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Vice-Chancellor's Message

| congratulate you on being part of the historiolation of our Centre for
External Studies into a Distance Learning Centree Teinvigorated
Centre, is building on a solid tradition of neanyenty years of service to
the Nigerian community in providing higher educatito those who had
hitherto been unable to benefit from it.

Distance Learning requires an environment in whigarners
themselves actively participate in constructingrtbesn knowledge. They
need to be able to access and interpret existimyvledge and in the
process, become autonomous learners.

Consequently, our major goal is to provide fullltinmedia mode of
teaching/learning in which you will use not onlyintrbut also video,
audio and electronic learning materials.

To this end, we have run two intensive workshapprbduce a fresh
batch of course materials in order to increasetaunbally the number of
texts available to you. The authors made greattsfto include the latest
information, knowledge and skills in the differatisciplines and ensure
that the materials are user-friendly. It is our édipat you will put them to
the best use.

=

ol
Professor Olufemi A. Bamiro, FNSE
Vice-Chancellor

Foreword



The University of Ibadan Distance Learning Programmas a vision of
providing lifelong education for Nigerian citizengho for a variety of
reasons have opted for the Distance Learning mbadéhis way, it aims at
democratizing education by ensuring access andyequi

The U.l. experience in Distance Learning datek bad 988 when the
Centre for External Studies was established tor cagenly for upgrading
the knowledge and skills of NCE teachers to a Blachedegree in
Education.  Since then, it has gathered consideraxperience in
preparing and producing course materials for iy@mmes. The recent
expansion of the programme to cover Agriculture trelneed to review
the existing materials have necessitated an aeteteprocess of course
materials production. To this end, one major wookstwas held in
December 2006 which have resulted in a substami@kease in the
number of course materials. The writing of the sesrby a team of
experts and rigorous peer review have ensured thetemance of the
University’s high standards. The approach is noly do emphasize
cognitive knowledge but also skills and humane eslwhich are at the
core of education, even in an ICT age.

The materials have had the input of experiencé&drsdand illustrators
who have ensured that they are accurate, currehtlearner friendly.
They are specially written with distance learnersmind, since such
people can often feel isolated from the communityearners. Adequate
supplementary reading materials as well as otHerrration sources are
suggested in the course materials.

The Distance Learning Centre also envisages #wtlar students of
tertiary institutions in Nigeria who are faced wahdearth of high quality
textbooks will find these books very useful. We #rerefore delighted to
present these new titles to both our Distance liegratudents and the
University’s regular students. We are confiderst tihe books will be an
invaluable resource to them.

We would like to thank all our authors, reviewarsl production staff
for the high quality of work.

Best wishes.



w@( C//'\M .

Professor Francis O. Egbokhare
Director
Preface To The Second Edition

The book has been thoroughly revised and enlayedimber of changes
have been made, particularly in lectures six andtéen.

This edition retains one of the characteristic Uesg of the book-enough
exercises of all types and these exercises antextdorm an integrated
pattern. A special feature of these number of egescin the lectures is
that they have been specially constructed to ithtistthe theory and are so
designed that after doing them, the student shoatdonly have a better
grasp of the theory but should also know the mttwafor the various
steps. It is hoped that the book with these chamgiéde more useful to
the students (and readers).

General Introduction

Probability is used to give a quantitative measafethe uncertainty
associated with statements. The theory shoulddweed as a conceptual
structure whose conclusions rely on logic. Theiowes concepts of
probability are related to the physical world. Wave clearly defined and
developed these concepts like random variablassfsemations, expected



values, among others, one at a time, with sufficielaboration. The
topics which have been used to illustrate the thbave been so presented
as to minimize peripheral descriptive materials @odconcentrate on
probabilistic content. It is expected that thipm@ach would help the
student to learn a variety of topics with ease.

Most students, brought up with a deterministic lank find
probability vague and difficult. In this coursdettheory is developed
axiomatically to remove the difficulties. The cserwill also afford you
the opportunity of understanding the laws of proligb probability
distributions and their applications, with emphgsesced on explanation,
facility, and economy in the treatment. It is esigel that this approach
will give the student not only a working knowleddpet also an incentive
for a deeper study of this fascinating subject.

This course is divided into three sections. Irctisea one, we
considered counting techniques. In order to hartk problem of
counting points in complicated sample spaces, thmting techniques of
permutations and combinations are used. Sectiomand three deal with
discrete and continuous probability distributioaspectively.

Course Obijectives
The objectives of the course include the following:
1. to understand the laws of probability;

2. to understand the concept of a probabilistic mottel the
mechanism generating a set of observed data, ands of the
model for calculating the probabilities of samplgammes;

3. to equip you with the capacity to construct the glanspace of
various experimental outcomes with a view to heapyou to
develop the power of creative imagination; and

4. to offer you a sound foundation for statisticakir@nce.



LECTURE ONE

Further Permutations and Combinations

Introduction

In many problems in probability, the number of geim the appropriate sample spaces is so
great that efficient methods are needed to cowerhtto arrive at the required probabilities. Such
methods that are used in counting points in corafgit sample spaces would be studied in this
lecture. They include the techniques of permutatamd combinations.

Objectives

At the end of this lecture, you should able to:
1. explain what the techniques of permutations andbdoations are; and
2. discuss their functions in statistics.

Pre-Test
1. What do you understand as ‘permutation’ in stais&ti
2. Briefly explain the technique of combination in t8t#acs

CONTENT

Permutations

In order to understand the counting technique ofmpéation, it is helpful to think in terms of
objects which occur in groups. These groups maghlaeacterized by type of object, the number
belonging to each type, and the way in which thgeab are arranged. Let us consider an
example.

Example 1.1

Consider the letters a, b, ¢, d and e. There igeedbjects, one of each type. If we have the
letters a, a, b, b and c, there are five objeuts;df type a, two of b, and one of c. Furthermore
return to the first group of objects; abcde, bcaarl cdeab differ in the order in which the five
objects are arranged, but each of these groupainsrthe same number belonging to each type.

Example 1.2

Consider the number of different ways in which a¢ lnay be written in a line. These are abc,
acb, bac, bca, cab and cba. These are the sexathffpermutations of three letters.



Example 1.3

Frequently, we are interested in finding the numbkedifferent permutations of n, different
objects taking r (of them) at a time, (n >, ro}, both n and r are integers. The formatibn o
these permutations is equivalent to writing inneJiin all possible orders, all the different greup
of r letters, which may be chosen from n differkatters. The number of such permutations is
denotedp,. The first letter may be chosen in n ways, siacg one of the n may be chosen.
This letter having been written down, we have tdenalongside it, in all possible orders, all the
different groups of (r — 1) letters which may b@sén from the remaining (n — 1) letters. This
may be done ifi”'P,_; ways. It follows that,

P SN TP L (1.1)
This result being true for all possible integralues of n and r, we have

n_lpr—l = (n-1. n_zpr—z

" P, = (n-2). n_SPr—s

"Ps = (-3 R L (1.2)
"R, = (n-r+2). "R

Multiply equation (1.2) together and cancel the ommn factor to obtain

"» = nn-1)(n-2)(n-3) ...... N=r+2."" P, (1.3)

Now "~"* ¥, in equation (1.3) is equal to (n — r + 1), siitcdenotes the number of ways of

choosing one letter out of (n—r + 1) differegttérs. Hence from (1.3),
"= nn-1)(n-2)(n-3) ...... N=r+2)(n—0¥ ............ (1.4)

Putting r = n in (1.4) we have
"= nn-1)(n-2)(n-3) ...... 2.1 1.5)

The expression on the right of equation (1.5hes groduct of the first n positive integers.
Itis read “n factorial”, with symbol n! or_InBy definition 0! = 1.

Example 1.4
1. 5 = 5x4x3x2x1 = 120
7V = 7x6x5x..x2x1 = 5,040

10! =10x9x8x....x2x1 = 3,628,800



2. 12p,
20P8

12x11x10x9x8x7 = 665,280
20x19x18x17x16x15x14x13 = 5,019,400

We can now generalize this procedure to obtain mvexent formula for the number of
permutations of n different objects taken @ &ime. Multiply equation (1.4) bﬁﬁ‘f)’/(n_r),

to obtain

"p = nin-H(n-2)(n-3).....n-r+H(n-r)!
T (n—r)!

Using equation (1.6) we have

_ 120 12 x11x10x9x8x 7x6!

1 12 P == -
' @ 6l
= 12x11x10x9x8x7 = 665,280
|
2. R, = % = 5,079,110,400

A special case of the formula in (1.6) for permiotatoccurs when all of the n objects are
considered together.

That is,

Combinations

The order in which the objects are arranged isngdartance in permutation; though it is not
important in combination. Lef'C, denote the number of combinations of n differanjects
taken r at atime. To develop the formula"oy, we need to consider the relationship between
numbers of combinations and numbers of permutafionthe same group of n objects taken r
at a time.



A permutation is obtained by first selecting olgeand then arranging them in some order,
whereas a combination is obtained by performingy athle first step. It follows that a
permutation is obtained by taking every possiblalgimation and arranging them in all possible
ways. The total number of arrangement of r dbjet r waysis r!. Thus

"P,= "C,.r!
or
n |
C, = T (1.7)
rt rl(n-r)!
Example 1.5
1 lzC = 2 = 12P6
B 66 6
_ 665280 - 924
6!
|
2. g, = 2% _yo5970
812
Summary

In this lecture, we have discussed the conceptpenmutation and
combination. We illustrated how these two concepésused in finding
the number of points in appropriate sample spaédslity to arrive at
the accurate number of points in sample spaces neabathe
computation of required probabilities.

