   

But the volume of the solenoid is  

               lAV   

Therefore, 

              
0

2

2

1



B
u           (11.43) 

Equation (11.43) gives the magnetic energy density or the energy per unit volume that is 

stored in the magnetic field. 

                                                                           

Worked Examples 

1. The wire MN in figure 11.2 (a) moves with a velocity of 
150 scm  to the right. If 

TBcml 250.0,0.25  , and the total electric resistance of the circuit is 0.35 . 

Determine the: 

(a) Induced emf in the circuit 

(b) Current in the circuit 

 

Solution: 

(a) The induced emf in the circuit, lBv    mTms 25.0250.050.0 1   

                                                     V21013.3   

(b) The current flowing in the circuit , 







0.35

1013.3 2 V

R
I


 

                                                        AI 41094.8   

2. A magnetic field of T21000.5   passes through a plane 25.0 cm by 35.0 cm at an 

angle of 040  to the normal. Determine the magnetic flux passing through the plane. 



 

 

Solution: 

The area of the plane is: 

              221075.8350.0250.0 mmmA   

The magnetic flux,    0222 40cos1075.81000.5cos mTAB     

                                Wb31035.3   

3. The wire MN in figure 11.2(a) is fixed 10.0 cm away from the galvanometer wire OL. 

The magnetic field varies from 0 to 0.500 T in a time of .100.2 3 s  If the 

resistance of the circuit is 0.35 . Calculate the: 

(a)Induced emf                                                                                                                   

(b) current in the circuit while the magnetic field is changing with time 

(c) induced emf if the magnetic field remains at a constant 0.500 T 

Solution: 

(a) From Faraday’s law:  

                             
td

d
 

td

Bd
A

td

Ad
B ..   

Because the wire MN is fixed, the area of the loop does not change with time. That is, 

0dA .However, B is changing with time, and the induced emf is therefore, 

                               
dt

dB
A.  

The changing magnetic field is: 

                             if BBdB   

Since the initial magnetic field 0iB , dB has the direction of fB which is 

perpendicular to the paper and into the paper. The angle between A and dB is 180
0 

. 

                   













 s

TT
mm

dt

Bd
A

dt

dB
A

3

0

102

0500.0
250.0100.0180cos  

                V25.6  

(b) The induced current is: 

            A
V

R
I 179.0

0.35

25.6






 

(c) When the magnetic field remains constant at 0.500 T, there is no changing 

magnetic field, 0Bd , and there is no induced emf. That is: 

           0
dt

dB
A  

Thus, for a loop of wire of constant area, the only induced emf occurs when there 

is a changing magnetic field with time. 

 

4. Determine the mutual inductance of two coaxial solenoids of 5.00 cm radius and 30.0 

cm long, if one coil has 10 turns and the second has 1000 turns. If the current  in the 

first coil changes by 2.00 A in 0.001 s. What is the induced emf in the second coil? 

Solution: 



 

 

The area of the solenoid,  22 0500.0 mrA    

                                          
231085.7 mA   

(a) The mutual inductance ,M is given by: 

       

                                      
l

NN
M 210

    
300.0

1000101085.7104 37  



 

                                          HM 41029.3   

(b) The induced emf in the second coil is: 

                                      
V

td

id
M 658.0

001.0

00.2
1029.3 41

2    

5. A battery is connected through a switch to a solenoid coil. The coil has 50 turns per 

centimetre, has a diameter of 10.0 cm and is 50.0 cm long. When the switch is closed, 

the current goes from 0 to its maximum value of 3.00 A in 0.002 s. Determine the 

inductance of the coil and the induced emf in the coil during this period. 

Solution: 

The cross-sectional area of the coil is: 

          
  23

22

1085.7
4

100.0

4
m

md
A  


 

  The inductance of the solenoid is: 

               2372

0 50500.01085.7104    nlAL  

                           HL 19.0  

      The induced emf in the coil is: 

                 
dt

di
L   







 


002.0

000.3
19.0  

                  V185  

The minus sign on  , indicates that it is opposing the battery voltage V 

 

 

 

 

 

 

 

 

 

 

   Self – Assessment Questions (SAQs) 



 

 

1.  A uniform magnetic field is normal to the plane of a circular loop 10cm in diameter 

and made of copper wire of diameter 2.5 mm. The resistivity of the copper wire is 

m 81068.1 . 