Post-Test

, . fn+1l n
1. Determine the value of n in the equatl% 3 j = 7(2}

2. Express in factorial notation: (i) 6 x5 x 4ii) (n +2) (n+ 1)n
(i) n(n-=1) ...... (n—-r+1)

(o (AL

_ n-1
3. Evaluate (i) ( J+
r-1






LECTURE TWO

Permutations and Similar Elements

Introduction

In lecture one, our discussion of permutations @rdbinations pertained to groups of dissimilar
element. In this lecture we now turn to the probt#ndetermining the number of distinguishable
arrangements that can be formed when some of feetslare identical.

Objectives
At the end of this lecture, you should be able to:
1. discuss permutations in relation to similar elerapand
2. compare and contrast the use of permutations waitih fimilar and dissimilar elements.

Pre-Test
1. In how many ways can 9 people sit on a round table?
2. How many arrangements can be made with letter&EMNMHERETTE?

CONTENT

We shall consider a simple illustration to aid miang at a formula for the number of different
permutations that can be made of n objecteflype 1, n of type 2, ....N of type k. Suppose
there are four balls, two of which are black and &ve white. If the balls are placed in a line,
we would find six possible arrangements as follows:

BBWW, BWBW, BWWB, WWBB, WBWB, WBBW
= farrangementsS ... (2.1)

If the balls had been of different colours, the bemof possible permutations of the four balls
taken four at a time would have been

1
N
SN

4P, = 4

To determine the relationship between the resnlesguation (2.1), 6 and equation (2.2), 24, we
consider one of the permutations of the two blaaskand two white balls; namely,

BBWW



Suppose a number is printed on each of the balleake it distinguishable from the other
ball of the same colour. If the numbers 1 and& @inted on the balls, we can imagine the
following arrangement:

B: B> W1 W,
The number of distinguishable arrangements thatbeamade of four balls, two of which
are black and two are white, if the balls are pliaicea line, is equal to:

BX2IX2 = 24 e, (2.3)

since 2! arrangements can be made of the two Wdalk by permuting their subscripts while

keeping the white balls unchanged, and 2! arrangesnean be made of the two white balls
keeping the black balls unchanged. It turns oat the relation between the 4! permutations
when all balls were distinguishable and the sixspgme arrangements when there are two
indistinguishable black and two indistinguishableite balls is

A1 = 6 X 21 X 21 (2.4)
Therefore, if P(n;nmny, ..... , ) denotes the number of distinguishable arrangésribat can
be formed of n objects, taken n at a time, whar are of type 1, nof type 2,..., R of type
k,and n = p+ n + ... + R, we have the relationship,
] _ n! 25
P(n;n,n,——-,n) = Il — il (2.5)

A special case of the above result in (2.5) ocuuren there are just two types of objects, as in
our example of coloured balls. In this case, xetbe of one type and (n — x) of the other type.
Equation (2.5) gives us.

X (n—x)! - X

P(xn-x)=— " m =",

Thus, the number of different permutations that lbarmade of n objects, x of which are of
one type and (n — x) of a second type, is equ#the number of combinations of n different
objects, taken x at atime. It also follows that

Mo _f " 2.6
(Xj_m_(n_)(} ...................................... (2.6)



n
The expression(xj is often referred to as a binomial coefficientdngse of the way it appears

in the binomial expansion discussed in lecture seve

Example 2.1
Find the number of arrangements of the letterb®ftord “calculus” taken all at a time.

In the word, there are eight letters consistingot’s, 1a, 2I's,2u'sand 1s.
The required number of arrangements is,

8 40320

P (822211 = =
( ) 22211 8

=5040

Example 2.2

A demographic survey questionnaire requires thgamdent to answer each of the five
successive questions with either a “yes” or “nddow many different possible responses are
there? There are two possible responses for eaehtign. Therefore, by the principle of

multiplication there is2 x 2 x 2 x ---- 2 =°2= 32, responses.

Example 2.3

There are five students in a room. In how manysa@n one or more of them leave the room?
Every student can be dealt with in two ways; he feave the room or remain in the room.

This gives, 2x 2 x 2 x 2 x 2 = >2This, however, includes the case in which al students

remain in the room, which is not permissible. Efiere, the required number =21 = 32 -1
= 31 ways.

Summary

In this lecture we have examined the permutatidnthiags which are
not all different. We assume a situation in whieé have n letters a
which p are all alike (suppose they are all a’'s) trat the remaining (
— p) are different from a and from one another.e Khowledge in this
section helps up to determine the number of pertiouta of all the n
letters.

-  —h




Post-Test
1 In how many ways can 9 people sit on a round table?

2 A committee of 3 is to be chosen from 4 men andb&en. If at least one man is to be
included, how many possible selections are there?

3 How many arrangements can be made with the laifdtEATHERETTE?



LECTURER THREE

Probability Laws

Introduction

Probability is one of the fundamental tools ofistats. It had its formal beginnings with games
of chance. A game of chance is one in which themune of a trial is uncertain. They include
tossing a fair coin to determine the face thatdwp and throwing a die to determine the number
that turns up. It is recognized that though thiecome of any particular trial may be uncertain,
there is a predictable long-term outcome. It is tlong-term predictable regularity (called
probability) that enables us to estimate probahilitThe term probability is used to give a
guantitative measure to the uncertainty associatédour statements.

Objectives

At the end of this lecture, you should be able to:
1. clearly define the concept of probability; and
2. discuss the laws of probability.

Pre-Test

1. Two dices are thrown up, what is the probabilitysebring either a double or a sum
greater than 9?

2. compute (a) P(A (b) P(Ay) (c) P(AA,)

CONTENT
Views of Probability
If a random experiment can result in n mutually agdally likely trials (or outcomes) and if n

of these trials have an attribute A, then the plodlg of A is n%_ This is called the classical

view of probability.

Example 3.1
Suppose three fair coins are tossed once. Thébmssitcomes may be denoted by



{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
W1 Wo W3 W W Ws W7 ]

If A isthe event that at least two heads turn up

A = Wi, w, ws, wg}
4 1
P(A = —==
(A) e
Example 3.2

Suppose that we roll a balanced die once. Whaeiprobability of getting a five? The number
of favourable outcomes is one since there is ony® The total number of possible outcomes

is six; namely, (1, 2, 3, 4, 5, 6). Hencephebability of getting a five is(lg.

Another definition of probability is that of thelative frequency of the occurrence of an
event in a large number of repetitions. If nthe number of trials and n(E) the number of
occurrences of the event E, then the probabifitp denoted by P(E) is

PE) = Ilim"E
n-e

Example 3.3

A and B take turns in throwing two fair dice, thist to throw a sum of 9 wins a price. If A has
the first throw, compute the probability that A wia price.

Solution

The sum of 9 can be made up in 4 ways: (3, &).5), (6, 3), (5,4) so that the probabibfy
throwing the sum of 9 with two dice is 4/36. Ifi&\to win, he should throw 9 in either the first,
third, fifth, ....... throw.

The probability of A throwing 9 in the first throwé

, in the third throw

, in the fifth throw

n-1
= §j .E, in the A" throw
9 9

Let S denote the sum of the probabilities of A.




_ 1 (8)21 (8)41 (8)”‘11
S = e e e e B e ) I
9 (9) 9 \9) 9 9 9

= %(l+r+r2+r3+————r”‘1)

2
where r = (gj <1

This is a geometric series with a = 1 and comnatio = r. The sum to infinity is
S = lla@-r")|_1( a
9 1-r 9\1-r

< iloa) ol

9

17
- , 9
. Probability that A wins =E

You must have observed that there are situationehwhannot conceivably fit into the
framework of repeated outcomes under somewhat ainwbnditions. The third view of
probability takes care of this drawback associatih the first and second views of probability.
It is called the axiomatic or subjective view obpability, which is based on personal beliefs.
For example, you may say that the probability ffwatr friend, John would visit you is 70%.

In the axiomatic development of probability theopyobability is defined as a function
defined on events (subsets of sample space, $)sthiis a rule which associates to each event
Aa certain real number P(A) which satisfies théofeing three axioms:

Axiom I: P(A) > O, i.e, the probability of evegyent is non-negative.

Axiom 1I: P(S) = 1, i.e, the probability of @rtain event is unity.

Axiom lIl: If A4, Ay ----: are a countable number of sub-events augh that
AiNAUz------ = S and &A; = ¢, (i# ))

then P(AUALL ) = P(A) + P(A) + P(A) + -
i.e. the probability of a union of disjoint evenssthe sum of the probabilities of the events
themselves.



Summary

The concept probability has been defined as a gaanwe measure of
the uncertainty associated with the statements wakem The|
guantitative measure can be computed by lookirigeaterm probability
from three perspectives; namely:
1.
2.

3.

Problems in probability would usually fit into omé the frameworks
above.

classical view of probability

relative frequency of the occurrence of an eventaidarge
number of repetitions, and

axiomatic or subjective views of probability.

Post-Test

1.

2.

Two dices are thrown up. What is the probabitit scoring either a double, or a sum
greater than 97

A bag contains 20 balls, 10 of which are redwidite and 2 blue. The balls are
indistinguishable apart from colour. Two balls ateawn in succession, without
replacement. What is the probability that they idth be red?

A basket contains two white balls;\\and W and three black balls BB, and B
respectively. An experiment consists of selectimgp balls at random without
replacement. Let Aand A denote the events: first ball is white and sedoaltlis black
respectively.

Compute: (@) PA () P@A) () PAA



LECTURE FOUR
Conditional Probability, Independence and Bayes Rél

Introduction

We require that every possible outcome of a comegpéxperiment under study can be
enumerated. Here, an experiment is the procestalohg measurement (or making an
observation). Each conceivable outcome of the eptual experiment under study is a sample
point, and the totality of conceivable outcomethiss sample space. Sometimes, we restrict our
attention to a subset of the sample space.

Objectives

At the end of this lecture, you should be able to:
1. explain what conditional probability is all aboand
2. discuss Independence and Bayes’ Rule

Pre-Test

1. Two dices are rolled. What is the probability tha sum of the faces exceeds 8, given
that one or more of the faces is a 6?