(a) Calculate  the resistance of the wire 

(b) At what rate must the magnetic field change with time if an induced current of 

10A is to appear in the loop? 

2. An electric generator consists of 100 turns of wire formed into a rectangular loop 50.0 

cm by 30.0 cm, placed entirely in a magnetic field with magnitude B = 3.50 T. 

Determine the maximum value of emf when the loop is spun at 1000 rev/min about 

an axis perpendicular to B. 

3. A UHF television loop antenna has a diameter of 11 cm. The magnetic field of a TV 

signal is normal to the plane of the loop and, at one instant of time, its magnitude is 

changing at the rate 0.16T/s. If the magnetic field is uniform, calculate the induced 

emf in the antenna. 

4. A metal rod is forced to move with constant velocity along two parallel metal raids, 

connected with a strip of metal at one end. A magnetic field, B = 0.350 T points out 

of the page. 

(a) If the rails are separated by 25.0 cm and the speed of the rod is 55.0 cm/s, 

determine the generated emf  . 

(b) If the rod has a resistance of 18.0 Ω and the rails and connector have negligible 

resistance, what is the current on the rod? 

(c) At what rate is energy being transferred to thermal energy? 

5. A square loop of sides 10 cm and resistance 0.5 Ω is placed vertically in the east-west 

plane. A uniform magnetic field of 0.10 T is set across the plane in the north-east 

direction. The magnetic field is decreased to zero in 0.70s at a steady rate. Determine 

the magnitude of induced emf and current during this time interval. 

6. A circular coil of radius 10 cm, 500 turns and resistance 2Ω is placed with its plane 

perpendicular to the horizontal component of the earth’s magnetic field. It is rotated 

about its vertical diameter 180
0 

in 0.25 s. Determine the magnitude of the emf and 

current induced in the coil. Horizontal component of the earth’s magnetic field at the 

place is 3.0 x 10
-5

 T. 

                           

  

 
SUMMARY 

 

In this session, you have learnt that: 

1. The magnetic flux   can be defined as a quantitative measure of the number of 

magnetic field lines B crossing a particular surface area A normally. It is defined 

as: 
                               AB       

2.  Faraday’s law of electromagnetic induction states that whenever the magnetic flux 

through a coil changes with time, an emf will be induced in the coil. The magnetic 



 

 

flux can be changed by changing the magnetic field B, the area A of the loop, or the 

direction between the magnetic field and the area vector. 

                         
td

d
   

3. Lenz’s law states that the direction of an induced emf is such that any current it 

produces, always opposes, through the magnetic field of the induced current, the 

change inducing the emf 

4. In Mutual Induction, changing the magnetic flux in one coil induces an emf in 

an adjascent coil. The coefficient of mutual inductance M is defined as: 

                               

dt

id
M

1

2    

 

The induced emf in coil 1 caused by a changing current in coil 2 is given by: 

                              
td

id
M 2

1                 

  

5.    In Self-Induction, changing the magnetic flux in a coil will induce an emf in 
that coil. The induced emf opposes the changing magnetic flux.             

           The self-inductance of the solenoid coil designated by L is defined as: 

           
2

0 nlAL       

                     

           The self- induced emf is defined as:  

            
dt

di
L      

6.         An inductor is a circuit element in which a self-induced emf accompanies a 

changing current. 
7. The energy stored in magnetic field of a solenoid is given by: 

                         
0

2

2

1



lAB
U   

8. The energy stored in magnetic field of an inductor is given by: 

                      2

2

1
ILW   

9. Magnetic energy density or energy stored per unit volume that is stored in a 

magnetic field is: 
           

                      
0

2

2

1



B
u   

 

 



 

 

 

Study Session 12:  Alternating Current Voltages Applied to Inductors, Capacitors and  

                                Resistors 

                                                                

   Expected Duration: 1 week or 2 contact hours 

               Introduction 

In session 11, you learnt that changing magnetic flux can induce an emf according to 

Faraday’s law of induction. If a coil rotates in the presence of a magnetic field, the 

induced emf varies sinusoidally with time and leads to an alternating current 

(AC).Alternating Current or Voltage varies in magnitude and its polarity reverses 

periodically. It means that the alternating current will flow first in one direction and then 

in opposite direction. All appliances around us run on alternating current. Any appliance 

that you plug into a wall socket uses ac. In this session, you will learn how resistors, 

inductors and capacitors behave in circuits with sinusoidally varying voltages and 

currents. 