2. The content of three identical corns are:
1 white, 2 red, 3 black balls
3 white, 1 red, 3 black balls
2 white, 3 red, 1 black balls

Conditional Probability

Given two events A and B, associated with a sampéee, we want to define the conditional
probability of event A given that event B has ocedr The probability of event A, given that
another event B has occurred, is denoted by P(an8)is defined by

P(A/B):@, TR R R —— (4.1)

(B)

Example 4.1

In an experiment of tossing two fair coins oncempate the probability of two heads given a
head on the first coin.

Solution



Sample space =2 = {HH, HT, TH, TT}

Set A = Head on the first coin
B = Head on the second coin
We require

P(ABA) _ P(AB)
p(A)  p(A)

Independence of Two Events

If events A and B are independent, the conditi@mal unconditional probabilities are the same.
That is, from equation 4.1, we find that

P(AB/A) =

P(AB) = P(A) P(B/A), for conditional probaltyi and
P(AB) = P(A) P(B), if A and B are indememt
Example 4.2
Suppose that we throw a fair die two times.
Let A = event that the first throw shows a 5
B = event that the second throw shows a 3
Clearly, A and B are independent events. denc
P(AB) = P(A).P(B) = 3—16

Bayes Rule (or Theorem)
Bayes rule is based on conditional probability. Neee:

P(A/B) = PFS::))) ..................................... 4.1)
also
P(BIA) = PFE(AAE;) ..................................... 4.2)

=P(AB) = P(B/A) . P(A) s, (4.3)



Substituting from (4.3) in (4.1) we have

paB) = CBIAPKA (4.4)
P(B)

This is called Bayes’ rule or theorem

Let Hy, Hp, and D denote two hypothesis and the observex] degpectively. Suppose we
substitute HH and H inturnfor A and D for B in (4.4).

Then we have

P(H,/D)= P(D/PH(lgs(Hl) ........................................... (4.5)
P(H,/D)= P(D/ ;'(23')3('*2) .......................................... (4.5)
Hence

P(H,0) _ POH) PH) ws)
A{H./D) PR B(RL) e :

The L. H. S. of (4.6) is called posterior oddBhe first term on the R. H. S. is called the
likelihood ratio, and the second term is calledgher odds.

These odds play a significant role in the choieeveen probability models.

Example 4.3

The contents of three identical baskefg B= 1, 2, 3) are:
B;: 4 red balls and 1 white ball
B, : 1 red ball and 4 white balls
B3 : 2 red balls and 3 white balls.

A basket is selected at random and from it aisadlrawn. The ball drawn turns out to be
red on inspection. What is the probability thatatme from the first basket?

Solution
Let D = Data, the event of drawing a red ball.
Consider table 1 below.



Table 1: Probability of Conditional Event

(1) (2) (3) (4) (%)
State of| P(Bi) | P(D/Bi) | P(Bi)P(D/Bi) | P(Bi/D)
Nature

Bi

ORI % e (%
B2(1R, 4W) }:/3 % %5 %
I % A %

Total 1 - %5 1

The required probability is P(E) = %

Summary

The conditional probability of an event A assumBygdenoted by P(A / B) is by definition the
ratio

_ P(AB)
P(A/B)= o(E) (4.7)
where we assume that P(B) is not zero from (4.7)
P(AB) = P(B)P(A/B)
= PA)PBI/A) (4.8)

If instead of (4.8) we have




P(AB) = P(B)P(A) (4.9
is an indication that events A and B are indepenhden

Again from (4.8)

P(A/B)= P(B/A)P(A)

5B (4.10)

The result in (4.10) is known as the Bayes theofme.terms, a priori and a posteriori, are often
used for the probabilities P(A) and P(A / B) respety.

Post-Test

1. Two dices are rolled. What is the probabilligttthe sum of the faces exceeds 8, given
that one or more of the faces is a 6?

2. The content of three identical corns are:
1 white, 2 red, 3 black balls
3 white, 1 red, 3 black balls
2 white, 3 red, 1 black balls

A corn is selected at random and from it two baits drawn at random without replacement.
The two balls are one red and 1 white. What ispttedability that they came from the second
corn?

LECTURE FIVE



Random Variables, Expectations and Moments

Introduction

In lecture four, we discussed conditioned probghilindependence and Bayes’ rule. In the
present lecture, we shall examine random variabtaghematical expectations and moments.

SupposeQ is the sample space with sample point w. Songethra are interested in the
value X(w) associated with w, and notin w lits&(w) may be observable while w is not.

Objectives

At the end of this lecture, you should be able to:
1. define random variables, mathematical expecta@masmoments; and
2. discuss their significance in statistical analysis.

Pre-Test

Find the mean and variance, if they exist, of ezfdhe distributions>
1. 7 (X) = 2x73, 1<x<eo
2. 7 (x) = 6x(1-x), O<x<1

CONTENT

Example 5.1

Suppose a fair coin is tossed three times. Thelsaisgiven by

Q = {HHH, HHT, HTH, THH, HTT, HT, TTH, TTT}
Wy |1 Vg Wy Ws We Wy W

We may be interested only in the number of timexditerns up. Thus, with the outcome HHH
= w; we will associate a number X{Ww= 3, representing the number of heads in With
the outcome HHT = wwe will associate X(w = 2, and so on.

A function X on a spacé&2 to a spaceQ)’ assigns to each point &Q a unigue point in
Q" denoted by X(w). X(w) is the image of thgwnent w under X. It is also called the
value of X at w. X is also a mapping frofa to Q’, denoted byQQ’. w is mapped on to
X(w) = weQ’ by X. X also establishes correspondence ogldietween points irf2 with
points in Q’. Qis called the domain of X anf’ is called the range. X is a random variable.
It assigns numerical values to each point x @efion the sample space.



Mathematical Expectations
Mathematical expectations are very useful in sg\problems involving distributions. Let x be

a random variable having p.d.f. f(x) and let u¢ a function of X such thatju(x)f(x)dx

—00

exits, if X is continuous andz u(x) f (x) exits, if X is a discrete type random vateabThe
X

integral or sum is called the mathematical expaemtaior expected value of u(x) and it is
denoted by E[u(x)].

That is
E[ux)] = ju(x)f(x)dx, for continuous random variable ...... (5.1)
= ZU(x)f(x), for discrete random variable. ................ (5.2)
X
Example 5.2
Let X have the p.d.f
f(x) = 2(1 - x), 0<x<1

The expected value of X is given by

E(X) = jﬁ (x)dx =J1'2x(1—x)dx

if the expectation exists
Note thatu; = E(X) = u, , the mean of X.

Moment Generating Function (M. G. F)



Let X be a random variable with density f(xhetexpected value of*eis defined to be the

moment generating function (m.g.f) of X if thepexted value exits for every value of t in
some interval —h < t < h; h > 0. The mfgrfction, denoted by gft) or m(t) is given by

M(E) = E€%) =S¥ F(X)  wovrieiiie e (5.5)

if X is discrete.

If m.g.f exits, then m(t) is continuously diféartiable in some neighborhood of the origin. If
we differentiate the m.g.f r times with respecttiave have

dr
dt’

m(t) = Txre"t FOOAX e, (5.6)

and letting t—» 0, we find

dl’
dt’

MO) =E(X")=U" e (5.7)

where the rth derivative of m(t) is evaluatedtas» O.

The m.g.f. is unique and completely determinesdis&ibution of the random variable. If two
random variables have the same m.g.f., they haedme distribution.

Example 5.3
Let X be arandom variable with p.d.f given by

f(x) = xe% 0 < X <o,

m(t) = E[e*] = I e*xe ™ dx
0

= Txe‘x(l't)dx = T(L]e'y W
O 1-t) @-t

0

where y = ¥7Y



o

1
= ye’dy
-]

m(t) = (1-t), using integration by parts.

dm(t)

="

=2(-t)have m(0) = 2 = E(X)

m’(t) = 6(1—1* sothat M{(0) = 6 = EXX

Variance of X =o° = E®) —[E(X)]?
= 6-4 = 2

Summary

A random variable X is a function (or a processjhich assigns a
numerical value X(.) to every outcome of an expenin The resulting
function must satisfy the following two conditions:

1. The set {X < x}is an event for every X.
2. The probabilities of the events {X =} and {X = - «} equal
zero.
The distribution function of a random variable Xhg function.

F(x) = P(X< x) (5.8)
defined for every x fromeo to co.
The deviation f (x) = di F(x) (5.9)
X
of F(x) is called the density function of the randwariable X. The

expected values, moments, and moment generatingtidne are
obtained using the density functions.

Post-Test



1. Find the mean and variance, if they exist, cheaf the following distributions:
a. fix) = 2x3, 1 < X <
b. f(x) 6Xx(1-x%), 0 < x <1

2. A random variable can assume only the valuesidl 3 If its mean i/s, find the
variable.

LECTURE SIX



Chebyshev’s Inequality

Introduction

We have developed the tools by which expectedegatund variances of random variables were
computed in the preceding lecture. In order toiagtitthese quantities it must be possible to
evaluate at least approximately, the probabiliGespecified differences between the estimates
and the quantities we wish to estimate. The Chedwysequality deals with the probabilities of
a random variable to lie between specified limiibese will be found useful especially in
connection with limit theorems (in Lecture Fourteeand non-parametric inference. The
Chebyshev inequality is also a useful theoretical as well as a relation that connects the
variance of a distribution with the intuitive nati@f dispersion in a distribution. We shall first
take up a lemma from which the inequalities willdar.

Objectives

At the end of this lecture, you should be able to:
1. define the theorem of Chebyshe’s inequality, and
2. discuss the theorem accordingly.

6.2 Basic Lemma

Lemma 6.2.1Let b denote a positive constant and w(x) a nonnegative function. Then
1
Plw(X) =2 b] < EE[(‘)(X)] 6.1

provided that the expectation exists.
Proof,
Let A denote the set
A = {x|w(x) = b}
Thenif0< P(A) <1,
Elw()] = E[w(X)|A]P(4) + E[w(X)|A°]P(4)
Elw(X)] = E[w(X)|A]P(A) = bP(A) 6.2

The first inequality in (6.2) follows becauadgx) > 0 and the second follow becauséX) > b
(X) for xon A. If P(A) = 0, the basic lemma is trivially true; andAfA) = 1, the second term in
the expression faE[w (X)] is missing, so that again the desired result faslo

With w(x) = (x — u)? andc = Vb the basic lemma reduces to the Chebyshev inegualit



6.3 Chebyshev Inequality

For any constart > 0,

0.2
c?
It may be noted that the same inequality can beessed in two useful forms:

P(X—-ul=0) < 6.3

2

o
PUX—ul <O 21-7 6.4

1
PUX —ul 2 ko) < 6.5

Note equation (6.5) follows from

E[(X — p)?]
Pl[(X — pw)? = k?a?] < T kigZ 6.6
So that
1
P[|X — u| = ko] <27 6.7
or
1
P[IX —ul < ka]Zl—ﬁ 6.8

Example 6.1If X is a random variable such thatE (X) = 3andE(X?) = 13, compute the lower
bound for the probabilityP(—2 < X < 8).

Solution:
Var(X) =EX?) - [E(X)]?=13-9=4

From equation (6.8)

1
PIX =3I < 2k 21 -7 6.9

That is,

1
PB-2k<X<3+2k]21-1 6.10

The given inequality is
P(-2<X<8) 6.11
Comparing equation (6.10) and (6.11)



3—-2k=-2 6.12
or

342k=28 6.13
so thatk = 2.5 and1 — % = 0.84.

The lower bound for the probability
P(—2 <X <8) =0.84 or 84%
Example 6.2:A random X has the density function
fx)=e* X>0
Find the lower bound for the probability P[|X — u| < 2]
Solution:

The mean oX is given by

E(X?) = f xe¥dx = [xe™* +e*]% =1
0

Using integration by parts.

E(X?) = fwxze"‘dx = [e*(x* +2G + D)), = 4
0

Var(X) =0?=4-1=3
We have from (6.8),
P[|X—1|<Jﬁ]z1—k—12 6.14
Comparing (6.14) witP[|X — 1| < 2], we find that
Nk =2 or3k?4

ie k? = gso that

1 1

1——=
K2 4

Example 6.3 A symmetric die is thrown 360 times. Determine the lower bound for the
probability of getting 50 to 70 ones.

Solution:



Let m denote the total number of success. Then

m=X1 +X2+ R X360

1
- E(m) =np:360(g): 60

Var(m) = npq = 360 (%) (%) =50

Chebyshev’s inequality gives

P[|m—60|<kx/ﬁ]21—k—12

1
- [60 — kV50 < m < 60 + kV50] = 1 — =
Since we are interested in the probability betw&@mand 70,
60 — kv'50 = 50 or

60 + kvV50 = 70 or

k=v2
Puttingk = v2
P[60 —V2V50 < m < 60 + V2V50] > 1—%
i.e,P[50 <m < 70] 2%
Summary

A measure of the concentration of a random varibheat its meap is its variances?. The
probability thatX is outside an arbitrary intervélt — x, u + ¢) is negligible if the ratio'cI is

sufficiently small. This fundamental result is knowas the Chebyshev inequality. Chebyshev
inequalities are used to compare the lower and ruppends for the probabilities of the
difference between any random variable and a pigress value, usually the mean.

Post-Test

la. A symmetrical die is thron860 times. Determine the lower bound for the probapili
of getting0 to 70 ones.

1b. Compute the required probability using the birad distribution.



2. Two fair dice are tossed once.Xfis the sum of the numbers showing up, compute the
upper bound for the probabiliB{|X — 7| = 3].



LECTURE SEVEN
The Bernoulli and the Binomial Probability Distribu tions

Introduction

The simplest experiment is one that may resultitimee of two mutually exclusive outcomes.
Examples of such experiments include tossing a dain (head or tail), the outcome of a
production process (good or defective), the se& baby to be born (male or female), etc. We
will label the two outcomes of a Bernoulli trialcaess (s) and failure (f). The sample space is s

={s, f}.

Objectives

At the end of this lecture, you should be able to:
1. explain what Bernoulli; experiment is all aboutgan
2. discuss Binomial Probability distribution.

Pre-Test

1. Let X be b(2,p) and let y be b4, f).p(X =2 1) = g find P(Y > 1).

2. The p.d.f of a random variable X is given by

(%) {Q@@x - 01T

Compute:

1. the m.g.fof X;

2. the mean and variance of X
3. p0< X <)

CONTENT
The Bernoulli Experiment

Definition 7.1 A Bernoulli trial is an experiment with two mutlyakexclusive outcomes, success
or failure.

Let S be the sample space for an experimentledndCS be any event with
P(A) = p, 0 < p < 1, and define



X(w) = 1, if we A
0, if we A
The X is called the Bernoulli random variablehwalues 0 and 1 and parameter p. The
probability distribution for X follows directlydr S. Since X = 1 if and only if event A

occurs. We have P(X = 1) = P(A) = P(A)p= and since X = 0 if and only if evert
occurs, it follows that P(X = 0) = R) = 1—-p = q.

We then have

px(1) = p, O =9 p+tqg =1
or

) = P, x = 0,1, p+qQ =1 e, (7.1)

The mean of X is given by

B = Yxp(x=9
= 0p(X = 0)+1.pX = 1)
= 0qg+1l.p = p

EX) = le‘;oxz p(X = X)
= Fq+ P =p

Var(X) =  p-p = p(l-p) = pq

The m.g.fof X is given by

E[&] = ietx p(X = X)

X=0

m(t)

€qg+é.p=(Q+p

[(A-p) + PB e, (7.2)



The Bernoulli random variable provides a convenigtatrting point for defining a Binomial
random variable.

The Binomial Distribution

Definition 7.2: An experiment that consists of n (fixed) repeatedependent Bernoulli trials,
each with probability of success p, is called ahiral experiment with n trials and parameter p.

Definition 7.3: If X is a binomial random variable with paramsten and p, its probability
distribution function is given by

f(x):(;Jqu”‘X, X = 0,1, N e, (7.3)

The m.g.f of a binomial distribution is easily falnlt is

m) =Y e f () = ze@p a-p)™

n

z@(pet ) (- p)™

x=0

[(A=p) + P& (7.4)

for all real values of t. The mean and variaméeof X may be computed from m(t). Since

m (1) = - p) + pe' | (pe')
and

m'(t) = n[a- p) + pe' | (pe' )+ n(n - D] - p) + pe' [ (pe')?,

it follows that
mean of X =uw = n(0) = np
and

Il
Q
N
I
3
C
I

Variance of X



Example 1

np(1-p)

5
If the m.g.f of a random variable X i%+§e‘] ,find p(X = 2or3).

Solution
The p.d.fof X is

f(x)= (i}(gjx[:—g _X, x= 012345

p(X = 2o0r3)

Example 2

5
If the m.g.f of a random variable X im(t) = (g +%et) , find the mean and variance of X.

Solution

3

> f0

(e
KE[OREEE)
SHERED

40 80 _ 40
+

9x27 9x27 81



E(t) = m' (0) :g(gée()) 5

3 3 3
o®> = m’ (0) — 12
. 2,525 _ 10
9 3 9 9
Summary

From our combinatorial analysis in lectures one &, if a set has n
elements, then the total number of its subsetsistimg of k elements

n
each equaEskJ. We have used this result to find the probabiityan

—

event that occurs k times with constant probabgitin n independen
trials of an experiment. That is

p(k) = @p a-p™ (7.5)

When n = 1 and k = 0 or 1, we have

p'(k) = p“)L- p)*™ (7.6)

Equations (7.5) and (7.6) are called the binomiatd &Bernoulli
distributions respectively. We have used thestilligions to derive the
m.g.f. of a random variable X.

Post-Test

1. Let X be b(2,p) and let y be b4, f).p(X = 1) = g find P(Y > 1).

2. The p.d.f of a random variable X is given by

f(%) =@@j@jx - 017,

Compute:
a. the m.g.fof X;
b. the mean and variance of X



c. p(0< X < 1).



LECTURE EIGHT

The Negative Binomial and the Geometric Distributims

Introduction

In the last lecture, we discussed Bernoulli andoBiral probability distribution. In this lecture,
our focus will be on negative Binomial and Geonueedlistributions.

Objectives

At the end of this lecture, you should be able to:
1. discuss what negative binomial and geometric thgtion are and;
2. compare and contrast the binomial probability dstiions

Pre-Test
1. Explain the negative Binomial and the Geometri¢ritigtions
2. Discuss their relevance in statistical analysis.

CONTENT
Negative Binomial Distribution

You now have the necessary background for the stfidggative binomial distribution after the
treatment of binomial distribution. Consider a saae of independent repetitions of a random
experiment with constant probability p of succdss. the random variable Y denote the total
number of failures in this sequence before thesutcess. Thatis, (Y + r) is equal to the
number of trials necessary to produce exactlyuccasses. Here r is a fixed positive integer.
We are interested in determining the p.d.fof Y.

Let y be anelementof {y = 0,1, ....}. Then by the multiplication ruté¢ probabilities,
+r-1
p(Y = y) = g(y) is equal to the product bEtprobability (y (-1 ]pr‘lqy of obtaining

exactly (r — 1) successes in the first (y + r-tfials and the probability p of a successtun t
(y + nthtrial. Hence, the p.d.f.g(y) of ¥ given by

£y+r—1

= ' y, = 0, 1, ........
a(y) r_lqu y



+r-1
(y yr jprqy, y = 0,1,.......