 

           Learning Outcomes  

When you have studied this session, you should be able to explain the: 

12.1   Alternating Currents and Voltages 

12.2   Root-Mean-Square Value of an Alternating Current 

12.3   A.C Resistor Circuit 

12.4   A.C Capacitor Circuit 

12.5   A.C Inductive Circuit 

12.6    Resistor, Inductor and Capacitor in Series 

 

12.1 Alternating Currents and Voltages 

When a battery is connected to a resistor, charge flows through the resistor in one 

direction only. The direction of the current can be reversed by interchanging the battery 

connections. However, the magnitude of the current will remain constant. Such a current 

is called direct current. But a current whose magnitude changes continuously and 

direction changes periodically is said to be an alternating current. A source of alternating 

current (ac) is symbolized by a wavy line enclosed in a circle as shown in figure 12.1. 



 

 

               

       Figure 12.1. Symbol of AC source 

The time dependence of the AC or the voltage of the AC source is of the form: 

           tVV m cos                          (12.1a) 

           tII m cos                 (12.1b) 

mV  and mI  are known as the peak values of the alternating current respectively. 

12.2 Root-Mean-Square Value of an Alternating Current 

The RMS or Root Mean Square value of alternating current is defined as that value of the 

steady current, which when passed through a resistor for a given time, will generate the 

same amount of heat as generated by an alternating current when passed through the 

same resistor for the same time. 

The RMS value is also called effective value of an ac and is denoted by rmsI  or effI . 

When an alternating current tII sin0  flows through a resistor of resistance R, the 

amount of heat produced in the resistor in a small time dt is: 

  dtRidH 2  

The total amount of heat produced in the resistance in one complete cycle is: 

     

 


0 0

22

0

2 sin dtRtIdtRiH                     (12.2a) 

     
2

2

0 TRI
H                               (12.2b) 

This heat is also equal to the heat produced by rms value of AC in the same resistor R 

and in the same time T. 

    RTIH rms

2                 (12.3) 

  0

0

2

02 707.0
22

I
I

I
TRI

TRI rmsrms               (12.4) 

Similarly, 



 

 

                0
0 707.0
2

V
V

Vrms                              (12.5) 

Thus, the rms value of an a.c is 0.707 times the peak value of the a.c. 

 

12.3 A. C Circuit with a Resistor 

Figure 12.2 shows a single-loop circuit with a source of alternating emf and a resistor. 

The current through the resistor is a function of time. The magnitude of this current can 

be obtained through Kirchhoff’s second rule which implies that: 

 

 

                

         Figure 12.2   Single –loop A.C resistor circuit 

             0 RtIt                             (12.6a) 

       
 

R

t

R

t
tI

 sin0                       (12.6b)  

         tItI sin0                                (12.6c)                                                                                   

where 
R

I 0

0


  is the peak value of a.c in the circuit. Equation (12.6c) gives the 

instantaneous value of current in the circuit containing R. It shows that the current 

oscillates in phase with the emf. 

12.4    A.C Circuit with a Capacitor 

Figure 12.3 shows an a.c source   generating a.c voltage tVV m sin  connected to a 

capacitor only, a purely capacitive a.c circuit. The charge on the capacitor at any time can 

be obtained by applying Kirchhoff’s second rule to the circuit shown in figure 12.3 and is 

equal to 



 

 

            

           Figure 12.3 : A.C capacitor circuit 

    tVCtQ m sin                    (12.7) 

The current in the circuit can be obtained by differentiating equation (12.7) with respect 

to time. 

     tVC
dt

Qd
tI m  cos                (12.8) 

Equation (12.8) can be written as: 

     t
X

V
tI

C

m cos                                                        (12.9) 

Thus, CX
C




1
                          (12.10) 

CX is the resistance offered by the capacitor. It is called capacitive reactance measured 

in ohms. From equation (12.9), it follows that in an a.c circuit with a capacitor, the 

current leads the voltage by a phase angle of 90
0 

. In other words, the voltage lags behind 

the current by a phase angle of 90
0 

.  