= 0, Otherwise ... (8.1)
A distribution with a p.d.f. of the form g(y) (8.1) is called a negative binomial distribution

The Mean and Variance of Y
The m.g.fof Y is given by

o0 + _1
m(t)=Eety]=Zety£y ; Jlorqy
y=0

© (- & (n+ 1) .
Note thafl—x)™" :Z(j n)(—x)J :Z(n jj Jx'for -1 <x<1

Hence
mt) = iet{;rj p'(-q)
= X

y=0 y

<

_er* ()’ = p' @-qe)”

Now
m'(t) =rae'p’ (1-qe") "

EY)=pu= m'(t%: 0= %

E(Y*)=m'(t) =rqe'p’ (L-qet)"™ + (r +)ae'p’ (1-qe’) "rae

2

mn(t) :ﬂ+r2q2 +£
%:0 D pz pz

4 rég> r r r
Var(Y):m(t%:O— p(g :i+_q:_q



Geometric Distribution

For the negative binomial distribution, considee tharticular case when r = 1, we get the
probability distribution of Y, the number of faiks preceding the first success. Thus, the
distribution is given by

fy)= pd, Yy = 0,1,2,.... e, (8.2)

= 0, otherwise

Since the different terms in the probability disiition are the terms in a geometric series,
the distribution is often called a geometric disition.

The moments of this distribution may be obtaingd soibstituting r = 1 in the
corresponding moments of the negative binomiatidistion.
We have
EY) = pu = 3 and
p
- 4
Var(Y) = > and
Y
my = pL-dy’
Example 8.1

-2
If the m.g.f of a random variable X i%[l—%e‘} , find the mean and variance of X.

Solution
-3 2 -4
L e et
18\ 3 3 18\ 3 3

Mean of X is

E(X) = u = m’(%zo =1

Variance of X is



2 _ m'(t) 2
° = %=o H

= 4-1

= 3

Summary
The negative binomial distribution
y+r-1) |
g(y){ r_lJp“y, y = 01,.. (8.3)

is modeled to compute the probability of y failug®ceding the rtk
success. When interest is on just the first sigccegquation (8.3
becomes

=

gy) = pd y =01 ... (8.4
Equation (8.4) is called the geometric distribution

Post-Test

1. To investigate the effects of a certain drugaagiven condition, a medical research team
must first locate a person with the specified cbaodi Suppose 10% of the population
has the given condition and the research teamimrview people until they find k
number of persons with the condition. Let X denthe number of people they must
interview to locate k persons with the conditiohssume each person interviewed is a
Bernoulli trial with probability of success p 810 and that the trials are independent.
Determine:

a. The distribution of X.
b. The mean and variance of X when k = 1.
c. Comment on your values for (b).

2. John and James take turns in throwing two figeg] the first to obtain a sum of 9 wins
the sum of=4,000.00. If John has the first throw, compute:

a. The probability that James wins the price at his throw.
b. The probability that John wins a price.
c. James’ expected value.



LECTURE NINE

The Poisson Distribution

Introduction
This lecture focuses on the discussion of the Bnigsstribution.

Objectives

At the end of this lecture, you should be able to:
1. discuss the Poisson distribution; and
2. state its significance in statistical analysis.

Pre-Test
1. What do you understand as the ‘Poisson distrib@tion
2. What is its significance in Statistical analysis?

CONTENT

Some of the applications of probability theory aomcerned with modeling the time instants at
which events occur. Examples of such events é&pltene call arrival times at the switchboard
of an establishment and customer arrival timesdspartment store.

Assume we would observe the phenomenon of intéoest period of time and the time
instant at which we begin observing the phenomemiirbe denoted by O. That is, the origin
for our time scales. Furthermore, let us assumaé we would observe the phenomenon of
interest for a fixed time period of length t. (t ). Clearly, the number of events that would
occur in this fixed interval (O, t) is a random adte. Denote this random variable by X. Note
that X is discrete since it is the number of evahtt would occur and its distribution would
depend on the manner in which the events occupp&e in a sufficiently short length of time
At, only 0 or 1 event can occur and the probbdf exactly one event occurring in the short
interval of length At is equal toAAt, where A is a parameter. Finally, assume that any non-

overlapping interval of lengtiAt are independent Bernoulli trials. These Berhtuhls are the
subdivisions of the interval of length t into n g@s, each, with probability of success equal to
AAL.



At
= t = At
n
and p = JAAt = %(q = 1%) ...................... (9.2)

It follows that X, the number of events in theeiMal of length t, is a binomial random variable.
That is

o [

|
- k(n-k)! n n n

_ (At)* (1_£j“[1_£j‘k n(n-1(n-2)....n—k +1)

k! n n

lim £ (k) n -k
n- m,(l_ﬁj — e_/]t ,[l_ﬁj -1
n n

n(n-)(n-2)....n-k+1) :J(l_EJ(l_gj (l—k—ﬂj 1
. g E e

n n

Thus  f(K) - (/‘;I)k € e 9.2)

for k = 0,1,2,.......
X is called a Poisson random variable with param&t = u and f(k) is a Poisson p.d.f. i.e

X

F(x) = e_yf’ X = 0L
X

The m.g.f of a Poisson distribution is given by



mt) = ietxf(x) =Ze “X'e_

gy eueI =¢ (e'-1)

for all real values of t
m'(t) = (uet )e“(el' )
m" (t) - (uet )2 eu(et —l) + (uet )eu (e‘ —1)

m'(t%:o - H

and

gz = M (t%zo -pt = @rrp-pt = o
Thus the Poisson distribution has mgarequal to the variancey?,

Example 9.1
Suppose X has a Poisson distribution with= 2. Then the p.d.fof X is

X A2
F0=22" x = 01,2 ..
Xl

If we wish to compute P(X X), we have

P(2 < X)

1-{P(X =0) + P(X = 1)}

1 —f(0) - f(1)

1-62-262 = 1-3¢



= 0.594

Example 9.2
If the m.g.f. of a random variable X is

mt) = e'®?

than X has a Poisson distribution with mgan= 4. We have

X o4
f=2% x =012 ..
X!
B B 42e—4
P(X=2)= 3
= 0.1465
Summary
A Poisson distributed random variable with paramete = p takes
the values 0, 1, ..... with probabilities.
u@=”? , Xx = 0,1, ... (9.3
X!

—

The Poisson distribution has mean equal to theamee. The momer
generating function (m.g.f) is given by

m,, = e’ 9.4)
Post — Test
1. Arandom variable has a Poisson distributiorhghat P(X = 1)

Compute:
a. The mean of X
b. P(X = 3)



2. Let X have a Poisson distribution with = 100. Use Chebyshev’s inequality to
determine a lower bound for P(75 < X < 125).



LECTURE TEN

The Hypergeometric Distribution

Introduction
Our centre of focus in this lecture is on the Hga®metric distribution.

Objectives
At the end of this lecture, you should be able to:
1. discuss the hypergeometric distribution; and

2. compare and contrast it with other forms of staiétdistribution we have examined so
far.

Pre-Test
1. Discuss the hypergeometric distribution.
2. Compare and contrast it with other forms of statétdistribution.

CONTENT

The binomial distribution was derived on the badis independent trials of an experiment. If
the experiment consists of selecting individuatsrfra finite population of individuals, the trials
will not be independent.

Random Sampling

Let N denote the size of a finite population frarhich a random sample of size n is drawn
without replacement. Let the proportion of indivads in this finite population who possess a
property of interest, say A, be denoted by pt Kebe a random variable corresponding to the
number of individuals in the random sample who pssshe property A. Our interest is to

determine the p.d.f. of X. Observe that the etggeciumber of individuals in the population

who possess the property A is Np and those whootl@ossess the property would be equal to
(N — Np.). It follows then that x individuals stucome from Np and the remaining (n — x)

individuals must come from (N — Np). Hence thsig density function is given by

g
Fx) =~ AT X 0,1y e N e (10.1)

)




= 0, otherwise

The Mean and the Variance of the Distribution
If X follows a hypergeometric distribution then

, Where K = Np.

Il

1M
VY
s 2
N——

|
>
Z|x

N-1
n-1) nK

)

= np, since K = NP oo (10.2)

Using the relation ia b = a+b
g =\ Am-=i m

K
= n—.
N



E[x(x-1)] = i X(x—-1)

Hence

Var (X) =

)

ez lo

K(K -1) &

n(n—1)N(|\| 1)2
n-2
(K %IN—Z—K+2
K(K 1) & n-2-y
n(n- N(N 1)Z N-2

i

n(n-1)K(K -1
N(N -1

E(X?) =[E(X)]* = E[X(X =D] + E(X) ~[E(X)]*

n2K 2
N2

K(K-1) , nK

N(N-1) N

n(n-1)

K-1
N-1

_(n—l) +1_ﬁ}

N

KN-KXN-M}

N(N -1)

N@—pXN—nq

N(N -1)



Var (X) = npq(Hj ....................................... (10.3)

Remark

The mean of the hypergeometric distribution coiasidwith the mean of the binomial
distribution, and the variance of the hypergeomedistribution is (N — n)/(N — 1) times the
variance of the binomial distribution. For largaite populations, the error arising from
assuming that p is constant and the trials arepenigent, when the sampling population is very
small and it may be ignored, in which case the imiab model is satisfactory. However, for
populations which the sizes are small, a seriousr avill be introduced in using a binomial
distribution. Therefore, it is necessary to applynare appropriate distribution known as the
hypergeometric distribution.

Example 10.1

A basket contains 6 white and 4 black balls andI& lare drawn without replacement. Compute
the mean and the variance of the number of blalt& theat would be drawn.

Solution
Let X denote the number of black balls obtained

) - 10 ’
5]
= 0, otherwise
E(X) = ixf (%)



_ ézmam+mm+2ea+%®]

- —— a4 = 1.20
12C 449

E(X?)

i x?f (X)
_ 1 2 2
= 5c [0R0) + T (60) + 2 (36) +3°(4)]

= ——_ @4 = 2.0
12c 40

Var(X) = E(X) — [EX)P
- 2-(1.%
= 0.56

Example 10.2

A small rural community consists of 100 househotifsyhom 10 percent have malaria fever.
Compute the probability of getting at most two hehads with malaria fever from a random
sample of ten households from the community.

(+ oo

P(X<2)=) 2=

<" (100
10

Solution



Summary

The hypergeometric distribution is a probability deb that assumes
sampling without replacement. An error is introdilicghen constan
probability is assumed when solving problems asgedi with the
hypergeometric distribution. This error is small emhthe population
size is relatively large.

—+

Post-Test
1. A panel of 7 judges is to decide which of 2 ffibantestants (A and B) in a beauty contest
will be declared the winner (based on a simple nitgjof the judges) Assume 4 of the
judges will vote for A and the other 3 will voterf B. If 3 of the judges are randomly
selected without replacement, what is the prolgbthat a majority of them in the
sample will favor A?

2. A box contains 10 white, 20 blue, 5 red, andgi€®en balls. A sample of 10 balls is
selected from the box at random, without replacém#énX is the number of white balls
in the sample, determine:

a. the probability distribution of X.
b. the mean and variance of X
c. P(X > 8).

LECTURE ELEVEN



The Uniform or Rectangular Distribution

Introduction
In this lecture, we shall focus our discussiontmuniform or rectangular distribution.

Objectives

At the end of this lecture, you should be able to:
1. clearly define the uniform or rectangular distribat and
2. discuss its significance in statistics analysis.

Pre-Test
1. Explain what the uniform or rectangular distribatis all about in statistical analysis.

2. Compare and contrast the uniform or rectangulatridigion with other forms of
statistical distribution we have discussed so far.

CONTENT

Perhaps the simplest continuous random varialeeswhose distribution is constant over some
interval (a, b) and zero elsewhere. The distrduairises, for example, in tossing a die or in the
study of rounding errors when measurements arerdedoto a certain accuracy. Thus, if

measurements of patient's body temperatures amded to the nearest degree, it would be
assumed that the difference in degrees betweerirtleetemperature of the patient and the
recorded temperature is some number between -ah&G 0.50 and that the error is uniformly

distributed throughout this interval.

Uniform Random Variable

Consider an experiment in which one chooses atoranal point from the closed interval [a, b]
that is on the real line. Thus the sample sp@ce= [a, b]. Letthe random variable X be the
identity function defined or2. This means that the space of XQ= Suppose from the nature

of the experiment, the probability that the obsdrvalue for X falls in any interval of length

At in [a, b] is proportional taxt and f(x) > O for

A < X < b. Since the probability that the obhssl value for X lies in the internal is
proportional to the length of the interval, f(x) stde a constant, K (say), fora< X <b. That s,

fX) = K, a < X < b e, (11.1)

But the integral of f(x) over the whole range f4r is



Substituting for K in (11.1) from (11.3), we have

)= —- a<X<1
b-a
= 0, elsewhere ..o (11.4)
The Mean and Variance of a Uniform Random Variable
If X is a uniform random variable, then
2 _ .2
E(X) = J.b de = b a = a+b
a b-a 2(b-a) 2
We also have
2 3 _ 43
E0) = [ Xak= 222 = Lfgiapen?)
a pb-a 3(b-a) 3
It follows that
varX) = E(x?)-[E(X)] :%(b—a)z
Also
X tb _ Ata
m(t)=EetX]=.[b © = & 7€ for t20
a b-a t(b-a)
Example 11.1
If fx) = 1, 0 < X <1
Find

a. mean and variance of X
b. mean and variance of X



Solution

a E(X) = Exf(x)dx: j:xdx

x2 ]
EX) = xX*dx = | =
( ) IO |:3j|0
- 1
3
Var(X) = l_l = i
3 4 12
1
b. EQ®) = =
(X) 3
x5 1
E(X) = J.x“dx = | =] = =
5, 5
Var(X) = l_l = i
5 9 45
Example 11.2

X is uniform on- 1, 5) and Y is negative binomiatiwp = %/x.
Find the number of successes r, such tbat= o;

Solution
varx) = © - 2"") _ i’_g _
Var(y) = () =3

9 _
p* (&)
r = 4



Summary

The uniform or rectangular distribution providese thsimplest
probability model for continuous random variabldt. X is a uniform
random variable, then
f(x)= i, a<x<b
b-a
The mean of X is given by
E(X) :%(a+b) (11.5)

This is simply the arithmetic average of the limitlsile the variance of
Xis

Var (X) =1—12(b—a)2 (11.6)

Both the mean and variance are independent ofdriNan

Post-Test

1. If X hasthe p.d.f. f(x):%, -1 < X < 3, zero elsewhere, find the maawl

variance of X and X.

2. X is uniform on (1, 4) and Y is PoissontwggarameterA. Estimate A such that
o =07,

LECTURE TWELVE



Normal Distribution

Introduction
This lecture focuses on the discussion of the nbdmsg&ibution in statistical analysis.

Objectives
At the end of this lecture, you should be able to:

1. distinguish between the normal distribution in istatal analysis and other terms of
statistical distribution we have discussed; and

2. discuss the significance of the normal distribuiiostatistical analysis.

Pre-Test
1. What is the use of normal distribution in statigtianalysis?
2. Differentiate between the normal distribution arnideo forms of statistical distribution.

CONTENT

The normal distribution has a unique position imhability theory, and can be used as an
approximation to other distributions. In practioermal theory can frequently be applied, with
small risk of serious error, when substantially /mammal distributions correspond more closely
to observed values. This allows u to take advantafythe elegant nature and extensive
supporting numerical tables of normal theory.

Most arguments for the use of the normal distrdsutare based on forms of central limit
theorems. These theorems state conditions undehlie distribution of standardized sums of
random variables tends to a unit normal distributas the number of variables in the sum
increases. That is, with conditions sufficienetsure an asymptotic unit normal distribution.

Definitions
A random variable X is defined to be normally disited if it has the p.d.f given by

f(X) = f(xu0)= We_zwj .............................. (12.1)

where the parametens and ¢ satisfy <o<u<e and s> 0
The p.d.fof Z = (Xu)lo is
_%ZZ

f(Z):%Te ...................................................



which does not depend on the parametgrsand c. This is called the standard form of
normal distribution. The random variable Z ifexha standard, or unit, normal variable.

Snce
PIX<X)=P[Z<(X=)/0].cvoiieiiiiiiiiiee, (12.3)

such probability can be evaluated from tables efdiimulative distribution function of Z, which
is,

2

®(Z)=P[Z<7= % fme‘zzdz ................................. (12.4)

The quantiles of the distribution are defined BZ,) = o so that £., is the upper 1G9
percent point, and Z= -2 .,) isthe lower 10Q@ percent point of the distribution.
The normal distribution is symmetrical about X = The p.d.f. has points of inflexion at

X = uto. The distribution is unimodal with mode at X 5 which is also the median of the
distribution.

The modal value of the p.d.f. ig/v/27= 0.3979. The mean deviation of X isv2/m =
0.798. For all normal distributions.

meandeviation _ - 12 _ g7gg (12.5)
standardleviation T

Approximations

The most common use of the normal distributiongsaa approximation; either normality is

ascribed to a distribution in the construction shadel, or a known distribution is replaced by a
normal distribution with the same expected valud standard deviation. An example of such
replacement is the normal approximation to the tiab

Area under the Normal Curve
Suppose we replace the area under the normal byr then




and on making the substitution Z = (x)/o, we find that

A _j“ 7 (12.7
= € 2 :
To evaluate the integral A in (12.7) we note tiat> 0 and that A may be written
A%= L me_Ezzdzijm e_%yzdy
N2 N2

2

= jj e2 2dzdy

This integral can be evaluated by changing to padardinates by the substitution:
Y = rsin6 and Z = rco8, and the integral becomes

A?= %T I: LZ” re_gdéblr

r2

= j: e 2rdr = 1

The Moment Generating Function
m(t) Ele* | = e*Ele ™|

) [ j(x /1)
e gl Vg (2 dx

g

1
w 1 roe—[M)[(x—u)z—za%(x—/x)z]dx

= e ——
b

If we complete the square inside the bracket,abbhees

(X -w)? - 20%t(x - u) = (X -w)?- 20%(x - u) + o*t?- o™



(X -u - 6%)?% -

and we have

m(t) _ (etu+ o%? ]( J~ L (xp- cTzI) XJ
\/— -

The second function above is a normal distributigth meanu+ ¢t and varianceo;

ut+£02t2
m(t) = e ?2
Now
ut+1azt/
_ u+o’tle 2
n'(0) = ( )e t=0
= 3

5 FREPLE 5. \2 o2
oe ? +(u+at)e 2

m"(0)

t=0
= odo+
Var(X) = m'(0) - £
= o’
Remark 1

If X ~ N (u,0, then

P(a< X <b) = q{b-_ﬂj - q:(ﬂj
g g

Remark 2
d(x) = 1-d(-x)



Remark 3
If the random variable X is N(ug?), o®> 0, then

(X - p)? /o is x,

Example 12.1

If X hasthem.gf m() = e%?% then X has a normal distribution with mean

B = 2 and® = 64.

Example 12.2
Let X be n(u,0%, Then

P-D< X < p + 2)

(o) e
g g

D(2) - D(-2)

0.954

Summary

We have introduced you to the normal random vaegbbne of the
most important and most commonly encountered coatia randon
variables. In this lecture, we discussed probgbdistribution and we
have shown how the probability can be used.

Post-Test

1. Let X be n(uc® sothat P(X < 89) = 0.90 and P(X <) $40.95. Find p and
2
o’

2. If e*® isthe m.g.f of the random variable X, Find P(< X < 9).
3. LetX b n(5, 10). Find P[0.04 < (X -8)38.4].
4. If X is n(2, 2). Find a number K suchttha

a. P(X > -K) = 020

b. P(X > K) = 010






LECTURE THIRTEEN

The Joint, Marginal and the Conditional Distributio ns

Introduction
In this lecture, we shall examine the joint, maagiand conditional distributions.