 

12.5    A.C  Circuit with an Inductor 

Figure 12.4 shows a circuit consisting of an inductor and a source of alternating emf. The 

self-induced emf across the inductor is 
dt

Id
L .  Applying Kirchhoff’s second rule to the 

circuit shown in figure 12.4 gives: 



 

 

 

Figure 12.4: A.C Inductive Circuit 

  0sin0 
dt

dI
LtV                                             (12.11) 

    







 dtt

L

V
It

L

V

dt

dI
 sinsin 00                                (12.12) 

   t
L

V
I 


cos0 








                                                      (12.13) 

But from trigonometry,     090sincos  tt   

Therefore,   0

0 90sin  tII                         (12.14)                                                                    

where  
L

V
I 0

0    . The equations for current and voltage show that the current through 

the inductor lags behind the voltage by 90
0 

. 

The ratio of the peak value of voltage across the inductor to the peak value of current 

through it is constant and is called the inductive reactance, 
LX , which is similar to the 

resistance. 

  LfL
I

V
X L  2

0

0                                         (12.15) 

Therefore, inductive reactance depends on the supply frequency, that is, 
LX is directly 

proportional to the frequency. The unit of inductive reactance 
LX  is ohms. It can be 

concluded that for a purely inductive circuit, the current lags behind the voltage by 90
0 

. 

12.6   Resistor, Inductor and Capacitor in Series 

Let an alternating source of emf   be connected to a series combination of a resistor of 

resistance R, inductor of inductance L and a capacitor of capacitance C as shown in 

figure 12.5. 

Let the current flowing through the circuit be I. 



 

 

The voltage across the inductor coil is 
LL XIV   

The voltage across the capacitor is CC XIV   

The voltage drop across the resistor is RIVR   

                                                                     

                                                                                                                                                                                                                                   

             

                      Figure 12.5a: LRC Circuit 

                  

 

Figure 12.5 b: Phasor diagram for LCR circuit 

The voltages across different components are represented in the voltage phasor diagram      

(Fig.12.5b). 
LV and CV  are 180

0 
out of phase with each other and the resultant of 

LV  and 

CV  is  CL VV  . The applied voltage ‘V’ is equal to the vector sum of  
LV , CV  and 

RV . 

     222

CLR VVVV   

     22

CLR VVVV   



 

 

       22

CL XIXIRIV   

     22

CL XXRIV   

     22

CL XXRZ
I

V
              (12.16) 

The expression  22

CL XXR  is the overall effective opposition offered by the 

combination of resistor, inductor and capacitor known as the impedance of the circuit. It 

is represented by Z and is measured in ohm. The phase angle   between the voltage and 

current is given by: 

  
RI

XIXI

V

VV CL

R

CL 



tan                                   (12.17) 

  






 



 

R

XX

R

XX CLCL 1tantan                                                    (12.18) 

The value of current at any instant in a series RLC circuit is given by: 

  
  2

2

22
1
















C
LR

V

XXR

V

Z

V
I

CL




                               (12.19) 

At a particular value of the angular frequency, the inductive reactance and the capacitive 

reactance will be equal to each other, 
C

L



1

 , so the impedance becomes minimum 

and it is given by Z = R. 

The particular frequency 0f at which the impedance of the circuit becomes minimum and 

therefore the current becomes maximum is called resonant frequency of the circuit. Such 

a circuit which admits maximum current is called series resonance circuit. Thus, the 

maximum current through the circuit at resonance is given by: 

        
R

V
I 0

                     (12.20) 

Maximum current flows through the circuit, since the impedance of the circuit is equal to 

the ohmic resistance of the circuit, i.e, Z = R 

     
C

L



1

  



 

 

     
CL

f
1

2 0    

    
CL

f
2

1
0                            (12.21) 

The average power dissipated in an RLC circuit is given by: 

    cos2 ZIP                 (12.22) 

The quantity cos  is called the power factor in the circuit. 

 

Worked Examples 

1. A series RLC circuit with R = 10.0 Ω, L = 400 mH and C = 2.0 µF is connected to an 

AC voltage source   tVtV sin0 which has a maximum amplitude VV 1000  . 

(a) Determine the resonant frequency 0 . 

(b) Calculate the rms current at resonance 

(c) Let the driving frequency .4000 1 srad Assume the current response is 

given by      tItI sin0 . Calculate the amplitude of the current and the 

phase shift between the current and the driving voltage. 