Objectives

At the end of this lecture, you should be able to:
1. explain the joint, marginal and conditional distiiions; and
2. discuss their use in statistical analysis.

Pre-Test
1. Explain the joint, marginal and conditional distritons.

2. Compare and contrast them with the previous forinstatistical distribution examined
so far.

CONTENT

We are often interested not just in one randomatdei but in the relationship among several
random variables. A distribution function is cdlla joint p.d.f when more than one random
variable is involved.

Marginal and Conditional Distributions

Let f(x1, xo) be the p.d.f of two random variables, 4nd >. Thus f(x, X)) is the joint p.d.f
of the random variables ;Xand X%. Consider the event a<;¥X b,

a < b. This event can occur when and only wherevent
a < X< b, -0< Xy<0 occurs.

Example 13.1
Let the joint p.d.f. of Xand X% be.

1
f(xl,x2)=2—1(x1+x2), =123 x=12

I
~»
3

Then P(X = 3)
P(Xl = 2)

£(3,1) + f(3, 2)

f(2, 1) + f(2, 2) s



P(X: = 1) = f(1,1) + (1, 2) = Oy
P(X; = 1) = f(1,1) + f(2, 1) + f3,1) = 3,
P(X; = 2) = f(1,2) + f(2, 2) + f3,2) =

The above calculations are displayed in the tablevb

Table showing joint p.d.fof X; and X,

~
> % |1 2 f(%)
1 221 | 321 | 521
2 321 | 421 | 7/21
3 421 | 521 | 921

f(x1) 921 | 1621 |1

On the other hand, the marginal p.d.f. afiX

2
_e XX, 2% +3
f = = , X =1, 2, 3
(6)=2 "> 21 .
Similarly
3
_ X +X, 6+3X%,
f(x,)= = , =1, 2
)= 2= = o X
Thus P(X = 1) = f(, 1) = 501
P(X = 1) = 00, 1) = %51

From the preceding results it follows that ;fs) is the distribution of X given X% = X, S0
that the joint density can be written as the prodifcthe marginal and conditional densities.
That is

f(x1, X2) = f(x1) f(Xo/x1)
= f(x2) f(Xx1/x2)
If f(x1, X)) = fa)f(xp) for all X; and X%, then X and X% are said to be independent. It

follows that



(/) =108%) 1) 50

f(x)
Similarly
f(x/x,)= fEX(lX’X;), f(,) >0
and

[ /%) = [ fE:q;x))dX

(x,

This shows that f(xz/xl) has the properties of a p.d.f. of one continutyee random

variable. It is called the conditional p.d.f. dfet continuous random variable ,,Xgiven the
continuous, random variable; Xhas the value 1x

Example 13.2
Let X; and X have the joint p.d.f.

2, 0 < X< %<1
0 elsewhere

f(x1, %)

The marginal p.d.f. of Xis

f(x) = f 2dx, =2[x]%,

= 2(1-%), 0 <x<1

Similarly that of X is

f(X2) = joxz 2dx, =2[X]*
= 2%, 0 <x%<1



The conditional p.d.f. of X given % = % is

/)= L)

= i:i 0 < %< X%, 0<% 1
2X, X,
= 0, elsewhere

The conditional mean of {given % = % Is

E[X./X, =)= [ %1 (x/%)ax,

1
VR
il

5
N

o

=

11
| =
N

N|»—\><N
| |
°© X

and the conditional variance of;,X given % = x is

e () 2 = %5 s

2

XZ
= 2 0<x<1
12 ®

= 0 elsewhere



Summary

The probability models we considered in the presimctures involved
only one random variable. In this lecture, we hexpanded the idea {o
include the joint distribution of two random vareb. We have
showed how the individual probability distributiofrearginals) of the
random variables can be derived from the joint phality distribution.

Post-Test
1. Let X and X have the joint p.d.f.
fX, %) = %+ % 0<x<1 0<x1
Find the conditional mean and variance of, given X = x, 0 < %< 1.
2. Letthe random variables X and Y have thetjo.d.f
fix,y) = x+y, 0<x<1 0<ygl
Compute;
a. the meanof Y and X
b. the variance of Y and X, and
c. the covariance of X and Y.

LECTURE FOURTEEN



Distribution of Functions of Random Variables

Objectives

At the end of this lecture, you should be able to:
1. discuss ‘distribution of functions of random vated); and
2. explain its relevance in statistical analysis.

Pre-Test
1. What do you understand as ‘distribution of functi@fi random variables’?
2. What is the relevance of this in statistical analys

Introduction

4.1 Univariate Distribution

The procedure for obtaining a distribution thatmahates the necessity for estimating unknown
parameters is based on a change of variable taghnithe simplest of these arises when one
wishes to apply normal distribution theory to algemn but discovers that the random variable
involved does not possess a normal distribution. régall that the distribution function of a
random variablg, denoted b§(y), satisfies the relations

Gt)=P{Y <t}=PlwX) <t} 14.1

When t is any desired value. The inequadit{X) < _ t can be expressed as an inequality

on X. The relationship between y and x is such thatetisea unique value of x to each value of
y. Let the value of x corresponding to the valud fdr y be denoted by r. Consequently, since
w(x) < tif, and only if,x < t, it follows that

PloX)<t}=P{X<r}= fr f(x)dx 14.2
Thus from (14.1) -
G(t) =f f(x)dx 14.3

In view of the fact tﬁat r is a function of t, it follows from the calculus formula for
differentiating an integral with respect to its upper limit that
dG(t) dG(t) dr o ) 144
dt dr =f '

This formula is valid at any point r whefér) is continuous. It will be assumed that
f(x)is a continuous function of x. Since t and r wang pair of corresponding values of
y and X, respectively, and were introduced to Keam confusing upper limit variables
with dummy variables of integration, this relatibipsmay be written

dG(y) - flx ) 145

But in view of the reIatlonshlp between a distribatfunction and its density function, the left
side of(14.5) is the density of . Hence the desired formula is



dy
9y = 14.6
This derivation for a change of variaife= w(X) in whichw(x) is a decreasing function will
give a negative value. Sin%fe} will be negative in this case, a formula thataéidvis given by

dx
90) = F@ || 147
|Z—;| = w'(y) = J,(Say) is referred to as the Jacobian of the invieesesformation of
X=w (y).

Before formula (14.7) can be applied, it is necestareplace x in f(x) by its value in terms of
y, which means that it is necessary to solve tk#iomy = h(x) for x in terms of y. One can
calculatew’(y) from this inverse relationship, or else calculate

w'(y)from the original relationship = h(x) and take its reciprocal.

Example 14.1Given the distribution
fx)y=e™* x>0
Find the density function of the variabley = Xx?
Solution:
Sincey = x? is an increasing function of x wher> 0, the result in equation (14.17) can be
applied.
1

1
Hencex = w(y) = yz andw'(y) = PN

Thatis,w’(y) = %y_%,y >0
g = floa@]lw )|

1
= e—y2

2.y
! —\/Ty%

= ze
1 1+ 1

=5y ey >0
= 0, otherwise

,y>0

Example 14.2let X be a random variable having p.d.f.
fx)=2x,0<X<1
Find the density of 8X3

Solution:

The inverse function of = 8X3is
1 1_
—=w(y) and

x=§y3

1 2
w'(y) = v 0<y<8

The require density df is given by
9 =2[oM]lo' )]



1 2
67 °

1 1
2 (EW)

1
ys3 0<y<o

[N

0, otherwise

Let X have the uniform density over the interg@J1) with distribution
fx) =1, 0<x<1
Find the density function of y = —2log, X.
Solution:
We haveY = —2log, xorY = log, xl—z
Yy

Thatis,x = w(y) = e 2
1 _y
WO =5eF  0<y<o

The distribution ot is given by
9 = [wM]lo' M|

Now
flo()] =1
Hence
1 »
g(y)=1-§e 2, 0<y<o
=0, otherwise

14.2 Bivariate Transformation
The transformations of the variatesandy for bivariate distributions follow the ordinarywa
for the transformation of differentials.
For example, if
dF = f(x,y)dxdv,
x = x(u,v),
y =y,v),
whereu andv are functions ok andy.
We have
dF = flx(u,v),y(u, v)]l/|dudv
wherg is the Jacobian of the transformation given by
dx dy
_0x,y) |ay ou
Co(u,v) |ox ay
dv dv
Example 14.4:Let X; and X, denote a random sample of size two from the distribution
fx) =e™%, 0<x<o

X)ilX , show that;and Y, are stochastically independent.
1 2

|f Yl = Xl + XzandYZ
Solution:
The joint p.d.f. ofX;andX; is

g(xl,xz) =fx)f(x) =e™ 12,0 < x; <00;0< x, < 0




= 0, otherwise

Now
Y1 = ug(xq,x3) = x4 ;' X3
Y2 = Up(xq, %) = X +1x2
These transformations can be written,gss y,y, andx, = y; (1 — y,) so, that
Y2 V1
/= 1=y -»n

Where {0 < y; < 0; 0 < y, < 0} in the y,y, plane. The joint p.d.f df; andY; is given by

g(yl; yz) = yle_y13’2—y1(1—y2)
:yle_yl, 0<y1<oo,0<y2<0
=0, otherwise

The marginal distribution df; is
1

9g1) =f 9y, y2)dy,
10
:f yie tdy,
0

1
yle_ylf 1dy, =y,e™1.1
0

=y,67710 < y; < o5
=0, otherwise
The marginal distribution dof, is

(o]

g(y2) = j 91, y2)dy,

Jo
= j yie rdy,
0

Noting thatl'(a) = f0°° y%le=Ydy,it follows that

g(y) =T2) =1
Therefore,

giy) =1, 0<y, <1

=0, otherwise
Sinceg (v, v2) = g(¥1)g(y,) it follows ¥; andY,are stochastically independent.

14.3 Limit Theorems

The theory of large samples in statistical infeeentakes us of certain results concerning the

limiting behaviour of sequences of random varialaled probability distributions.

Consider an infinite sequence of random variabé#med on a probability spack;, Y, - (This
space may be taken to be the space of infiniteesemguof real numbers, in which case the
are coordinate functions). It is desirable to defimhat might be meant by the limit of the
sequence. But random variables are functions, hatetare several ways in which a given

sequence of functions might be considered to agpradimit function.

The sequencf,,} is said to converge t in distribution if and only if each poitwhereFy (1)

is continuous.



n—-oo

This implies that for large but finite, the probabilityP(Y,, < A1) can be approximated by the
probability Fy (4) which may be considerably simpler to derive.

The sequencéY,,} is said to converge 16 in the mean, or in quadratic mean, or mean sqifare,
and only if the average squared difference tendeto:
limE[(Y, —Y)?] =0
n—oo
The sequenck, is said to converge to Y in probability, if andyif for any e > 0,
limP(|Y,—Y|=¢e)=0
n—->oo

The sequencE,converges td almost surely, or with probability, if and only if
P(limy, =v)=1

n—oo

14.4 Laws of Large Numbers

A functional notion in the formulation of a probhtyi model is that the probability of an event is
intended to embody the observed phenomenon of demgtability in the relative frequency of
occurrence of the event in a sequence of trialthef experiment. It is then of interest to
determine whether stability is a mathematical cqneace of the axioms in the model that has
been developed. That is so is a result referrexs ta law of large numbers. Ina particular case of
trials in which an evemt occurs with probabilitpy and does not occur with probability — p),

the law of large numbers would assert that

lim = =
aoeon P

wherd’ denotes the number of timesnntrials thatA occurs (frequency of the eves}. If the
trials are independent experiments, the relatigguency ofA does tend toward the probability
of A in the mean, in probability, and in almost surely.

14.5 The Central Limit Theorem

It is a remarkable fact that the random varidhlelefined as the arithmetic mean of a sequence
of n-independent replicas (in distribution) of a randeamiableX, has a distribution whose shape
tends to a limiting shape that is independent efdlstribution ofX, so long asX has a finite
variance, as becomes infinite.

T study this limiting shape, it is necessary to ifyd, so that the limiting distribution is not
singular-the limiting distribution function of,, itself is a step function with a single step at
E(X). On the other hand, the variable

nY,=S,=X,+X,+-+X,
has both a mean #¢)$ and a variancéns?, wheres? = var(X)) that infinite withn. Thus
one loses track of the shape of the distributiozabse it flattens out and moves off to infinity.

A device that keeps the distribution from shrirkior expanding excessively is that of
standardization.
Y- p S, —np
Iy =—5—= )

— 2
Jn no




N

(o

E(Z,) = 0and/ar(Z,) = 1 sinceVar(Y,) = —

The random variabl&, has a distribution whose shape can be examinadb@somes infinite
sinceZ,, has fixed mean and variance.
The standardized,, can be written

n
X,_
Zn=ZUi where U; = — s

i=1
SinceE (X; — p) = 0andVar(X; — p) = o2, It follows that
242

+0(t?),

o
q)Xi—[L(t) == 1 -
so that

O, (1) = & (1 )—1 Y L
0= () = 1 T 05

The characteristic function &, is then the nth power.
n
Dy (8) = [®y,(D)]

= [1 - o°t’ + 0(1:2)]

2
t2
= e_;

the above discussion can be summarized in theAfmiptheorem.

Theorem 14.5.1 Central Limit Theorem
letX,, X,, ... be a sequence of identically distributed random variables with mean u and variance
a? (both finite), any finite number of which are independent.
LetS, = X; + X, + -+ X, Then for each Z,
limP(Sn_nu<Z>—CD(z)— ! jz ex ( 1uz)du
n-—oo Vno? V2mo? J_ o P\"2
Since the limit and can be made arbitrarily claséhe limit by takingn large enough, it follows
that the distribution function of the standardizedn can be approximated with the aid of the
standard normal curve. In particular,

setting = %‘ one has

—n
P(Xy + Xy + 4 Xy < 9) = CD(y “)

no?

Summary

In this lecture we laid the foundation for the stuad sampling distributions. Given two random
variablesY andX if y — w(y) is an increasing or decreasing function digd) is the density
function ofX theng(y), the density function df, is given by

dx
90) = F@0) ||

in which $x$ is to be replaced by its value in temfiy by means of the relation= w(y)
Knowledge of sampling distributions help to explainy

a. under certain conditions some statistics possesbapility distributions that can be
approximated by the normal curve, and



b. sample statistics and their probability distribn8oare used to make inferences about
sampled populations
Post Test

2
1. Let X have the p.d.f.f (x):gj ,0 < x < 3.Find the p.d.f. of Y =3X

2. Ifthe p.df.of X isf(x)=2xe™ 0 < x < Find the p.d.f. of Y = X
3. Let X, X, be arandom sample of size 2 from the distrdvubiaving p.d.f
f(x) = é&*, 0 < X <o Find the joint p.d.f. of Y and ¥, where ¥ = X; + X

X1
(X1+X2)

and Y, =

4 Givef(x) =e™, x>0, find the density of the variable
1
a. Y==-and
X
b. Ylog. X

LECTURE FIFTEEN



The Gamma and the Chi-Square Distributions

Introduction

In this lecture, we present a simple derivatiothef gamma and the chi-square distributions and
their applications. In applied work, gamma disttibns give useful representations of many
physical situations. They have been used to maddistic adjustments to exponential
distributions in representing lifetimes in “lifesting” situations. For example, it is frequentlg th
probability model for waiting time until “death”.

Objective

At the end of this lecture, you should be able to:
1. use the Gamma and the Chi-square distributionalgutating probabilities; and
2. explain the significance of the two distribution deds in statistical analysis.

Pre-Test

1. State the significance of the Gamma and the Chaggdistribution models in statistical
analysis.

2. discuss the application of the two distribution misdn statistical analysis.



CONTENT
The Gamma Density
The density

r(@)= [y e dy e :xy

is sometimes called an incomplete gamma functlbra> 1, an integration by parts shows that
Ma)=(a-1)) jo ye2eVdy = (a -Dr (o -1)
Accordingly, ifa is a positive integer greater than one,

Ma) = (@-1)@-2)@-3)...... @) (3) (2) (T (1)
= (o-1) S — (15.2)

Since (1) = 1, it follows that we must take 0! = 1.

In (15.1), let us consider a change of variablevhting

y > >0, so that

=X
B

dy = (%de

M(a)= j:(%]a_ e‘?f(%]dx

or equivalently,

Then

1:r° 1 xLe  dx
M(a)B°

Sinceoa> 0, B> 0, andl(a) > 0, we have

_ 1
ATy T

= 0, otherwise - (15.3)

x?le?, 0< X <0

A random variable X has a gamma distributiortsfprobability density function is of forum
(15.3).



Moments and Other Properties
The m.g.f of the gamma distribution is given by

1

Xa—le‘f dx ---- - mmmmmmmmmmmmmm oo (15.4)
M(@)B°

m(t) = [ e"

© 1 4 —A0-R)
'[0 e x7te A7 M dx

F(@)B°

If we set =Xa-m), x=-2
we se y ,6’( A, X - A
t<%, we have from (15.4)
— 1 e 1 a-1,-y
mo (1-ﬁtj L@y ey
= 1 , t<1 -------- --------(15.5)
-7 B
Now, mi(t) = (-0) (-B) (1 -pry "
and ni(t) = (-0) (-a - 1) (-B)* (1-Bty *

The mean of the gamma density is
H = n0) = ap
and variance

o’ = m'0)- 2 a(a + 1p%-a’p®> = ap?

Waiting time

Suppose the waiting time (W) of an event has a gamuah.f. witha = k and

B = Y. Accordingly E(W) = p =ap = K(/,) . So that the expected waiting time can be
obtained for k changes. For k = 1, for exampl@V) = .

The Chi-Square Distribution



Consider the special case of the gamma distributiofi5.3) in which a :%, where r is a

positive integer, an@ = 2. Thatis

1
(F
2

= 0, otherwise ------ e (15.6)

A random variable X has a chi-square distribuifats probability density function is of form
(15.6). The mean and variance of the chi-squasteilolition are

H =af = (L)) = r andcd® = (IL)(2)P = 2r

f(x) = x2 €2, 0< X <o

Example 15.1

If X hasthe p.df f(x) = %xe_z, 0 < X <
= 0, otherwise.

Compute:

1 the mean and variance of X
2 them.g.f. of X.

Solution
1. X isx’(4). Hence p = 4 and® = 8
2.mt) = @APY* = A-ywW3it<

Example 15.2
Let X be x%10). Compute P(3.2% X < 20.50).

Solution
P(3.25< X £ 20.50) = P(X< 20.50) - P(X< 3.25)

0.975-0.025

0.95



Summary

In this lecture we have introduced you to the Gamamd, of course th
Chi-square distribution, one of the important andeqbiently
encountered sampling distributions. We derived thebability
distribution of the Chi-square random variable amee also
demonstrated how the probability distribution coubé used in
computing probabilities.

()

Post-Test

1 If (1.20)° t < %, is the m.g.f. of the random variabte find: (a) the mean and
variance of X. (b) P(X < 5.23).

2 If X is x%5), estimate the constants K and d so th#&t ®(X Cd) = 0.95 and P(X
< K) = 20.025.

3 Let X have the uniform distribution with p.d.fiix) = 1, 0 < x < 1 and zero
otherwise

a Find the distribution function of Y =2log .

b Whatis the p.d.f of Y.
c. Compute the mean and variance of Y.
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