Solution: 

(a) 
  

13

7
0 101.1

108

1

0.2400

11 





 srad

sFmHCL 
  

(b)  At resonance, Z = R . Therefore, 

A

V

R

V

R

V
I rms

rms 07.7
0.10

2

100

2

0
























  

(c)     



125

0.24000

11
1 FsradC

X C


 

       16004004000 1 HmsradLX L   

       147512516000.10
222

CL XXR  
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     2222
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0

12516000.10
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





V
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V

Z

V
I
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V

I 2
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
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1251600
tantantan 
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
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
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2. An alternating voltage is given by VoltstV 314sin8.282 . Determine the: 

(a) Rms voltage, (b) frequency  and (c) instantaneous value of voltage when mst 4  

Solution: 

(a) The general expression for an alternating voltage is: 

         tVV m sin  

        Comparing VoltstV 314sin8.282  with this general expression gives the 

peak voltage as 282.8 V. 

   Hence the rms voltage  707.0 maximum value of voltage 

                                         VV 2007.282707.0   

(b) Angular velocity 3142314 1   fsrad   

Hence, frequency Hzf 50
2

314



 

(c) When     VVmst 9.268256.1sin8.282104314sin8.2824 3  
 

3. In an oscillating LC circuit, L = 1.10 H and C = 4.00 µF. The maximum charge on the 

capacitor is 3.00 µC. Calculate the maximum current. 

Solution: 

The circuit oscillates with   tqtq cosmax  

The current 
maxmaxmax sin qitq

dt

dq
i    

 
  

A
CL

qqi 2

63

6

maxmaxmax 1052.4
1000.41010.1

1031
. 









   

4. What direct current will produce the same amount of thermal energy in a particular 

resistor, as an alternating current that has a maximum value of 2.60 A? 

Solution: 

In an a.c , tii sinmax  

2

2

max Ri
Pav        

The direct current DCI  is given by: 

A
AI

IRIP DCDCav 84.1
2

60.2

2

max2   

 

 

 



 

 

 

 

Self – Assessment Questions (SAQs) 

1. The current in an a.c circuit at any time t seconds is given by: 

       36.0100sin120  tI   amperes. Determine the: 

(a) Peak value, periodic time, frequency and phase angle relative to t100sin120  

(b) Value of the current when t = 8 ms 

(c) Time when the current first reaches 60A 

2.  Determine the maximum value of an a.c voltage whose rms value is 100 V. 

3. An a.c generator has emf  tdm  sin , with Vm 0.25 and 

1377  sradd . It is connected to a 12.7 H inductor. 

(a) What is the maximum value of the current? 

(b) When the current is a maximum, what is the emf of the generator? 

4. In an oscillating LC circuit with L = 50 mH and C = 4.0 µF, the current is initially a 

maximum. How long will it take before the capacitor is fully charged for the first 

time? 

5. An oscillating LC circuit consists of a 75.0 mH inductor and a 3.60 µF capacitor. If 

the maximum charge on the capacitor is 2.90 µC. Calculate the: 

(a) Total energy in the circuit. 

(b) Maximum current 

6. At what frequency would a 6.0 mH inductor and a 10 µF capacitor have the same 

reactance? 

 

 SUMMARY 

 

In this session, you have learnt that: 

1 In an a.c circuit, the voltage across the source is given by tVV m cos  and 

current tII m cos  where  mV  and mI  are known as the peak values of the 

alternating current respectively. 

 

2. The RMS or Root Mean Square value of alternating current is defined as that value of the 

steady current, which when passed through a resistor for a given time, will generate the 

same amount of heat as generated by an alternating current when passed through the 

same resistor for the same time. 



 

 

3. The particular frequency 0f at which the impedance of the circuit becomes minimum 

and therefore the current becomes maximum is called resonant frequency of the 

circuit. 
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f
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4. In a purely capacitive a.c circuit with a capacitor, the current leads the voltage by a 

phase angle of 90
0 

. CX is the resistance offered by the capacitor. It is called 

capacitive reactance measured in ohms. 

                       CX
C




1
 

5. The ratio of the peak value of voltage across the inductor to the peak value of current 

through it is constant and is called the inductive reactance, 
LX . In a purely inductive a.c 

circuit, the current lags the voltage by 90
0 

. 
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6.In a series LCR circuit,  the current is given by: 
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